
This is a repository copy of Kalman filter based prediction and forecasting of cloud server
KPIs.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/200723/

Version: Submitted Version

Preprint:
Gyeera, T.W., Simons, A.J.H. orcid.org/0000-0002-5925-7148 and Stannett, M.
orcid.org/0000-0002-2794-8614 (Submitted: 2021) Kalman filter based prediction and
forecasting of cloud server KPIs. [Preprint - TechRxiv] (Submitted)

https://doi.org/10.36227/techrxiv.14583342

© 2021 The Author(s). This preprint is made available under a Creative Commons
Attribution 4.0 International License. (https://creativecommons.org/licenses/by/4.0/)

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the
authors for the original work. More information and the full terms of the licence here:
https://creativecommons.org/licenses/

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Kalman filter based prediction and forecasting of cloud serverKalman filter based prediction and forecasting of cloud server

KPIsKPIs

This paper was downloaded from TechRxiv (https://www.techrxiv.org).

LICENSE

CC BY 4.0

SUBMISSION DATE / POSTED DATE

13-05-2021 / 19-05-2021

CITATION

Gyeera, Thomas Weripuo; Simons, Anthony J.H.; Stannett, Mike (2021): Kalman filter based prediction and

forecasting of cloud server KPIs. TechRxiv. Preprint. https://doi.org/10.36227/techrxiv.14583342.v1

DOI

10.36227/techrxiv.14583342.v1

IEEE TRANSACTIONS ON SERVICES COMPUTING 1

Kalman filter based prediction and forecasting of
cloud server KPIs

Thomas Weripuo Gyeera IEEE member, Anthony J.H. Simons, and Mike Stannett

Department of Computer Science, University of Sheffield, United Kingdom

Abstract—Cloud computing depends on the dynamic allocation and release of resources, on demand, to meet heterogeneous

computing needs. This is challenging for cloud data centers, which process huge amounts of data characterised by its high volume,

velocity, variety and veracity (4Vs model). Managing such a workload is increasingly difficult using state-of-the-art methods for

monitoring and adaptation, which typically react to service failures after the fact. To address this, we seek to develop proactive methods

for predicting future resource exhaustion and cloud service failures. Our work uses a realistic test bed in the cloud, which is

instrumented to monitor and analyze resource usage. In this paper, we employed the optimal Kalman filtering technique to build a

predictive and analytic framework for cloud server KPIs, based on historical data. Our k-step-ahead predictions on historical data

yielded a prediction accuracy of 95.59%. The information generated from the framework can best be used for optimal resources

provisioning, admission control and cloud SLA management.

Index Terms—Kalman filtering, machine learning, adaptive filters, virtual infrastructure network, and cloud computing

✦

1 INTRODUCTION

Historically (from the 1960s onwards), IT businesses were
run on mainframe computers, but in the 1990s both
mini/personal computers and x86 servers became major
competitors. The x86 server dominated until the early 2000s
when the technique of virtualization began to offer more
flexibility in running thousands of workload from data
centers. The cloud concept, itself traceable to John McCarthy
in the early 1960s, only became popular in the mid-2000s.
McCarthy envisaged that computers would in the future
be organised like utilities forming the backbone of big
businesses [1]. Today, modern businesses have adopted the
model due to its low initial investment requirements for IT
infrastructure (both soft- and hardware) and the flexibility
it offers to consumers, both in terms of on-demand provi-
sioning of resources and also the number of IT professionals
required for start-up [2].

Nearly half a century after this vision of cloud comput-
ing, the evolution of the IT industry has seen widespread
adoption of the cloud business delivery model. Over 58% of
big businesses across the world now utilize the cloud. Ac-
cording to a recent Gartner report, companies were spend-
ing annually up to $175bn on cloud business services, with
this figure projected to double by 2020 [3]. The operating
profit generated by AWS (S3) alone in provisioning corpo-
rate cloud space exceeds $7.3bn [4].

The adoption of cloud business services is driven largely
by cost, together with the flexibility with which cloud
resources can be provisioned and deallocated. These huge
benefits cannot be overemphasized except insofar as no
technology is without limitations. As shown in Table I,
recent outages of major cloud service providers (CSPs), in-
cluding AWS, Gmail, Yahoo! and Microsoft Azure have had
significant consequences for both providers and consumers.

The idea of monitoring and adaptation, which is the
main focus of our research, is motivated by consideration
of these outages and disruptions. We argue that it should
be possible for cloud service providers to offer proactive
monitoring and adaptation in real time, which predicts a
potential problem before it occurs, rather than reacts to it
after the fact. To give just one example, adaptation-oriented
monitoring might potentially have allowed the prediction
of the 6-hour AWS outage of March 2017, which resulted in
many East Coast businesses remaining offline for a whole
day [5].

We regard the problem of monitoring and adaptation as
one of prediction, detection, synthesis/analysis and adap-
tation. Forecasting enables the root cause of a potential
problem to be determined proactively and mitigated. The
prediction of resource allocation or consumption, for exam-
ple, can allow IT resources to be dynamically provisioned
while avoiding over- and under-provisioning. Here, over-
provisioning means that resources are made available for
consumption but are not used to capacity because of lim-
ited requests or workload fluctuations. Under-provisioning
means that more IT resources are requested than can be
allocated by the service provider. An efficient and effective
predictive tool can warn a provider of the potential of
this scenario developing. The capability of detection can
enable a proactive tracing and identification of a potential
problem, as well as the planning required for its appropriate
mitigation.

Our approach involves using Kalman filters as a training
algorithm on the relevant data sets. In making this choice
we considered the accuracy of prediction, linearity, and the
number of features and parameters of this vs. alternative
approaches. The Kalman filter was first described in the
1960s [6]. Originally designed for navigation of spacecraft,
it has gained wider application in many fields of engineer-
ing, computing and economics, and is widely considered

IEEE TRANSACTIONS ON SERVICES COMPUTING 2

TABLE I. Downtime, impact and root cause of various outages.

Provider Date of Outage Downtime Impact in terms of Cost Users Affected Root Cause
Amazon Web Services 03/2017 6 Hours ≈ $1B 148,213 Command line error
Yahoo! Mail 04/2011 6 Hours ≈ $1B 1M Server upgrade
Google Cloud Gmail 02/2011 2 days ≈ $1B 150,000 A software bug
Amazon EC2 & RDS 04/2011 4 days ≈ $1M ≈ 1M Problems with EBS replication
Microsoft Hotmail 12/2010 4 days ≈ $1B 17,000 Load balancing issues
Amazon Web Services (AWS) S3 07/2008 8 Hours ≈ $1B > 100000 corrupted X-server messages and under-provisioning
WMware Cloud Foundry 03/2011 2 days ≈ $1M > 100000 loss of controller connectivity

a suitable model for linear system dynamics. An extended
version of the filter was later developed for non-linear
system properties [6] [7]. For non-Gaussian problems, so-
called Markov and Hidden Markov models are appropriate,
while for problems with high dimensional data sets other
algorithms (e.g., MDA and PCA) are generally suitable [8].
However, the Kalman filter has the advantage in that it
provides high quality estimates with relatively low compu-
tational overheads [6] [9].

1.1 Contributions

For the work reported in this paper we sampled data
on the key performance indicators of a real experimental
cloud testbed with a virtual infrastructure network (VIN)
constructed in Microsoft Azure. This framework enabled us
to monitor and measure the following fundamental server
KPIs that are usually defined as measurable metrics in an
SLA document:

1) Server hits per second
2) Throughput (average requests per second)
3) Bandwidth consumption in Mbps
4) CPU consumption in percentage
5) Average response time in seconds
6) Bytes received per second
7) Average latency

We conducted rigorous training and validation experi-
ments with the optimal Kalman filtering algorithm on our
generated data set yielding a good performance with a pre-
diction accuracy of 95.51%. The approach also presents the
capabilities of being able to forecast into the future of the key
performance indicators characterizing virtualized servers
and the applications deployed on them. Our approach
presents a unit k−step ahead prediction and forecasting
of cloud resources based on past and current observations
using the optimal Kalman filtering techniques. We defer
the discussion emphasizing the justification and relevance
of these metrics in the application design, implementation,
testing and integration process until the section on related
work.

