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Abstract

This paper shows how Design Patterns may be used to reveal properties
of object-oriented development methods.  The responsibility-driven and
event-driven design methods are contrasted in the way they transform
and layer systems.  Each method elevates a different modularising
principle:  contract minimisation and existence dependency.  Different
design patterns, such as Mediator, Chain of Responsibility, Template

Method, Command and Composite emerge for each method, illustrating
the particular bias and the different design decisions each makes.
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1  Introduction

The vast majority of object-oriented analysis and design methods are in agreement
that the identification of subsystems is an important task.  Subsystems are the
building blocks that allow a system to be decoupled for various reasons, such as (i)
to run on different processors;  (ii) to be developed by different teams;  (iii) to
compile as a separate module;  (iv) to facilitate substitution and extension;  or (v)
simply because the subsystem is itself an important domain abstraction.  However,
not many object-oriented methods offer any kind of systematic process, in the
form of axiomatised steps, for developing subsystems that are optimally
partitioned according to some design criteria.  Indeed, some methods, such as
Booch [3], p229, emphasise the continual need for creativity and intuition,
believing that it is impossible to codify the design process.  Other methods, such
as OMT [20] choose to split systems up according to subjective criteria, such as
layers (code substrates, virtual machines) and partitions (intuitively-determined
subsystem modules).  Instead, it would be better if subsystems were selected



according to measurable internal criteria, such as the degree of inter-module
coupling [18], which corresponds to the number of inter-object references needed
for message sending in the object-oriented model.  A good system design method
should minimise inter-object coupling across subsystem boundaries and thereby
also foster subsystem reuse in new contexts.

More recently, Design Patterns have emerged as the "distilled products" of high-
quality object-oriented designs [10].  Each pattern is a solution to a small-scale
design problem, created according to the single principle:  "Encapsulate the part
that changes".  Patterns as diverse as Abstract Factory (creational), Composite

(structural) and Command (behavioural) all rely directly on this principle, by
reorganising designs around polymorphic plug-in points, which may subsequently
be filled by specialised concrete components.  The application of Design Patterns
is normally a system design activity, in the sense we are seeking above.  But,
Design Patterns are again applied intuitively to particular problem/solution spaces
[10] by expert developers who recognise these situations.  In the rest of this paper,
we use Design Patterns in a quite different way, as the "litmus paper" to judge the
quality or strength of particular object-oriented development methods.

Because we were interested in comparing the kinds of systematic guidance

provided by object-oriented design methods to non-expert developers, we needed
to select methods which were obviously directive in their modelling approach.
We considered that Booch [3] and OOSE [15] rely over-much on expert developer
intuition in the identification of object concepts and subsystems.  OMT [20],
Coad-Yourdon [6, 7] and Shlaer-Mellor [22] all have a data-driven foundation
that is amenable to systematic entity-relationship modelling (ERM), which
elevates data dependency as its system modularisation principle.  The deliverable
of ERM is a set of normalised data files (equiv. 3NF) which says nothing about
the procedural structure of the system interrogating the data.  We did eventually
find two methods which satisfied our criteria for providing proper direction for
object-oriented design.  Section 2 reformulates the Responsibility-Driven Design
method [28, 29, 27] from a systematic viewpoint, especially the much-neglected
system design stage, which elevates contract minimisation as its modularising
principle.  Section 3 presents an original Event-Driven approach adapted from the
work of the second author and her colleagues [24, 25], which elevates existence

dependency as its guiding principle for modular decomposition.  Both approaches
are evaluated for their potential to identify properly-layered subsystems with loose
external coupling.  In our assessment of these two contrasting methods, we use
Design Patterns in an unusual way:  as indicators of the design decisions taken by
the methods.  We allow the systematic application of the methods themselves to
generate the Patterns which they naturally tend to promote.  We regard the
emergence of Design Patterns as evidence of the quality of the methods, and the
generation of different Design Patterns as an indication of the particular bias of
each method.  This connection has not been made before.



2  Responsibility-Driven Design:  Contract Minimisation

Responsibility-Driven Design (RDD) regards objects as behavioural abstractions,
characterised at a coarse scale by the "responsibilities" that they bear, which
translate 1:M at a finer scale into the services they provide [28].  Data attributes
are assigned later, on a need-to-know basis [4].  The design method [29] operates
in two phases:  the first generative phase produces new object abstractions using
the CRC-card modelling technique [2];  and the second transformational phase
identifies tightly-coupled regions and layers the system using a coupling metric
called "minimisation of contracts".   RDD is especially good for decentralising
control, distributing system behaviour throughout a society of objects [27].