1.2 Structure of the paper

The rest of the paper is organized as follows. We present
previous research work close to our approach in section 2.
In sections 3 and 4 we present our conceptual framework
and define the underlying problem using the mathematical
constructs of the Kalman filtering algorithm. Section 5 pro-
vides a description of the experimental testbed, tools and
procedures we used in sampling the datasets for training
and validating the model. Section 6 covers a critical review
of our experimental results. A practical application of our

framework is discussed in a case study in section 7 and our
main conclusions are presented in section 8.

2 RELATED WORK

This section presents previous research activities conducted
in the area of monitoring and adaptation of cloud comput-
ing resources related to our work.

Nilabja et al. [10] developed a model-predictive algo-
rithm for efficiently forecasting and autoscaling of work-
loads in the cloud. Their techniques predict workload in
advance in order to ensure that resources are optimally pro-
visioned and deallocated based on the volume of workload
influx. In their approach the second order autoregression
moving average algorithm (ARMA) attempts to forecast
workload for a future time horizon and determines the
response time based on the current workload. The predicted
workload, available hardware, service demand as well as
the user think time in executing their actions serve as the
inputs for determining the overall response time for the
application. The next stage is to determine an optimal re-
source provisioning strategy through the solution of a utility
cost function where resources are increased if the predicted
workload is high and less resources are provisioned if there
is a reduction in the workload.

Our approach is quite similar to this work in the sense
of the step-ahead prediction horizon that determines how
much of the workload the system expects in the future with-
out violating the SLA parameters. We focus on using the
Kalman estimator which is robust against noisy sampling
and for non-linear properties the unscented Kalman filter
allows the linearization of the mean and covariances [11].
This makes the Kalman filter a suitable choice especially for
both linear and non-linear data with Gaussian distributions.

The technique of the autoscaling method is only suitable
for systems with simple linear properties and this may not
be suitable in highly dynamic environment like cloud data
centers. In addition, the approach with the Kalman filtering
technique is a good choice since it can be applied to both
discrete and continuous value problem.

Colojani et al. [12] [13] presented a real-time adaptive
framework toward adaptive, reliable and scalable cloud
data gathering and monitoring. The adaptive algorithm
defines model parameters at varying sampling intervals
with the overall goal of maintaining a low-cost function on
communication overhead while guaranteeing reliable data
quality. In this algorithm, if the dynamics of the monitored
system are generally stable, data sampling is done with
larger sampling intervals and in a highly volatile systems’
behavior the algorithm samples data much faster. This
dynamic approach of real time big cloud data gathering
and monitoring with variable sampling intervals is aimed

IEEE TRANSACTIONS ON SERVICES COMPUTING 3

at capturing all transient and long-term window of events
characterizing the system.

Our approach exploits the benefits of predictive algo-
rithms in defining baselines for cloud resources provision-
ing and monitoring. The reactive approach presented by
Colojani et al. overburdens the system with high computa-
tional overheads as it keeps adjusting the sampling interval.
Our approach determines the systems behaviour well in
advance from previous resource usage patterns in order to
optimally provision the amount of resources that the system
would need in the future.

Kalvianaki et al. [14] [15] presented self-adaptive and
self-configuring virtualized servers’ CPU resource provi-
sioning using Kalman filters. Based on feedback control
theory the Kalman filter is integrated into the controllers de-
pending on the system state inputs and outputs for tracking
and updating resources utilization under variable workload
conditions. In their work the Kalman basic controller is
designed as a Single Input, Single Output (SISO) model
which dynamically allocates and adjusts the percentage
CPU utilization on the virtual machines. This method is
further extended to the Multiple Input, Multiple Output
(MIMO) principles of feedback theory in which the noise
covariances between multiple VMs is exploited as a tuning
parameter for adapting multitier applications provisioned
on the virtual machine. The adaptive MIMO controller (AP-
NCC) from this work integrates the self-configuring capabil-
ity in addition to the dynamic allocation and adjustment of
multi-tier application. Experimental results show that these
controllers are very effective at tracking the percentage CPU
allocation and utilization.This current work is closest to this
work.

The key difference in our approach is that we focus
more on proactive monitoring and adaptation in which the
performance patterns of the application server KPIs can be
analyzed in advance.

Reactive adaptation to the constantly changing demand
for resources is no longer effective, considering the volume,
veracity, velocity and variety (4Vs model) of data processed
by data centers. We argue that the behavioural patterns
and KPIs characterizing virtualized servers, networks and
database applications can best be studied and analyzed
with predictive models such as the LMS regression and the
optimal Kalman filter estimators. With an approach using
predictive analysis both long- and short-term predictions
can be used as a guide for the provisioning and deallocation
of cloud data center resources or for the general purpose
of cloud data center resources management. Another di-
rect benefit would be the prevention of over- and under-
provisioning as well as the prevention of over- and under-
utilization of cloud computing resources. A disadvantage of
the reactive approach presented in [15] is that the system is
overburdened with computational overheads as it adapts to
new changes.

Sackl et al. [16] developed the LTD, SLTD, TJ, AREA and
doubles models for characterizing bandwidth consump-
tion fluctuations for determining user quality-of-experience
(QoE). The models define new KPIs in order to establish the
impact on bandwidth fluctuations on the user experience.
In the LTD model, a fraction of time is set to be able to
observe the bandwidth below the downlink connection of

the network called BDW. This time period is used to map
a new function between the mean opinion score and the
fluctuating bandwidth. The selective throughput duration
(SLTD) model takes into consideration the time frame the
bandwidth drops are unnoticed by the user whereas the
TJ model uses the moving average with low frequency
sampling so that the bandwidth reference value remains
noticeable. Both the AREA and the double models are
constructed in the same way as the LTD. A threshold on
the downlink bandwidth is defined as a gap that accounts
for larger bandwidth fluctuations.

A model driven engine for cloud resources scaling based
on the Amdahl’s law is presented by Gandhi et al. [17].
Their work employs the optimal Kalman estimator to dy-
namically predict workload fluctuations and adapt by either
horizontally or vertically scaling the provisioned resources.
The model characterizes the workload fluctuations and de-
termines the optimal scaling methods using the Kalman
filtering techniques. Finally, Hu et al. [18] presented a frame-
work based on statistical learning theory in constructing
models using the Kalman smoother and the support vec-
tor regression algorithms. Prediction accuracies with their
approach are evaluated to be higher than those using tech-
niques that employed auto regression, back propagation
neural networks, and canonical support vector regression
algorithms [19] [20] [21] [22].

Our approach in this work applies the state space version
of the Kalman models in building predictive models that can
be used for analyzing and forecasting cloud resources allo-
cation and consumption. To further state the benefits of our
approach, we present in section 6.4 a detailed comparative
analysis using two machine learning algorithms (stochastic
gradient decent (SGD) and boosted decision tree) from
previous work in [23] and a reactive approach developed
by [24].

3 CONCEPTUAL FRAMEWORK

Our monitoring and adaptation framework has four main
building stacks, as shown in Fig. 1.

(1) The monitoring stack provides a dashboard that show-
cases various aspects of monitoring. The pay-per-use mon-
itor depicts metrics showing how resources are consumed
and how much the consumer may be required to pay for
them. For example, the amount of memory, bandwidth or
%CPU utilization can be used here as a metric for evaluating
and billing the client as specified within the service level
agreement (SLA). For the purpose of enforcing an SLA
contractual agreement, the SLA monitor can also display
metrics such as the availability of resources provisioned
within the cloud. The fail-over/infrastructure monitoring
stack is quintessential to characterising transient and gen-
eral network issues. This component is generally required
for detecting failures and anomalous behaviours so that they
can be mitigated before the virtual network or application
server becomes unavailable.

(2) The adaptation stack implements the filtering/machine
learning algorithm used to learn from the behavioral pat-
terns of the virtual infrastructure network and application
server KPIs. For instance, the implementation of an adaptive
filtering algorithm or an ensemble learning algorithm (e.g.

IEEE TRANSACTIONS ON SERVICES COMPUTING 4

Fig. 1. Conceptual framework.

BDT) helps predict future resource consumption patterns.
It is this which allows a suitable adaptation strategy to be
enforced, e.g., elastic load balancing, auto-scaling of pooled
resources, or the migration of a DB workflow.

(3) The third stack contains our application server and
the virtual infrastructure network nodes to be monitored.
We implemented a web service platform that allows a huge
number of robot users to browse and make purchases from
the application. The content managements and the metrics
polling techniques (push or pull) are all part of the applica-
tion stack.

(4) The fourth stack provides the admin user console that
interfaces with the application for observing the different
metrics of the framework. The admin terminals administer
the databases and the storage required for the operation of
the system.

4 PROBLEM DEFINITION ACCORDING TO THE

KALMAN FILTER ALGORITHM

We illustrate in this section how the problem of cloud
service data and business activities can be formulated as
a Kalman filtering problem in conjunction with subsequent
tracking of the allocated and consumed resources’ signals.

We can think of a cloud service platform as a dynamic
system which allocates resources in response to signals
concerning the consumption of, e.g., bandwidth, CPU, re-
sources, storage, and memory. We can also assume that the
population of consumer services is sufficient to generate
significant moment-to-moment variations in resource con-
sumption (the distribution of which, by the Central Limit

Theorem, can be considered essentially Gaussian). Under
these conditions it is reasonable to model the consumption
of resources using the output signals from random processes
(though these may also contain unwanted noise) [6]. This
allows us to model the cloud allocation system in terms of a
Kalman filtering problem involving the filtering, prediction
and forecasting of cloud resource provisioning.

For a zero-mean random Gaussian process the following
random input and output signal vectors and matrices are
defined for all iterations of the filtering and forecasting
processes, under the generalized state space model [6] [7]
[25]:

{

xk+1 = Tkxk +Rkωk + δk
yk = Hkxk + νk

(1)

for all k ≥ 0.
The variable xk denotes the state information of the

system within a finite-dimensional vector space p. The
known initial input signal of the system is defined as ωk.
The observed or measured output signal at time-step k is
denoted yk. Tk, and Hk represent state and measurement
transition matrices respectively while Rk is the matrix that
derives the dynamics of the input to the system.

The last terms in (1) represent the contributions of noise,
where δk is the process noise and νk the observation noise.

Derivation [6] [25]: Assume the state estimate at time
interval k + 1 is desired, given (y0, y1, ...yk) manifold
measurements, then based on Bayes’ rule, the step-ahead
equation for the state estimate xk+1 can be derived from
first principles as follows. The prediction of the states at

IEEE TRANSACTIONS ON SERVICES COMPUTING 5

k+1, k+2...k+n based on the condition that a measurement
value has been made at the previous time interval of k
is computed as the expectation xk+1 conditioned on yk
observations:

x̂k+1|k = E[xk+1|y1, y2, ...yk] (2)

= E[xk+1|yk] (3)

Substituting from (1) into (3), which is obtained by
applying Baye’s rule, the predicted state is computed as
follows:

x̂k+1|k = E[Tkxk +Rkωk + δk|yk] (4)

= TkE[xk|yk] +Rkωk + E[δk|yk] (5)

Given that the input signal ωk is known and the noise
factor δk has zero mean, the derivation can be completed
by reducing (4) to the same form as (1), viz.:

x̂k+1|k = Tkx̂k +Rkωk (6)

The H2-norm transfer matrix characterizes the transient
effects of the input signal on the measured output signal.
The H2-norm and the optimal Kalman filter are considered
to be similar and are used interchangeably in this research.
In the state space model, the standard equations for both the
state variables xk and observation processes (output signal)
yk are described as in (1). However, a greater challenge
is that the means and covariance matrices are unknown
parameters from the start of the observations. To circumvent
this problem, the maximum likelihood estimation (MLE)
model is employed to determine the best fits for these
parameters. Derivations of the MLE model’s mathematical
foundations can be found in [26].

4.1 A priori filter design

Consider the state space model of a zero-mean random vari-
able obtained from the standard state equation (1), which
includes uncertainty associated with the state estimation
and the noise resulting from the measured output. Given
a sequence of measured outputs (y0, . . . , yk−1) the states
of the input variable can be projected in advance. This
therefore allows the formulation of the equation for the
predicted optimal state estimates as follows. If the noise in
the initial measurement is zero, then using (3) allows the
expectation of the observed signal to be computed as in (7)
– this is the first term of the observation equation in (1).
The “innovation”, e, is defined to be the difference between
the observed output and the expectation of the measured
output.

e = Hkxk (7)

The covariance of the expectation is computed from the
transition matrices characterizing the observations made
and the state estimation covariance (P). The expectation E
for the states covariance is given in (8)

E = HPHT (8)

To derive the equation for the covariance matrix P for the
states estimation, assume that a step-ahead estimate is made
at time interval k + 2 for yk manifold measurements.

If the state estimates at k+2 and the noise are further as-
sumed to be uncorrelated, the mean-squared error between
the two random variables x and x̄ then the covariance is
computed using Bayes’ rule as follows [25]. Recalling that

Ex̃k = E(x− x̄) (9)

we have

P̂k+2|k+1 =

= E[(xk+2 − x̂k+2|k+1)(xk+2 − x̂k+2|k+1)
T] + E[δk+2|yk]

(10)

= T(k+1)E[(xk+2 − x̂k+2|k+1)(xk+2 − x̂k+2|k+1)
T |yk]

(11)

= TkE[(xk − x̂k|k)(xk − x̂k|k)
T |yk]T

T
k + E[δkδ

T
k |yk]

(12)

Pk+2|k+1 = TkPk|kT
T
k +∆k (13)

where P̂ is the estimated covariance of the states. The total
uncertainty resulting from the observation processes can
be obtained by summing the weights of the covariance of
the expectation and the covariance due to the measurement
noise derived from (7), (8) and (12). From the derivations
made for (7), if the model is assumed to be a discrete Reccati
equation (DRE) [25], then the a priori (predicted) mean value
of the state estimates xk+1 can be given as

x̂k+1 = Tkx̂k +Kg,p (yk −Hkx̂k) (14)

From (7) and (8)

Z = R+ E (15)

Kg,p = PHTZ−1 (16)

where R is the covariance of the measurement noise and
it is assumed that the initial values of the quantities
{Tk, Rk, Hk,∆k} are known or can be obtained through a
diffuse prior using the MLE model. Kg,p is defined here as
the predicted Kalman gain that can be computed as follows.
Assume the covariance matrix of the a priori state estimation
is represented as P for k manifold observations:

Kg,p = TkPkHkZ
−1
e,k (17)

Modelling the system in such a way that it obeys the
recursive discrete equation in (8), then Ze,k the predicted
estimate of the covariance P, is based on the estimation of
the instantaneous error in the a priori state estimates.

The steps involved in the a priori (predicted) of the mean
states and the covariance estimates can be summarized as
follows:

1) For a diffuse prior estimate, the values of the quanti-
ties {Tk, Rk, Hk} can be determined from the Max-
imum Likelihood Estimator (MLE).

2) Compute the expectation of the states as a product
of the state transition matrix and the random vari-
able.

IEEE TRANSACTIONS ON SERVICES COMPUTING 6

3) The covariance of the expectation is then computed
from (3) after determining the covariance matrix
from the MLE.

4) The total uncertainty associated with the predicted
mean signal variable is the sum of the covariance ex-
pectation and the noise resulting from the dynamics
of the system.

5) Once the total uncertainty of the system is modeled,
the predicted Kalman gain can be calculated from
(16)) as a function of the covariance matrix, the state
transition matrix and the Reccati equation.

6) Having computed the predicted Kalman gain, the
mean value of the next state estimate prediction can
be determined from (13).

7) The final step in the predictive stage is to repeat the
process to calculate the mean value of the predicted
covariance from equation (12).