Most second-hand treatments of RDD [4, 3, 13] mistakenly focus only on the
informal aspects of the first phase;  and then sometimes misunderstand its
purpose.  It is true that RDD and CRC-card modelling are helpful to promote
more active (viz behavioural) object concepts, such as manager or controller

abstractions [3].  However, the generative phase of RDD is best applied ab initio,
not after the prior construction of object models.  It is important to keep entity
boundaries plastic while responsibilities are being elicited and redistributed - prior
object modelling tends to fix these boundaries too early.  RDD is compatible with
other behaviour-centred approaches [11, 21, 12] which use scripts/scenarios/use-
cases [15] to explore system requirements before assigning behaviours to objects.
However, very few authors have picked up on the systematic layering offered by
the second transformational phase of RDD, which we believe has been unfairly
neglected.

2.1  The Rules of RDD

We are chiefly interested in RDD for its power to transform system designs,
especially the much-neglected and often misunderstood second phase.  However,
for completeness' sake, the whole RDD process has been codified in the following
10 rules (an arbitrary number, but sufficient for our purposes), shown in table 1.
The rules are an original semiformal characterisation of published informal
descriptions of the RDD method  [29, 4, 27].  We have made certain aspects of the
RDD process more explicit (rules 1, 3), introduced a halting-condition (rule 4)
and a novel decision function (rules 5, 6) for determining how an entity should be
split when it is judged too large (by rule 1).  A novel coupling weighting (rule 8),
which we have found useful in the Discovery method [23] helps to show the
degree of functional dependency expressed in a static client-server coupling.
Rules 1-3 govern the initial conceptualisation of domain entities.  Rules 4-6
generate more esoteric entities to decentralise computation;  and determine their
final granularity by the size constraint and single-purpose requirement.  Rules 7-
10 govern the systematic restructuring of the system, generating design-level
entities needed to reduce system coupling ("minimise contracts", in [29]).



RDD rule 1:  Identify entities on the basis that they fulfil a small (2-7)
cohesive set of responsibilities, each a coarse-grained statement of (part
of) the purpose of the entity;  concepts which bear no responsibility are
either simple attributes, or vacuous.

RDD rule 2:  Consider how each entity fulfils its responsibilities,
establishing collaborations with subcontractor entities, to which it
delegates some parts of its responsibilities.

RDD rule 3:  Add data attributes, on a need-to-know basis, to those
entities bearing a primary responsibility for managing the data;  convert
passive concepts into attributes.

RDD rule 4:  Continue subcontracting until the coarse-grained
statements of responsibility reach the fine granularity of single services
(methods).

RDD rule 5:  If an entity acquires too many responsibilities, and these
are cohesive, restate the responsibilities more generally and delegate the
detail to new (invented) subcontractors.

RDD rule 6:  If an entity acquires too many responsibilities, and these
are not cohesive, partition the entity into two or more peer entities
according to grouped responsibilities.

RDD rule 7:  For each entity, group its services into contracts, one
contract per set of services invoked by a distinct set of clients;  index the
contracts.

RDD rule 8:  Draw a collaboration graph, linking clients via directed
arcs to contracts indexed in each server entity;  log the per-service
weighted strength of each collaboration.

RDD rule 9:  Aggregate tightly-coupled subsystems inside new mediator
entities;  uncouple the components and have their contracts migrate
outwards to the aggregate entity.

RDD rule 10:  Generalise groups of entities that offer, or that invoke the
same, or similar contracts;  merge communication paths to and from the
general entity;  add dynamic binding.

Table 1:  Ten Rules of Responsibility-Driven Design



The terms used in RDD are sometimes misunderstood, in particular:
responsibility, collaboration and contract.

• A responsibility is not necessarily the same thing as a service, but may be
(rules 1 and 4);  it is a statement of purpose, not the name of a method;
keeping this coarser-grained view affects the operation of rules 5-6.

• A collaboration is best thought of as a connection, or coupling, between a
client and a server [29], rather than the messages sent between them [19];
the coupling view is needed for rule 9 to operate correctly.

• The transformational stage depends crucially on identifying contracts, sets of
services in a class interface that are used by common sets of clients [29].
Meyer's use of the term "contract" is different [16], standing for the reciprocal
agreement between a client and a server governing correct invocation and
exception-handling in a single method.