4.2 A posteriori (filtered) state estimates filter design

In the predictive model described above, all the computa-
tional steps can be summarized in two major operations. In
the first iterative step, for a given sequence of observations
(y0...yk−1), the states of the system can be predicted in
advance. The errors arising as a result of the prediction
can then be computed in order to correct the projected
states estimates. The predicted states and the covariances
form the basis for the measurements to be corrected and
updated (corrective measure). In other words, based on the
projections on the random state variable xk+1, how much
do these predictions differ from the actual measurements?
The desired goal in the a posteriori stage (filtering) is to
find a better estimate for the current state, based on the
latest measurement. It is always then the case that given
the current state of the random variable, it is feasible to
predict the next state based on the known distribution at the
given time. The update equations are stated here without
proof(see [6] for proof) as follows:

First the corrected (filtered Kalman gain) Kgf is com-
puted as

Kgf = Pk|k−1H
T
k S

−1
k (18)

where Sk is the covariance arising from the observations as
given in (19).

Sk = HkPk|k−1H
T
k +Rk (19)

With the filtered Kalman gain, the a posteriori updated state
estimate, xk|k is given by

xk|k = xk|k−1 +Kgf ȳk (20)

The updated estimate covariance (a posteriori) is then
given by

Pk|k = (I −Kgf)Pk|k−1 (21)

where I is the identity operator.
The steps involved in the a posteriori estimation are thus

relatively few in number:

1) Compute the residual from the observations which
is defined as the innovation (7).

2) The covariance resulting from the measurements is
computed using (19).

3) The filtered Kalman gain is then calculated from
equation (18) and used as a tuning parameter of
the measurement innovation as defined in ȳk. The
measurement innovation here is defined as the dif-
ference between the forecast output measurement
and the actual measured output at the time interval
k.

4) Equation (20) can then be used to compute the a
posteriori state estimate.

5) The final step is to update the covariance estimate
using (21).

INITIALIZATION

1) x̂0|0 = x[0] = 0

2) P̂0|0 = x[0]x[0]T = [0]

PREDICTION
Do while k ≥ 1

1) x̂k+1 = Tkx̂k +Rkωk

2) Pk+1|k = TkPk|kT
T
k +∆k

3) Kg,p = TkPkHkZ
−1
e,k

CORRECTION

1) x̂k+1 = Tkx̂k +Kg,f (yk −Hkx̂k)
2) Pk|k = (I −Kgf)Pk|k−1

3) Kgf = Pk|k−1H
T
k S

−1
k

Fig. 2. Summary of the Algorithm

5 EXPERIMENTAL SETUP AND PROCEDURE

We present a detailed description of the experimental set
up and the implementation of the conceptual framework
presented in section 3. We designed a real-world test bed in
Microsoft Azure cloud having six virtual servers distributed
in the US East Coast, US West Coast, and European regions.
We then implemented a web service platform merchandis-
ing a selection of products. The goal here was to simulate a
high-volume of concurrent virtual users browsing for prod-
ucts on the platform, including subsequently proceeding to
make purchases and then exit the platform.

We migrated the application into each of the six logically
separated virtual servers in order to enforce a fail-over
mechanism; these servers were then networked in Azure so
they could communicate with each other using a common
domain controller. For monitoring purposes, we interfaced
the web platform with both Google Analytics [27] [28] and
Azure Application Insights [29] for live observation of the
KPIs (for example, we can observe the dynamic navigation
patterns of the virtual clients using Google Analytics, while
Azure Application Insights are suitable for observing live
server metrics).

We distributed the virtual load influx on the application
server and the entire infrastructure network using JMe-
ter [30] [31] in the form of Java threads to concurrently
browse the web service platform and purchase the products
on display. The next section gives a detailed description of

IEEE TRANSACTIONS ON SERVICES COMPUTING 7

the key experiments conducted on the application server
and the virtual infrastructure network for collecting data
sets for the purposes of training and testing the models.
Detailed configuration steps for these virtual servers on
Azure are left out in this work for the sake of brevity.

5.1 The experiments and data collection procedure

We performed four main experiments in simulating differ-
ent user scenarios on the web service platform in order to
generate and collect data for our model. A summary of the
statistics (mean, median, 90% line, 95% line, 99% line, min
and max) of these experiments are shown in Fig. 3.

Experiment 1 (constant server workload influx): We
submitted a constant number of N clients workload to be
processed by the application server and the virtual infras-
tructure network to emulate client-server interaction. The
server was configured with no ramp-up period by setting
the start time to zero. We ran the experiment on JMeter for 12
hours before decreasing the server load influx to zero. Fig. 3a
displays the results of this experiment, showing the average
response time for the server and the virtual infrastructure
network to construct responses and send them to the JMeter
client.

Experiment 2: (variable server workload influx): The
objective in this experiment was to use the concepts of
pacing and think-time in simulating real time user behavior.
Web clients’ requests in the real-world usually have some
delay in executing their actions when browsing a web
application.

“Think-time” refers to the the time it takes a customer to
navigate or perform an action on the page; we simulated
it by applying the JMeter Stepping Group controller. To
configure the parameters of JMeter for this experiment,
we employed a constant number N of virtual users with
a ramp-up period of 65 seconds to delay the processing
of clients’ request for the specified period. The server ran
the experiment for 6 hours by constantly increasing the
workload in every 15 minutes until the maximum load
capacity is reached. On reaching the maximum load, the
server was configured to delay the experiment for 5 seconds
while keeping the server idle. After the expiration of the
ramp-up period virtual users were then allowed onto the
application for a period of 5 hours before decreasing the
server load influx. For every minute we decreased the load
by removing 10 virtual users from the server until the load
reached zero. Fig. 3b displays the results of this simulation
indicating a graph of the server response time that built-up
at constant rate to the maximum load before it gradually
dropped at a constant rate back to zero.

Experiment 3: (random server workload influx): The
scenario simulated here mirrors the use of a server des-
ignated for random work, in which case the load to be
processed may not be known in advance. We employed the
JMeter random timer to simulate this user behavior. The
uniform random timer allows the workload to be added
to the server in a random fashion, and these loads are
processed in any order they arrive. The intention here is
to demonstrate how a server responds to random user
activities. Fig. 3c presents the results of the simulation with
the random workload influx.

Experiment 4: (a mixture of random and constant
server workload influx): In this experiment we simulated
a mixture of both a constant workload and then a random
server workload influx. The idea here is that a server could
be designated for a constant workload processing but may
be required to handle a random amount of workload influx.

For this experiment we initially distributed a constant
number N of virtual users to the web platform to be
processed. After reaching the N -user peak load, the number
was decreased to minimum value 100 virtual users before
a random workload load was added to the server. We
employed the JMeter ultimate thread group to emulate
this client- server interaction. As shown in Fig. 3d, for the
constant load influx, the experiment was run for 4 hours.
Then for another 4 hours, a low 200 but constant head of
workload was processed and then the server was again
configured to process virtual users that were distributed
randomly across the server node. The response time graphs
are shown in Fig. 3d.

These four main experiments were conducted repeatedly
for 10 runs each in generating and measuring the KPIs
characterizing the application server and the virtual infras-
tructure network. In addition to the response times from
these experiments, we also measured latency, bandwidth
fluctuation, server hits per second, %CPU utilization and
throughput (requests per second) as part of the process for
building the predictive models.

6 CRITICAL ANALYSIS AND EVALUATION

We present in this section detailed empirical results based
on the evaluations described above. From the experiments
described in section 5, time series data sets on the key
performance indicators (e.g. the average response time in
seconds ,server hits per second and %CPU utilization) char-
acterizing the server application and the Azure cloud virtual
resources were recorded using the JMeter application.

This section also includes k-step ahead predictions and
forecasts on the server KPIs (e.g the average response time
and percentage CPU utilization). The question here is that
based on the time series data on the metrics characterizing
the application server, how well can the Kalman filter-
ing techniques estimate the performance of the application
server and the cross layer virtual infrastructure hosting the
web service platform? In order to guarantee accurate results
in the predictions and analysis, all the time series data sets
were preprocessed and filtered as described in the next
section.

6.1 Data preprocessing and filtering

The preprocessing and filtering of sampled signals are fun-
damental steps in trying to reduce the noisy components
that could potentially affect the accuracy of the models. In
general, the noise attenuating a sampled signal turns out to
have undesirable effects on the measured signal depending
on the dynamics that drive the input to the output. There are
a number of standard methods for data-filtering depending
on the problem domain.

Specifically, we designed a low pass IIR filter [32] [33]
[34] for use under different parametric configurations of

IEEE TRANSACTIONS ON SERVICES COMPUTING 8

(a) Expt. 1: Constant workload

site 1 site 2 site 3 site 4 site 5 site 6 site 7 site 8 site 9 site 10

Sample Site

0

0.5

1

1.5

2

2.5

3.5

R
e

s
p

o
n

s
e

 T
im

e
 i

n
 S

e
c

o
n

d
s

Average

Median

90% Line

95% Line

99% Line

Min

Max

(b) Expt. 2: Steady increase

(c) Expt. 3: Variable load

(d) Expt. 4: Mixed

Fig. 3. These figures illustrate the measured response times
of the application server and the virtual infrastructure net-
work for different server load characteristics and parameter
configurations used in experiments 1–4.

filter coefficients, [a, b], while tweaking the order from 2
to 20 at a corner frequency of 0.3 Hz. A plot of the signal
flow diagram showing the evolution of the filter coefficients
[a, b] at 0.3 Hz cut-off frequency is shown in Fig. 4. The
values of the coefficients of the IIR Butterworth low pass
filter can be read off from the signal flow diagram depicting
the evolution of the filter coefficients, yielding the following
transfer function [34] [35] as shown in (22):

x y

0.13111D

0.26221D

0.13111

D

0.74779 D

-0.27221

Fig. 4. Signal flow diagram depicting the filter coefficients
[a, b] of a 20th order low pass Butterworth filter at a 0.3 Hz
corner frequency.

Γa,b(z) =

(

b0 + b1z
−1 + · · ·+ bNz−N

)

(1 + a1z−1 + · · ·+ aMz−M)

=

(

0.131 + 0.262z−1 + 0.131z−2
)

(1 + 0.748z−1 − 0.272z−2)

=

(

0.131z2 + 0.262z + 0.131
)

(z2 + 0.748z − 0.272)
(22)

(a) Plot of the sampled raw signal of the average latency
in seconds.

(b) Final filtered output using the 20
th order low pass

filter.

Fig. 5. These figures illustrate the sampled raw signal of the
average latency in Fig. 5a and the evolution of the filtered
signal as shown in Fig. 5b.

IEEE TRANSACTIONS ON SERVICES COMPUTING 9

0 5 10 15 20
Prediction Horizon (k-values)

20

40

60

80

100
M

o
d

e
l

P
e

rf
o

rm
a

n
c

e
 (

%
)

Identification Dataset

Validation Dataset

Crossover Point

Fig. 6. Performance of the states space model with increasing
prediction horizon. This indicates an exponential decay with
a continuous rate of -0.085 per unit time of the model’s
performance as k increases.

Fig. 5a shows plots of the raw signal before filtering. In
order to determine the noise inherent within the sampled
signal we applied a half-bin discrete Fourier transform
(DFT) to reveal the magnitude spectrum of the signal.
The magnitude spectrum clearly reveals the first frequency
components of the measured signal centered at zero of the
DFT bin axis while the noise components can be seen spread
along the rest of the DFT bins but due to lack of space we are
unable to display plots of the frequency spectrum analysis.
These noise components seen from the frequency spectrum
analysis strongly suggest that the effects of noise compo-
nents will be noticeable when applying Kalman filters to
the make k-ahead predictions.

We initially passed the raw data sets through different
filtering techniques (e.g. low pass, bandpass, stopband and
the elliptical filters) to suppress the noise components and
the various output signals were compared before settling
on a 20th order Butterworth low-pass filter with a 0.3 Hz
cut-off frequency. Even though this filter with a high order
is generally characterized as computationally intensive, the
accuracy of the predictive experiments depends much on
the total elimination of noise and outliers from the data set.
A final output plot of the filtered signal with the aggregated
coefficients which serves as the input signal for the predic-
tive model is shown in Fig 5b.

6.2 Model description and parameterization

In the experiments described in section 5 and the mathemat-
ical constructs defined in section 4, we used recorded past
data on the KPIs to predict and forecast the performance of
the application server up to a finite future time horizon.

This section presents the predictive analytic framework
based on the optimal Kalman filter estimators described in
section 4. The key performance metrics measured on the
virtual infrastructure network and the application server
include: average response time, %CPU, server hits per sec-
ond, average throughput, latency, bandwidth consumption
and the number of bytes per transaction. The historical data

from these observations served as the input for building the
model to fit the data set after the filtering process described
in the previous section.

From the experiments designed for the identification of
the state space model covered in section 4, half of the data
set was used for identifying the model and its parame-
ters, and the remaining data was reserved for the system
validation. From the start, the system and its parameters
Tk, Hk, and γ are unknown. The observations at different
sampling intervals, { y0, y1, y2, and yk } are the only
known parameters for the design of the model after the
noise components of the sampled signal have been removed,
where yk is the measurement taken at the time interval k.

A diffuse prior based on the maximum likelihood estima-
tion on the system’s parameters and its initial states, con-
ditioned on the previous observations, helped establish the
general model for fitting the data as described in section 4.

Feeding the server response time into the system identifi-
cation toolbox in MATLAB, the following state space model
has been identified as fitting the data set. The model equa-
tion (23) obtained based on the empirical observations of the
server response time, and all the other metrics, satisfy the
theoretical formulation of the problem domain in section 4
with the model parameters summarized in table II.

Equation (23) is a slight modification of the original for-
mulation of the state space model (1). The original definition
of the state space requires a multiplicative input variable
with its transition matrix as a linear combination with the
state’s variable and its multiplicative transitions matrix as
characterized by (1). The model built on the time series
training set example does not require an input vector to
drive the dynamics of the output variable. Therefore (23)
describes a modification with emphasis on the noise as a
result of the state estimates multiplied with a Gamma (γ
) constant factor. The noise of the observations is character-
ized by only delta (δk) which is consistent with the definition
of the observation equation (1).

Thus, the first states prediction in a unit time interval is
a product of the state transition matrix, Tk and the current
state xk with additive noise components γδk, while the noise
component of the observation signal is characterized using
only δk. The observation equation is characterized by the
design matrix Hk and the current state estimate xk with δk
additive noise. For the model to be used for predictions,
the observation equation must satisfy the conditions k ≥ 0
and the samples are Gaussian distributed with uncorrelated
white noise.

In table II, the model parameters based on the observa-
tions of the time series data, depict the values of T , H and γ
which remain constant once the initial conditions have been
determined from the maximum likelihood estimation model
as explained in section 4. The table also depicts the evolution
of the covariance matrix determined for each state of the
prediction and both the mean squared error (MSE) and the
final prediction error (FPE) quantify the overall uncertainty
of the estimation and measurement processes. The predic-
tion efficiency expressed as a percentage determines how
well the model fits the data sets. As shown in the table, the
data set on the response time generated the best prediction
with an average of 95.91% while the average percentage
CPU utilization is predicted with at least an accuracy of

IEEE TRANSACTIONS ON SERVICES COMPUTING 10

(a) Latency predictions at k = 1, 2, 4, 6, 8, 10 for the system identification. (b) Latency predictions at k = 1, 2, 4, 6, 8, 10 for the system validation.

Fig. 7. These figures illustrate the predictions at different future time horizons for both the system identification in Fig. 7a
and validation data sets Fig. 7b respectively.

0 50 100 150 200 250
Sample Point (minutes)

0

10

20

30

40

50

60

70

80

90

100

A
v
e
ra

g
e
 S

e
rv

e
r

H
it

s
 p

e
r

S
e
c
o

n
d

(a) Plot of the sampled raw signal of the server hits per
second.

50 100 150 200 250
0

10

20

30

40

50

60

70

Validation Data set

Identification Data set

Input-Output Data

Sample Point (minutes)

S
e

rv
e

r
H

it
s

 p
e

r
S

e
c

o
n

d
s

(b) Final filtered output of the server hits per second.