Henderson-Sellers and Edwards distinguish Meyer's "method contracts" from
Wirfs-Brock's "class contracts", understood to be the set of method contracts used
by each client [13].  Each client-server collaboration would then be governed by a
single contract.  RDD is slightly more subtle than this, grouping services into
contracts according to each distinct set of clients which invoke them.  This means
that a given client-server collaboration may eventually be governed by one or
more contracts, depending on whether the server has other clients which invoke
intersecting groups of services.  This distinction affects the operation of rule 10
above.  In summary, RDD is a responsibility-driven approach, which optimises
the communication pattern among entities, by transferring the responsibility for
handling message requests around the system.  The cleverness in RDD lies in its
ability to merge communication paths, so reducing the degree of static inter-entity
coupling required.  This is consonant with Parnas' dictum on modularity [18].

2.2  Transformations in RDD

A version of the well-known ATM banking machine example is presented to
illustrate the operation of the RDD process.  Nouns from the original problem
description, such as Teller, Money, CheckingAccount are selected as candidate
object abstractions ("entities", hereafter).  Sets of responsibilities are constructed
for each of these entities, for example, according to the grammar:

P ::= R | R "and" R | R "or" R | (R)

where R is the set of atomic natural language statements and P are non-atomic
statements of responsibility constructed from these.  The initial entities are filtered
and retained only if they can be conceived as bearing some kind of responsibility



(rule 1), so concepts like Money do not survive, except as the balance attribute of
a CheckingAccount entity (rule 3).    Collaborators are elicited (rule 2) where
these server-entities are obviously involved in the fulfilling of client
responsibilities; this information is entered on CRC cards.  Figure 1 shows the
initial collaboration pattern between these first-cut domain entities.

Teller

Terminal Nightsafe

Checking
Account

Savings
Account

Card
Reader

Dispenser

Figure 1:  Pre-transformed RDD collaborations

Clearly, there is a degree of arbitrary interpretation in the early selection of object
abstractions;  nonetheless all entities selected must have the required behavioural
properties.  The elicitation rules (1-3) are perhaps less automatic than the later
rules, but this is inevitable and not a fault.  We have deliberately chosen the most
obvious domain-influenced initial model, which fails to differentiate the activities
of the Teller and fails to generalise on types of Account, although the RDD
method would equally accept a more perceptive initial conceptualisation.  The
strength of RDD lies in its ability to reorganise the initial model according to
modularising principles, forcing the invention of new abstractions.

In figure 2, the design process is more advanced, but not yet complete.  An early
and obvious generalisation on common responsibilities in the interfaces of
SavingsAccount and CheckingAccount has generated the abstract Account parent
class (rule 10).   When all the responsibilities of the existing entities are listed, the
two most overburdened entities are Teller and CardReader, both of which have
over 7 responsibilities (rule 1), so these need to be split.

The CardReader must read, validate, encode and transmit account and PIN
numbers, search for accounts and authorise connections to them.  The choice of
applying rule 5 over rule 6 to split CardReader is determined by the fact that its
responsibilities are judged cohesive, since they all involve the same collaborators
and attributes.  According to rule 5, a new entity, Verifier, is spun off as a
delegate of CardReader with the responsibility to handle and validate PINs.  In
retrospect, this is a good design decision, since CardReader has no need to retain



the PIN number (rule 3) once it has read the card and PIN number [4].  Notice
how this is an instance of the Chain of Responsibility pattern [10], p223, in which
the responsibility to verify PIN number is passed onto a delegate object.  RDD will
tend to generate a Chain of Responsibility pattern every time rule 5 is invoked.

Withdrawal

Checking
Account

Account

Savings
Account

Card
Reader

Balance

Verifier

Deposit

Nightsafe

Dispenser
Terminal

Figure 2:  Partially-elaborated RDD collaborations

In contrast with this, the Teller entity must be partitioned into peers, because its
many responsibilities are not cohesive (rule 6), even when restated.  This is judged
by observing how deposit money requires collaborating with the NightSafe and
Account, whereas withdraw money requires collaborating with the Dispenser and
Account and lastly, inspect balance only requires collaborating with the Account.
So, three peer "manager entities" (rule 6) are devised to handle each distinct type
of Teller-transaction.  Note that the rule requires invention of new entities;  and it
is up to the developer to provide significant names, based on the partitioning of
responsibilities.  The elaborational rules 4-6 of RDD tend to generate manager
entities to handle different system functions, by virtue of the constraint (rule 1) on
the number of responsibilities assigned to each entity.  We shall see later how this
leads inevitably to instances of the Command behavioural pattern [10].