Fig. 8. These figures illustrate the sampled raw signal of the
server hits per second in Fig. 5a and the evolution of the
filtered signal as shown in Fig. 5b.

85.18%. The different measurements of the model focus are
largely determined by the size of the data set, the larger the
data set the better the prediction.

{

xk+1 = Tkxk + γδk
yk = Hkxk + δk, k ≥ 0

(23)

TABLE II. Parameters for fitting the state space model after
training

KPI T H γ Covariance Matrix FPE MSE Efficiency

Response Time 0.9943 1 1.994

0.0000 0 −0.0000

0 0 0

−0.0000 0 0.0025

 3.62 3.611 95.91%

%CPU 0.9885 1 1.988

0.0001 0 −0.0002

0 0 0

−0.0002 0 0.0356

 17.19 16.58 85.18%

To effectively evaluate and score the performance of the
state space model, predictions on different sampling time
intervals were measured with the corresponding confidence
bounds.

A plot of these iterations shows a continuous rate inter-
cept exponential function cutting on the vertical axis at 100%
with a continuous rate of decay at -0.085 per unit time. From
Fig. 6, the function generalizing the model performance can
be written as P = 100e−0.085k, where P represents the
confidence bounds in one run of the experiment, and k is
the prediction or forecasting horizon. The value 100% in
the equation represents the best prediction accuracy of the
model. This can be observed from Fig. 6 as both curves
cut the vertical axis at 100%. The prediction accuracy of
100% which also coincides with the value of k = 0 (is
referred to as filtering), if k > 1 the signal is being predicted
and when k < 1, a smoothing filter is being applied to
the sampled signal. Our results confirm the definition of
the terms filtering, smoothing and prediction as in system
theory (see [6] [8] [25] for the definitions of these terms).
The rule of thumb on scoring the state space model is that
for larger data sets, the model behaves more stably and the
predictions match both the training and validation data set.

IEEE TRANSACTIONS ON SERVICES COMPUTING 11

0 20 40 60 80 100
Sample Point (minutes)

0

10

20

30

40

50

60

70

A
v
e
ra

g
e
 S

e
rv

e
r

H
it

s
 p

e
r

S
e
c
o

n
d

k = 1 @ 94.86%

k = 2 @ 84.96%

k = 4 @ 67.68%

k = 6 @ 54.89%

k = 8 @ 46.23%

k = 10 @ 40.42%

(a) Server hits predictions at k = 1, 2, 4, 6, 8, 10 for the identification.

100 120 140 160 180 200
Sample Point (minutes)

10

20

30

40

50

60

A
v

e
ra

g
e

 S
e

rv
e

r
H

it
s

 p
e

r
S

e
c

o
n

d

k =1 @ 94.86%

k = 2 @ 84.96%

k = 4 @ 67.68%

k = 6 @ 54.89%

k = 8 @ 46.23%

k = 10 @ 40.42%

(b) Server hits predictions at k = 1, 2, 4, 6, 8, 10 for the validation.

Fig. 9. These figures illustrate the predictions at different future time horizons for both the system identification in Fig. 9a
and validation data sets Fig. 9b respectively.

The next section describes the application of the state
space model to the time-series data sets measured for the
server application running on the virtual infrastructure net-
work.

6.3 k - Step Ahead Predictions with the Kalman Filter

The model described in the previous section was applied
to the observation data sets to predict the bandwidth fluc-
tuations, server hits per second, average response time,
latency and average bytes per transaction characterizing the
application server and the cross layer virtual infrastructure
network. Details of the predictive analyses are given in this
section.

In the experiments conducted for building the model,
half of the signal length on the data set was separated
for training the model while the remaining half for the
model validation. In order to guarantee accuracy on the
predictions, the noise component was filtered out with the
20th order low pass Butterworth filter. The plots shown
in Fig. 7 display the predictions made on different k-step
ahead time unit of the average response latency of the server
application. As shown in Fig. 7a, the experiment started
with a constant influx of 20 virtual users accessing the
application concurrently as the server response time is being
recorded with the JMeter application.

The predictions on the response times shown in Fig. 7a
clearly indicate that as the number of virtual users increases
there tends to be a lot of dynamics generated in the entire
system leading to a steep increase in the average response
time. A strong inference here is that as more virtual users
simultaneously open sessions to the server application, the
workload on the server tends to increase leading to a
correspondence increase in the average response time. The
plots shown in Fig. 7a and Fig. 7b indicate also that the
predictions strongly follow the measured and filtered time
series data but what these two plots display is the non-
uniformity in the way the server processes the requests from

the virtual users also suggesting that as more users queue
with their requests, there appears to be a point where the
rate of processing is non-deterministic. The rugged nature
of both curves are direct indications of the dynamics that
are generated within the server due to the high influx of
work load.

Fig. 7b illustrates the predictions on the validation data
set with the model using the remaining half length of the
sampled server latency as virtual users concurrently open
sessions to the application. The plots further reveal the vali-
dations of the model at different k values. The actual predic-
tions indicate the validations at different k(1, 2, 4, 6, 8, 10)
future time horizons. The figures show that the predictions
on the validation data set at different k values follow the
measured signal but close to the end of the experiments
there is a steep reduction in the average response time,
indicating the workload on the server has been reduced.

The plots in Fig. 8 illustrate the evolution of the sampled
server hits per second as a constant number of virtual users
are deployed on the application server. The raw sampled
time series server hits per second data set reveals the noise
in the signal in Fig. 8a and by applying a 20th order low
pass Butterworth filter with a cut-off frequency at 0.3 Hz,
the final filtered output is shown in Fig. 8b. The first half of
the signal length was applied for the model training with
the first k time unit prediction on the server hits per second
at 95.59% accuracy.

The illustrations in Fig. 9a and Fig. 9b depict the server
hits per second predictions at different time intervals. To
identify the system we applied the first half length of the
filtered signal to make the k-step predictions for different
future time horizons. Fig. 9a indicates that the prediction
follow the input signal quite for k = 1, 2, 4, 6, 8, 10 steps
into the future.

The validation plots for the model are shown in Fig. 9b.
The general trend is that the validation data sets give
a higher prediction accuracy strongly suggesting that the

IEEE TRANSACTIONS ON SERVICES COMPUTING 12

model learns faster after the training phase. Fig. 9b shows
a composite plot of different k = 1, 2, 4, 6, 8, 10 values of
the server hits per second which do not deviate much from
the plots from the system identification data set. We defer
the application and usefulness of these predictions until the
section 7 on case study.

6.4 Comparison of models and techniques

In order to quantify and state the benefits of our approach
with the Kalman filtering techniques, we compared this
work with previous works using two machine learning
algorithms (the boosted decision tree(BDT) and stochastic
gradient descent (SGD)) [23] and the reactive approach
in [24].

For the approach with the boosted decision tree algo-
rithm, we ran extensive machine learning experiments with
the L2 regularization in characterizing the complexity of
the model with the BDT algorithm. For this experiment
a boosting with 100 trees in the subfunctional hypothesis
space was sufficient to achieve an accuracy prediction of
98% at a learning rate of 0.2 and any further increase in the
learning rate does not result in any performance improve-
ment of the model. As shown in Fig. 10, the BDT performs
slightly better than the Kalman filtering technique on the
same data set since the KFT achieves it best performance of
95.51% with a final prediction error of 0.0443. Even though
the prediction accuracy of the BDT algorithm is slightly
better, the algorithm is most suitable for a data set with
linear characteristics.

In a similar approach, comparing the Kalman filtering
technique and the stochastic gradient descent approach, we
ran the same machine learning experiments on the training
and testing set examples. The SGD achieves its best perfor-
mance with a 33.37% prediction accuracy at a learning rate
of 1.0 with the Kalman filter having superior performance
in terms of the prediction quality. The main advantage of
the Kalman filtering technique is that it has a high degree
of accuracy on data with Gaussian distribution and a finite
mean.

In addition to comparing our approach with the above
two machine learning algorithms, we again selected a re-
active framework for VM capacity planning to compare
with the Kalman filtering technique. Ardagna et al. [24]
presented a two-phase framework in which the VM capacity
allocation (CA) phase identifies the properties of VMs that
are required to process the requests arriving from clients
for every second while guaranteeing the response time in
the SLA. The reactive model is set to dynamically adapt the
VM resources to optimize the mean response time without
violating the parameters of the SLA document. The load
direction (LR) phase processes the total rate of executions
of the web service requests and redirects workload influx
from highly degraded resources to idles servers without
increasing the mean response time.

Experimental results of predictions on the mean re-
sponse time achieved a maximum prediction error of less
than 20%. Thus, the two-phase techniques can achieve a
prediction accuracy with the mean square error of less
than 10%. The reactive method outperforms the stochastic
gradient descent by far but its performance falls below the

Kalman filter and the BDT algorithm with both techniques
yielding 95.57% and 98% respectively. Another advantage
of the Kalman filtering techniques is that for non-linear data
extended Kalman filter [11] is most suitable. The extension
allows the linearization of the current mean and the covari-
ance of the estimates. Another disadvantage of the reactive
models is that they require extra computational overhead as
the system adapts to transient changes.

BDT KFT Adaptive (CA+LR) SGD
Algorithm

0

0.1

0.2

0.3

0.4

0.5

0.6

F
in

a
l
P

re
d

ic
ti

o
n

 E
rr

o
r

0.0443

0.2

0.009

0.67

Fig. 10. Comparison of the four different algorithms in terms
of performance degradation (smaller values mean better
performance).

7 APPLICATION AND CASE STUDY:

We present a direct application of our predictive and an-
alytic framework in a case study below. As shown in the
Fig. 7, the response latency seems quite predictable and
stable around the mean value for the first 200 minutes of
the experiment. A sudden increase of more than 500 ms can
be observed from the 200th minute as more workload is
added to the application server. The empirical observation
here is that the predicted spikes of the response latency
are quite concerning for capacity planning and suggest a
limiting factor of the application as we simulate virtual users
of more than 1000. A plausible step may be to examine
server resources, for instance CPU resources and add more
capacity to the server. The increase in response latency
means that we need to examine the resources provisioned
for the application in order not to violate SLA metrics.
Another immediate step to take with this observation may
be to redirect or control admission of more users to the
application server.

Fig. 9 shows the prediction of the server hit per second
on the application server. With the predictions from the
training and validation data set, we observe a maximum
of 70 server hits per second as robot user open sessions and
perform activities such as browsing or filling out forms on
the web service platform. We want to do a capacity planning
with the information presented by the plots of these two
figures.

Let us consider the cases that our application was
running on a 10 Mbps Ethernet, requests are transmit-
ted via TCP/IP protocol (size is 180 bytes) and a nor-
mal GET request is about 256 bytes. We also assume
that any page has about 200 Kilobytes of dynamic con-
tent. For a standard TCP/IP a packet has about 32 bytes
header to route this packet. This leads to a total of

IEEE TRANSACTIONS ON SERVICES COMPUTING 13

214292 bytes (209.3KB). If this amount of data is moved
over a 10 Mbps Ethernet then we expect a total of
10, 000, 000 (bits per second)/214292 (bits per page) to
obtain the number of pages per second. Our computation
leads to about 47 pages per second for the 10Mbps Ethernet.
From Fig. 9a and Fig. 9b we observed a maximum of 70
hits per second for both training and test data set. We can
therefore conclude that an application designed to expect
more hits per second like the Amazon site on a black Friday
or an application for a world soccer game, where millions
of hits per second are expected, then 70 hits per second
as we have observed from our predictive framework may
not be adequate to serve our users. As indicated in table I
the root cause of the AWS S3 outage in 2008 was due to
under-provisioning of resources [5]. We argue that a proac-
tive monitoring and a proper capacity planning through a
system like this can prevent this type of situation.

7.1 Threats to validity

There are two major threats to the validity of our research.
Web servers run on heterogeneous network devices with
different configurations. If the communication established
between JMeter and the web server is done on a server
that is running on a Fast Ethernet device of 100 Mbps,
then one does not expect the same speed from a server
that uses a Gigabyte (1000 Mbps) Ethernet device and this
can constitute a threat to external validity (the question
whether the results obtained can be generalized beyond
the experimental context). To mitigate this challenge, the
experiments were run for a reasonable period of time (each
experiment was repeated 10 times) on JMeter until the data
were showing consistent results before they could be used
for training the models.

The second threat to validity is mainly due to whether
there could be errors arising from the implementation of
our approach. This type of validity threat is called internal
validity. Both automated and manual JMeter test scripts
were written and executed for the experiments and the
results were also manually verified to ensure that the system
was doing ‘what it was supposed to do’.

The H2 Kalman filter offers accurate computation as the
estimates and measured outputs are recursively compared
and corrected. This process of predicting and correcting
improves the performance of Kalman filtering techniques
and this makes the approach more reliable and generalizable
than linear regression approaches.

8 SUMMARY AND RECOMMENDATIONS FOR FU-

TURE WORK

We have described and constructed a real-world cloud test
bed for proactive cloud resource monitoring, adaptation and
information gathering on cloud virtual infrastructure net-
work and application server KPIs. To validate our approach,
we implemented a web service platform merchandising
a selection of products for clients to browse and make
purchases. We then employed JMeter to simulate client-
server behavior using robot users. For monitoring purposes,
we interfaced our application with Google Analytics and
Azure Application Insights for live server KPI monitoring
and sampling.

We successfully applied the H2 optimal Kalman es-
timator in training and building models on the average
response time and the percentage CPU consumption of the
application server and the virtual infrastructure network.
We obtained good performance results for both training and
validation datasets with an average prediction accuracy of
95.57 %. A decay constant of -0.0085 per unit time shows that
the model is robust and resilient in making k-step-ahead
predictions.

For future work we aim to evaluate the effectiveness
of the H∞ filtering technique for characterizing the latent
variables of the virtual infrastructure network bandwidth
consumption, percentage CPU utilization and the average
throughput of the application server.

REFERENCES

[1] T. Earl, Z. Mahmood, and R. Puttini, ”Cloud computing concepts,
technology, and architecture,” The Prentice Hall service technology
series from Thomas Earl. Prentice Hall, UPPER SADDLE RIVER, NJ,
PP. 359-415, 2014.

[2] P. Mell and T. Grance, “The NIST definition of cloud computing
(draft),” NIST special publication, vol.10, pp. 800–845, Jan. 2011.

[3] K. Costello and M. Rimol, “Gartner forecasts worldwide public
cloud end-user spending to grow 23% in 2021: Cloud spending
driven by emerging technologies becoming mainstream,” Gartner
Press Release Point, 21 April 2021.

[4] Peter Cohen, “How much of Amazon’s $7.3 bil-
lion AWS profit will rivals win?” Available: https:
//www.forbes.com/sites/petercohan/2020/01/06/
how-much-of-amazons-73-billion-aws-profit-will-rivals-win/
#6ec61a9f5bcd, Accessed: 2020-07-30.

[5] L. Zheng, L. Mingfei, L. O’Brien, and H. Zhang, “The cloud’s
cloudy moment: A systematic survey of public cloud service out-
age,” International Journal of Cloud Computing and Services Science
(IJ-CLOSER), vol. 2, 2013.

[6] R. E. Kalman, “A new approach to linear filtering and prediction
problems,” Journal of basic Engineering, vol. 82, no. 1, pp. 35–45,
1960.

[7] P. Diniz and R. Sergio, “Adaptive filtering : algorithms and prac-
tical implementation,” The Kluwer international series in engineering
and computer science; SECS 399l. Kluwer Academic Publishers:
Boston, Mass.; London; Upper Saddle River, N.J. 1997. isbn.
0792399129.

[8] Mohinder S. Grewal, “Kalman filtering: theory and practice using
MATLAB,” 3rd ed, International ed. Wiley: Hoboken, N.J., 2008. isbn.
1-282-68702-6.