By drawing the collaboration graph (rule 8) after the proper determination of
contracts (rule 7), we see in a more visual way how individual clients are coupled
with their servers.  At this time, areas of strong and weak coupling may be
identified.  In our example, one of the kinds of withdrawal to be supported is
really a transfer of funds, which leads to the undesired cross-coupling highlighted
in figure 3 (a):  Withdrawal is the only manager-entity with a cross-linkage to one
of its peers.  This is strong evidence that rule 9 should be applied to remove the



cross-coupling.  This rule mandates the introduction of a new entity to aggregate
over the subsystem and manage the communication between the parts.  Calling
this new entity the Transfer manager, we encapsulate  Withdrawal and Deposit, as
shown in figure 3 (b).  Withdrawal no longer needs a direct reference to Deposit.
Notice how this is an instance of the Mediator pattern [10], p273:  the Transfer

entity coordinates the sequence of interactions between the Deposit and
Withdrawal managers, such that these do not need to refer to each other;  the
anomalous transfer money contract is moved from Withdrawal to this new entity.
RDD rule 9 always generates Mediator patterns, where other object-oriented
methods might be content to let the cross-coupling remain.

Withdrawal

Deposit

Terminal Withdrawal

Deposit

Terminal

Transferundesired
linkage

(a) (b)

Figure 3:  Aggregating over a closed subsystem

The last group of transformations involves considering how the contracts of
Account are invoked by clients.  Once Account responsibilities have been refined
down to the level of individual services (by rule 4), these may be grouped into
named and indexed contracts according to the distinct sets of clients which invoke
them.  According to rule 7, Account eventually offers five contracts, many of
which only contain one service each:  (1) inspect balance is used by Balance,
Deposit and Withdrawal;  (2) make deposit is used by Deposit;  (3) make

withdrawal is used by Withdrawal (grouping together the services request

withdrawal and withdraw amount);  (4) commit changes is used by Deposit and
Withdrawal;  and finally (5) connect to account is used by Verifier, (grouping
together the services valid a/c?, valid PIN? and a/c frozen?).

Figure 4 (a) is a fragment of the system, showing how Deposit and Withdrawal

invoke the Account contract (4) in common, but otherwise invoke apparently
separate contracts (2) and (3) each.  This is nonetheless suggestive, according to
rule 10, that some generalisation of Withdrawal and Deposit should handle all
communication with Account.  Calling this new abstract entity a Transaction

manager, the responsibility for invoking Account contracts migrates upwards to
Transaction.  In figure 4 (b), contract (4) commit changes is now invoked directly
by Transaction (instead of separately by Account and Withdrawal).  Contracts (2)
make deposit and (3) make withdrawal are judged sufficiently similar, from the
perspective of performing a transaction, that an abstract method transact(int) may



be provided in Transaction, which is subsequently redefined and dynamically
bound in the descendants Deposit and Withdrawal to perform the appropriate
deposit or withdrawal action.  The effect of this transformation is to merge the
communication paths leading from different manager-entities to Account.  First,
the duplicate paths to contract (4) are merged, then the paths to contracts (2) and
(3) are merged (on the basis of polymorphism).

Transfer

Account

Deposit

Terminal

Withdrawal

2

3

4

Transfer

Account

Deposit

Transaction

2+3

4

Terminal

Withdrawal

2 = deposit
3 = withdraw
4 = commit

use same
contract

merged
paths

single
path

(a) (b)

Figure 4:  Generalising on commonly-invoked contracts

From figure 4 (b), it is clear that the revised contracts (2+3) and (4) are now only
used by the client Transaction, so these may also be merged (by rule 7), making it
possible to combine the transact(int) and commit() methods.  Notice how these
transformations lead systematically to an instance of the Template Method pattern
[10], p325, in the form of Transaction's handleRequest(Account&) method.  This
method is the template for all single transactions on an Account.  First, it invokes
a virtual transact(int) method stub, followed by a concrete commit() method, on an
Account instance.  Transaction's descendants will provide appropriate concrete
implementations for transact(int); c.f. [10], p327.