[9] S. J. Russell, “Artificial Intelligence: A Modern Approach,” Prentice
Hall series in Artificial Intelligence, 2nd ed, International ed., 1998.
Prentice Hall: Upper Saddle River, N.J., isbn. 0130803022

[10] N. Roy, A. Dubey, and A. Gokhale, ”Efficient Autoscaling in the
Cloud Using Predictive Models for Workload Forecasting,” in
IEEE 4th International Conference on Cloud Computing, vol. 79-80,
pp. 500–507, 2011.

[11] S.J. Julier and J.K. Uhlmann, ”Unscented filtering and nonlinear
estimation,” in Proceedings of the IEEE. JProc. 92 (3), pp. 401–422,
2004.

[12] M. Colajanni, M. Andreolini, M. Pietri, and S. Tosi, “Adaptive,
scalable and reliable monitoring of big data on clouds,” Journal of
Parallel and Distributed Computing, vol. 79-80, pp. 67–79, 2015.

[13] M. Colajanni, M. Pietri, S. Tosi, and M. Andreolini, “Real-Time
adaptive algorithm for resource monitoring,” 9th International
Conference on Network and Service Management 2013 (CNSM 2013),
Zúrich, Switzerland, vol. 8226, no. 1, pp. 67–74, Oct. 2013.

[14] E. Kalyvianaki, T. Charalambous, and S. Hand, “Adaptive re-
source provisioning for virtualized servers using Kalman filters,”
LACM Transactions on Autonomous and Adaptive Systems, Assoc.
Computing Machinery, vol. 9, no. 2, Article No. 10, pp. 1–35, 2014.

[15] E. Kalyvianaki, T. Charalambous, and S. Hand, “Self-adaptive
and self-configured CPU resource provisioning for virtualized
servers using Kalman filters,” Proceedings of the 6th International
Conference on Autonomic Computing, ICAC’09, ACM Transactions
on Autonomous and Adaptive systems., 2009, pp. 117–126.

IEEE TRANSACTIONS ON SERVICES COMPUTING 14

[16] A. Sackl, P. Casas, R. Schatz, L. Janowski, and R. Irmer, “Quantify-
ing the impact of network bandwidth fluctuations and outages on
Web QoE,” IEEE, 2015 Seventh International Workshop on Quality of
Multimedia Experience (QoMEX), pp. 1–6, 2015.

[17] A. Gandhi, P. Dube, A. Karve, A. Kochut, and L. Zhang, “Model-
driven optimal resource scaling in cloud,” Software and Systems
Modeling, Springer Berlin Heidelberg, vol. 17, no.2, pp. 509–526, 2018.

[18] R. Hu, J. Jiang, G. Liu, and L. Wang, “Efficient resources provi-
sioning based on load forecasting in cloud,” The Scientific World
Journal, vol. 2014, no. 2, pp. 3212–3231. ScientificWorld Ltd., 2014.

[19] Z. Chen, Y. Zhu, Y. Di, S. Feng, and J. Geng, “A high-accuracy
self-adaptive resource demands predicting method in IAAS cloud
environment,” Neural Network World, Czech Technical University in
Prague, Faculty of Transportation Sciences, vol. 25, no.5 pp. 519–539,
2015.

[20] J. J. Prevost, K. Nagothu, B. Kelley, and M. Jamshidi, “Prediction
of cloud data center networks loads using stochastic and neural
models,” IEEE 2011 6th International Conference on System of Systems
Engineering, pp. 276–281, 2011.

[21] A. Eddahech, S. Chtourou, and M. Chtourou, “Hierarchical neural
networks based prediction and control of dynamic reconfiguration
for multilevel embedded systems,” Journal of Systems Architecture,
vol. 59, no. 1, pp. 48–59. Elsevier B.V, 2013.

[22] S. Islam, J. Keung, K. Lee, and A. Liu, “Empirical prediction
models for adaptive resource provisioning in the cloud,” Future
Generation Computer Systems, Elsevier B.V, Vol. 28, No. 1, pp. 155–
162, 2012.

[23] T.W. Gyeera, A.J.H. Simons, and M. Stannett, “Regression Analysis
of predictions and forecasts of cloud data centre KPIs using the
boosted decision tree algorithm,” IEEE TechRxiv. Preprint, March
2021.

[24] D. Ardagna, S. Casolari, M. Colajanni, and B. Panicucci, ”Dual
time-scale distributed capacity allocation and load redirect al-
gorithms for cloud systems,” in Journal of Parallel Distribution
Computing, 72, pp. 796-808, 2012.

[25] U. Forssell, “On H2 and H∞ optimal estimation,” Linkoping Uni-
versity Electronic Press, 1996.

[26] L. J. Crassidis and L.J. Junkins, “Optimal estimation of dynamic
systems,” Chapman and Hall (CRC) Applied Mathematics and Nonlin-
ear Science Series. Chapman and Hall/CRC 2011. isbn. 978-1-4398-
3985-0.

[27] B. Plaza, “Google analytics for measuring website performance,”
Journal of Tourism Management, Vol. 32, No. 3, pp. 477–481, 2011.

[28] B. Plaza, “Monitoring web traffic source effectiveness with Google
analytics: An experiment with time series,” In Aslib Proceedings,
Emerald Group Publishing Limited , Vol. 61, No. 5, pp. 474–482,
September 2009.

[29] D. Stephens and B. Wren, ”Azure monitor application insights
documentation,” Azure, Microsoft Research Academic, 2021.

[30] Apache JMeter - User’s Manual, The Apache Software Foundation,
2020.

[31] J. Davies, B. Fox, N. Hodgkinson, and P. Stork, “Azure reference
architectures,” Azure, Microsoft Research Academic, 2021.

[32] M. Quelhas, A. Petraglia, and M. Petraglia, “Design of IIR filters
using a pole-zero mapping approach,” Digital Signal Processing,
vol.23, no. 4, pp. 1314–1321, 2013. issn. 1051-2004.

[33] L. Tan and J. Jean, “Digital signal processing (Second Edition),”
Academic Press, Science Direct, Boston, 301–403, 2014. issn. 978-0-
12-415893-1.

[34] D. Doran, “Filter design using Matlab.” Available:
https://dadorran.wordpress.com/2013/10/18/filter-design-
using-matlab/, Accessed: 2020-06-20.

[35] “Identification toolbox documentation.” Mathworks Inc: MATLAB,
March 2021.

Dr Thomas Weripuo Gyeera received a BSc
degree in computer science and communica-
tions engineering from the University of Duisburg
in 2005 and a Master of Science degree in com-
puter and network engineering with distinction
from the Sheffield Hallam University, UK in 2014.
He received a PhD degree in computer science
from the University of Sheffield UK in 2019. He
has been working on using machine learning
and adaptive algorithms for proactive cloud com-
puting resources monitoring and adaptation. He

has worked in the industry for Ford Motor company and Thales Group
as an application engineer from 2006 before going for a postgraduate
study. His major interest and work are in AI, Deep and Machine learning,
cloud computing, application development, Network engineering and
Big Data. He is a member of the IEEE.

Dr Anthony J.H. Simons is a Senior Lecturer in
the Department of Computer Science, University
of Sheffield, where he has served as the Direc-
tor of Teaching, the Director of Undergraduate
Admissions and former Head of the Testing Re-
search Group. He has wide ranging research in-
terests in object-oriented systems, including type
theory, design methods, model-based verifica-
tion and testing and model-driven engineering.
He is the creator of the JWalk and CatWalk unit
testing tools for Java. Recent work has included

verification of English engineering requirements for Rolls Royce and
generation of cross-platform tests for cloud brokers. He is a reviewer
for the journal Software Systems Modelling (SoSyM).

Dr Mike Stannett is a Senior Lecturer, and a
member of the Verification and Testing Research
Group, in the Department of Computer Science
at Sheffield University. He has a wide range of
interests, including: the verification and testing
of unconventional and heterotic computing sys-
tems; autonomic cloud computing platforms; the
use of formal modeling techniques to generate
new understandings of physical systems; and
computational modeling of macroeconomic sys-
tems. He is a member of Computing in Europe

(CiE) and the European Association for Theoretical Computer Science
(EATCS), and has previously served as a member of the London Math-
ematical Society’s Computer Science Committee.