The continuing process of generalisation (rules 10, 7) eventually predicts an
abstract superclass for Balance, Transfer and Transaction, which all communicate
with Account.  Since this entity will be the root of all managers handling banking
requests, we reintroduce Teller as the abstract superclass in the final design in
figure 5, having a single contract (1+2+3+4) with Account.  We emphasise that it
is the similarity in the way different manager-entities communicate with Account,
judged according to contracts, which motivates the introduction of the Teller



entity;  the fact that this corresponds to an existing concept in the analysis domain
is serendipitous.  Notice how Teller is an instance of the Command pattern [10],
p233:  Teller encapsulates different kinds of abstract banking requests, which are
fielded by its more concrete subclasses.  This could be represented by a
polymorphic handleRequest(Account&) method.  Further merging of Teller and
Verifier is prevented by their too-different external interfaces.

Checking
Account

Account

Savings
Account

Card
Reader

Teller

Verifier

Transfer

Nightsafe Dispenser

Terminal BalanceTransaction

Deposit Withdrawal

Figure 5:  Fully-transformed RDD collaboration graph

2.3  Subsystems and Coupling in RDD

The kinds of subsystems identified by RDD are equivalent to well-factored
modules with minimal inter-module procedure calls.  We emphasise that it is the
systematic application of rules 7-10 which layers systems properly;  and this is the
aspect of RDD which is most often neglected.  The per-service weighting measure
(rule 7) lets the designer see how many services each collaboration is carrying, in
highly-coupled systems.  It provides a rationale for placing subsystem boundaries:
you aggregate over the most tightly-coupled parts of the system (with high per-
service counts) and break the system at weakly-coupled points (with low per-
service counts).  RDD subsystems are eventually much better motivated than
Coad-Yourdon subjects [6].

RDD supports the bottom-up discovery of Mediator patterns, where each
Mediator is a properly-layered subsystem.  The aggregate subsystem Transfer

obviates the need for its component Transaction managers to be coupled directly



to each other.  Instead, it initiates the communcation between them, handling the
transfer of requests and money in a controlled sequence, possibly recording state
information in the process (rule 3).  For example, the withdrawal request may be
refused, in which case the deposit cannot go ahead.  This is ideally handled
internally by the Transfer manager.

Most methods encourage clustering of classes with similar external interfaces (we
showed this with the grouping of SavingsAccount and CheckingAccount under
Account), in other words, their similar behaviour is grouped according to how

they act as servers.  RDD is unique in its ability to cluster classes systematically
according to how they invoke their clients.  We emphasise how clever this is - it is
the only approach which can optimise the opposite (usually invisible,
encapsulated) end of the collaboration relationship.  Through the partitioning of
class services into contracts (rule 7) and the construction of fine-grained
collaboration graphs (rule 8) RDD supports the bottom-up discovery of Template

Method and Command patterns.  In particular, it is the per-client-set

identification of contracts which allows the designer to see similarities in the
global pattern of invocation.  Coarser-grained definitions of a collaboration graph
[13, 19] do not show patterns of invocation;  but only patterns of coupling.  This
will permit the aggregation activity (rule 9) to proceed, but not the generalisation
activity (rule 10).

3  Event-Driven Design:  Existence Dependency

The second object-oriented design method we consider is an original one, based
on a process algebra [25, 8] and a conceptual modelling approach [24].  We call it
Event-driven design (EDD) because it takes the viewpoint that all computation is
made up of events, on which objects must synchronise in order to participate.  The
notion of event participation is deliberately abstract, avoiding early assignment of
responsibility to objects for carrying out actions.  A motivating example is where a
Copy of a library book is taken out on loan by a Borrower:  which object is
responsible for performing this action?  The event-driven approach says that
neither is, instead both participate in a borrowing event.  This viewpoint is similar
to the view of communication defined in CSP [14];  whereas traditional message-
passing is more like CCS [17].

Entities are identified initially as simple data abstractions and are inserted into an
object-event table (OET).  Every entity should have one or more associated
creation and deletion events bounding the lifetime of its existence (see figure 6 for
examples);  these are logged in the table.  Further events, which trigger the main
system operations, are also logged against all those entities which participate in
each event.  An existence dependency graph (EDG) is constructed, in parallel
with the OET (see also figure 6).  This is different from an entity-relationship



diagram in that every link is an existence- or lifetime-dependency relationship,
between a master and one or more dependent entities.  For example, a library may
acquire a new Title and several Copies of that book.  The existence of the Copies

is directly dependent on that of the Title;  without the Title first being created, no
Copies can exist;  and if the Title is ever withdrawn, then all Copies must
necessarily cease to exist.  The EDG starts as a set of nodes, only some of which
may initially depend on each other and so be connected.  Eventually, the EDG
becomes an acyclic graph (transitive, antisymmetric, non-reflexive) as further
nodes and connections are added.

The system elaboration phase extends the OET and EDG by considering groups of
entities which must synchronise to participate in events.  If they are not already
linked by dependency in the EDG, then some new entity must be invented to
represent the time-bounded association between the participating entities.  This is
added to the EDG and appropriate creation and deletion events are logged in the
OET for the new entity.  An example is the borrow and return events, in which a
Copy of a book and a Borrower participate.  Since Copy and Borrower are so far
unrelated in the EDG, a new associative entity, named Loan, is introduced.  The
borrow event marks the creation of the Loan entity, which is deleted when a
corresponding return event signals the return of the book to the library.  The Loan

encapsulates the keys (pointers, IDs) of its participants.

In the system consolidation phase, polymorphic families of methods are devised
corresponding to one method per system event handled in each entity.  The flow
of control is initiated from the dependent associative entity to the participating
master entities, each of which must have a version of the method to react to the
event.  The polymorphic borrow method constructs a Loan, dispatching the same
borrow-message to the participants, where it (variously) decrements a Borrower's
book allowance and marks a Copy as unavailable to other library users.

3.1  The Rules of EDD

Once more, we are interested in the potential of EDD as a systematic design
process.  In table 2, we have distilled 10 rules (coincidentally, the same number as
for RDD) from the principal sources [8, 24, 25], by ignoring the more subjective
aspects of the design processes described there.  Rules 1-4 govern the
identification of entities and events;  rules 5-8 govern the elaboration phase which
layers the system according to the principle of existence dependency;  and rules 9-
10 govern the consolidation phase which converts events into chains of methods.
There is a pleasing simplicity about the EDG, since all relationships have the
same semantics and are already normalised (in ERM terms) when they are
constructed.  Also, the mutual influence of the OET and EDG allows the two
principles of event participation and existence dependency to drive the invention
of associative entity-abstractions.



EDD rule 1:  Entities are data or association concepts, existing for a
period of time, bounded by one or more creation and deletion events and
involved in possibly many other events.

EDD rule 2:  Primary data entities group atomic, non-overlapping sets of
attributes, which they are responsible for maintaining.

EDD rule 3:  Associative (dependent) entities group the keys of the
master entities on which they depend;  and may manage further
relationship attributes.

EDD rule 4:  Events are defined as atomic, non-decomposable actions
which (C)reate, (I)nvolve or (D)elete entities;  an atomic event must
impact on a finite, known number of entities.

EDD rule 5:  An object-event table arranges entities (x-axis) against
events (y-axis);  C, I, D are entered at appropriate intersections;  every
entity should have at least one C and D;  every event should have at least
one C, or I, or D.

EDD rule 6:  An existence dependency graph connects 1:1 and M:1
simultaneous dependents to their master(s);  the lifetime of each
dependent is strictly contained within that of its masters.

EDD rule 7:  A new associative entity is created for each distinct set of
entities participating in 2 or more common events;  the C, I, D events for
this new dependent entity must correspond respectively to:  [C or I],  I,
[D or I] events for its masters.

EDD rule 8:  Continue the process until all nodes in the EDG are
connected;  and all joint participations in events in the OET have been
encapsulated in dependent associative entities, or all but one, since two
events are needed to bound the lifetime of a dependent entity.

EDD rule 9:  All events become methods invoked on the dependent
entities, delegating to the participating master entities;  dependents
handle the intersection of their masters' events.

EDD rule 10:  Branches in method-trees are renamed according to the
rôles played by each participating entity;  similar rôles are clustered;
degenerate methods are eliminated.

Table 2:  Ten Rules of Event-Driven Design



3.2  Transformations in EDD

Most of the system layering activity is performed during the elaboration phase
(rules 5-8), in which new entities are devised according to the principle of
existence dependency.  Less structural re-design is required, since the event-
participation model deliberately leaves the initial message pattern plastic;
however, transformations are made to the OET.  Figures 6 and 7 illustrate the
lending library system before and after a Reservation entity has been added.
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Figure 6:  OET and EDG after addition of Loan

In figure 6, Loan is the latest associative entity introduced, according to rule 7, to
manage the common events {borrow, renew, overdue and return}, in which the
unique set of entities {Copy, Borrower} participate.  Loan has also been attached
as the latest child in the EDG, and made dependent on Copy and Borrower.  The
multiplicity figures state how many Loans may exist for each Copy or Borrower.
Note how, in accordance with rule 7, the OET contains I-events for all the the
master entities, viz. {Borrower, Copy, Title}, impacted by Loan C-, I- or D-
events, such as renew.  This allows renew's consequences to propagate to all the
master entities (eg the Borrower may have certain privileges restored by renewing
an overdue book;  the Copy may have its time-to-inspection reduced);  but it is
difficult to imagine what impact renew might have on Title - it is possible for an
event to have a null effect;  we show how this is handled below.

In figure 6, the existence of at least two events {reserve, cancel} which involve
two participants {Title, Borrower} not already covered by the existing Loan

association motivates the separate creation of the Reservation associative entity
(by rule 7).  This is shown added to the OET and EDG in figure 7.  Note how
there are no longer any I-entries in the OET which are not covered by some



existing association, indicating that the elaboration phase is now complete.  Every
time a new entity is introduced, existing events are examined for their impact on
this entity (rule 1).  For example, the fetch event is identified as a (D)elete-event
for a Reservation and a simultaneous (C)reate-event for a Loan.  This is the only
event to involve both a Loan and a Reservation.  No new associative entity need
be created (according to rule 8), since a pair of time-separated events is always
necessary to (C)reate and (D)elete each new associative entity introduced.
Furthermore, there are no unconnected entities in the EDG (rule 8).
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Figure 7:  OET and EDG after addition of Reservation

Rule 9 is applied to convert all event-participations into methods (one method per
entity-event).  A large number of methods are generated.  Every associative entity
automatically becomes the root of a call-graph for each event it manages.  For
example, the renew event is translated into:  Loan::renew() - update the due date
of the loan, which dispatches to:  Copy::renew() - reduce the time to inspection;
and also to Borrower::renew() - restore borrowing privileges.  Copy::renew()

dispatches to Title::renew(), which eventually is a null operation, a degenerate
method.  Notice the similarities between the method interfaces of each associative
entity and the participating entities it manages:  every dependent entity manages
the intersection of its masters' events.  Just like a Composite pattern [10], p163,
associations encapsulate part-whole hierarchies which respond to the same sets of
messages.  Just like the Chain of Responsibility pattern [10], p223, the events are
handed on to the next component in the hierarchy, until components are reached
which perform significant parts of the computation.  EDD will always generate
these two patterns in abundance.  Finally, rule 10 is applied to eliminate
degenerate methods, such as Title::renew().  Groups of methods may be renamed,
to increase their mnemonic salience, for example:  transact may convert into buy()

and sell() for objects playing these complementary rôles.



3.3  Subsystems and Coupling in EDD

Dependent entities in EDD have some of the characteristics of ERM's linker
entities (they represent associations and store foreign keys) but also have
characteristics of RDD's Mediator patterns (they are devised in response to a need
to communicate events to their participants).  However, data aggregations may be
handled differently in EDD than in other object modelling approaches [22, 20, 5,
19, 9].  Aggregations representing existence dependencies are modelled the same
way:  eg the Lines of an order are dependent on the Order.  However, new
associative entities must always be devised to relate an assembly to its non-

existence-dependent parts, such as the components of a PC.  Here, an associative
entity manages the collaboration between the whole and each part, which is
presumed to have a separate existence (it may be exchanged, substituted into other
PCs).  This tends to promote a distributed pattern of control:  the logic of the PC
is handled by a society of existence-dependent controllers governing the
throughput between the PC and each of its hardware components.  EDD optimises
the construction order of a system.  It is easy to draw entity life history diagrams
(ELHs) [1] for each entity and derive the life-history of the system from this.  The
logic handling other events during the life of an entity is either pure selection (all
events equally likely), or some sequencing of events is required.

EDD layers the composition structure similarly to RDD;  but it suggests a quite
different generalisation structure.  Consider that Borrower and Copy satisfy the
interface of Loan (because they respond to all Loan's events, and also to other
events).  It is tempting, but wrong, to think of Loan as a generalisation of
Borrower and Copy, since Loan implements the common events differently from
either class.  Instead, all three classes should inherit from an abstract class which
defines the Loan interface (but not the implementation).  This abstract class is an
instance of the Composite pattern base class [10], p163, whose concrete
descendants respond to each message and then delegate these messages to their
own components.  EDD inevitably produces large numbers of composite patterns,
because of the emphasis on shared participation in events.  More important master
entities will participate in more than one Composite pattern, suggesting the use of
multiple inheritance from several abstract base classes.  Where one or other
master entity is chiefly accountable in handling an event, this is also an instance
of Chain of Responsibility [10], p223, which allows events to be dispatched to one
starting point, then forwarded down the line to some object which eventually
executes the major part of the response.

4  Conclusions

This paper has examined two different approaches to object-oriented design, each
of which elevates a different modularising principle:  contract minimisation and



existence dependency.  Different Design Patterns emerged during the application
of the methods, showing how they take different design decisions when
structuring a system.  We showed above how these Design Patterns emerged
naturally and are in fact an inevitable part of the layering and transformational
rules of each method.  We characterised each method in a semiformal way, so that
the reader could see more easily the link between the "rules" of the methods and
the particular Design Patterns generated.

4.1  Emergent Patterns and Coupling Characteristics

The kinds of subsystems and layering suggested by each approach are different.
EDD promotes unidirectional data coupling in its modelling, so is unable to
handle inverse effects, such as a cascading deletion (see note in Figure 6), which
is formally forbidden.  An Observer pattern [10], p293, could be used to register
master entities with their dependents, although this would significantly worsen
the coupling characteristics.  RDD is most successful in eliminating mutual and
closed-loop couplings because of the perspective offered by the collaboration
graph.  In the same circumstances, where EDD requires an Observer pattern,
RDD will generate a Mediator pattern.  RDD is  unique in its generalisation
strategy, because it merges communication paths at both the source and
destination ends.  RDD and EDD contrast strongly in the way they generalise -
whereas RDD will generate Command and Template Method patterns, EDD will
generate Composite and Chain of Responsibility patterns.  It is no accident that
RDD generates all behavioural patterns (Mediator, Command, Template Method,

Chain of Responsibility), since its focus is on responsibilities and behaviour.
EDD, on the other hand, is dominated by the structural pattern, Composite,
determined by the EDG structure.  The event-participation model leads directly
from this to the emergent Chain of Responsibility pattern.

Both approaches reduce the number of subsystems which interact directly.  In
some cases, they will suggest the same structures, but for different reasons.  A
Purchaser, Vendor and Product will end up encapsulated in a Sale using both
approaches.  In RDD, Sale will be invented at a later stage to aggregate over the
closed ring of collaborations involved in transferring money, goods and
ownership;  whereas in EDD, Sale will necessarily exist from the beginning, by
virtue of the existence dependency rules, but only for the duration of the
agreement to purchase until the final transaction is complete.

4.2  Pattern Metrics for System Design

There is far more to object-oriented system design than elaborating analysis
models to the point where they can be implemented.  This is not truly appreciated
by seamless approaches [6, 7, 26, 13, 19].  System partitioning has only been



treated informally in many other presentations [20, 15, 3, 13].  Initially, we had
set out to identify, codify and then compare two design approaches which offered
some leverage in the system design stage.  When we applied our semi-formal rules
to example designs, we found again and again that recognisable Design Patterns
emerged.  In particular, we gave examples of instances of Mediator, Command,

Chain of Responsibility, Template Method and Composite that were generated
automatically.  These five patterns all have the property that they reduce cross-
coupling in system design.  The Façade pattern [10], p185, also exhibits this
property, but whereas the other five may be derived from the internal coupling
characteristics of systems, Façade is always imposed externally, in situations
where components are being bundled for convenience.  Some patterns, such as
Adapter [10], p139 and Bridge [10], p151, are neutral with respect to cross-
coupling:  they introduce an extra layer of composition to reduce the number of
specialised variants of a class.  Other patterns, such as Proxy [10], p207,
Flyweight [10], p195 and especially Observer [10], p293, actually increase cross-
coupling and mutual dependency.  This reinforces our confidence in the five
emergent patterns as indicators of high-quality system designs.  We note that
Design Patterns have not been used in this manner before - as litmus paper for
testing the strengths, weaknesses and preferences of design methods.
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