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Abstract

Discontinuity layout optimization (DLO) is a powerful numerical limit analysis technique that can be used to identify the 
collapse load and associated failure mechanism of a solid or structure. The method successfully automates the traditional 
‘upper bound’ method of plasticity, with applications including metal extrusion problems, where die forces are sought, 
and geotechnical engineering problems, where the stability of foundations or retaining walls are to be established. Notably 
the basic DLO method uses the same underlying mathematical formulation as ‘ground structure’-based truss layout (or 
‘topology’) optimization and is demonstrated in this contribution via a Python script capable of solving plane strain limit 
analysis problems. Extensions to the basic method are presented to allow treatment of larger-scale problems incorporating 
cohesive-frictional materials, and with self-weight treated in a new and conceptually elegant way. Finally, various examples 
are presented to illustrate the capabilities of DLO, with displacement vectors shown to aid interpretation.

Keywords Discontinuity layout optimization · Limit analysis · Python · Education

1 Introduction

Michell (1904) famously demonstrated that optimal truss 
structures contain an infinite number of bars with infinitesi-
mal areas, so-called Michell continua. It was later observed 
that Michell continua are remarkably similar to the so-called 
slip-line fields associated with plane plasticity problems; 
both involve special geometric forms known as ‘Hencky-
Prandtl nets’. Consequently, theories developed for plane 
plasticity problems were transferred to optimal trusses (e.g., 
Hemp 1958; Prager 1959).

However, despite the known similarities between opti-
mal truss forms and the forms of plane plasticity failure 
mechanisms, the efficient numerical “ground structure”-
based method of identifying optimal truss structures later 
developed by Dorn et al. (1964) was not applied to plastic 
analysis problems until comparatively recently, by Smith and 

Gilbert (2007), who developed the so-called discontinuity 
layout optimization (DLO) procedure. This is perhaps sur-
prising, given that efficient numerical means of treating plas-
tic limit analysis problems had been sought for many years. 
For example, the method of characteristics was proposed by 
Sokolovskii (1965), though this only provides incomplete 
lower-bound type solutions. Efforts have also been made to 
enhance limit equilibrium approaches, such as the method 
of slices for slope stability (e.g., Zhu et al. 2003), but these 
methods rely on a number of assumptions and the solutions 
obtained lack formal status. Over the past few decades, finite 
element limit analysis-based formulations have also been 
proposed by researchers (e.g., Lysmer 1970; Sloan 1988; 
Kobayashi 2005; Makrodimopoulos and Martin 2006). 
Finite element limit analysis formulations usually involve 
discretization of a body using deformable solid elements, 
though rigid elements can also be used in conjunction with 
interface elements placed between solid elements to permit 
jumps in the stress or strain rate fields (Alwis 2000). When 
using early finite element limit analysis methods, a priori 
knowledge of the failure mechanism was often required to 
obtain accurate solutions, with the user required to tailor 
the mesh discretization on a case-by-case basis. This was 
to allow singularities in the stress and/or displacement rate 
field to be treated in an accurate manner. While the use of 
adaptive mesh refinement overcomes this to an extent, this 
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comes at the expense of some complexity and also ques-
tions over the remeshing criteria to use remain (e.g., Lyamin 
et al. 2005). Nevertheless, these methods have the significant 
advantage of being able to model the failure state without 
the need to resort to incremental solution schemes, required 
when using the discrete element method (Cundall and Strack 
1979) or non-linear finite elements (De Borst et al. 2012).

On the other hand, by taking advantage of the analogy 
between slip-line fields and Michell continua, Smith and 
Gilbert (2007) demonstrated that the numerical layout opti-
mization method developed for truss design problems could 
be modified so as to able to identify failure mechanisms in 
plane plasticity problems, with any singularities identified in 
an entirely natural manner. Also, as with truss layout optimi-
zation, use of an adaptive solution scheme (Gilbert and Tyas 
2003) means that a very large set of potential discontinuities 
can be treated, such that highly accurate solutions (e.g., often 
with ≪ 1% error) can be obtained. To date, several DLO 
formulations have been proposed, including those capa-
ble of identifying in-plane rotational mechanisms (Gilbert 
et al. 2010; Smith and Gilbert 2013), out-of-plane rotational 
mechanisms (Gilbert et al. 2014), and three-dimensional 
translational mechanisms (Hawksbee et al. 2013; Zhang 
2017). DLO has to date been applied to numerous appli-
cations, ranging from tunnels subject to fire loading (Sun 
et al. 2019), metal cutting processes (Pritchard et al. 2019), 
multi-scale masonry analysis (Valentino et al. 2023), and the 
bearing capacity of volcanic pyroclasts (Galindo et al. 2021), 
with commercial DLO software tools used not only by indus-
try, but also by researchers seeking to better understand new 
and longstanding problems alike, e.g., see Leshchinsky and 
Ambauen (2015), Xie and Leshchinsky (2015), Wang et al. 
(2017), Liang and Knappett (2017), Zhou et al. (2018), and 
Zheng et al. (2020). Finally the first textbook on DLO was 
recently published by Zhang et al. (2022).

Although it has been shown that the DLO procedure can 
be used to obtain accurate solutions at modest computa-
tional cost for many problems, the power of the method 
still appears under-appreciated by the community. This 
appears in part to be due to a lack of accessible educa-
tional resources for use by researchers and practitioners 
alike. Although a MATLAB DLO script was previously 
presented at a specialist conference (Gilbert et al. 2010a), 
this was limited in that it could only treat small-scale 
problems involving rectangular problem geometries. Also, 
self-weight was treated in a somewhat complex manner, 
not taking advantage of recent research by Smith and Gil-
bert (2022) that enables complex domain geometries to 
be handled elegantly. (The alternative simplified approach 
to treating self-weight for complex domain geometries 
proposed by Salinas and Zegard (2022) involves a num-
ber of approximations, while the use of a supplementary 
FEM analysis to estimate the effect of body forces at 

each discontinuity line, recently proposed by Zhang et al. 
(2022), comes at the expense of significant additional 
complexity.) Finally, the open-source language Python has 
been quickly gaining popularity in recent years, particu-
larly in industry circles. These issues are all addressed in 
the present contribution.

The paper is organized as follows: in Sect. 2, the analogy 
between truss layout optimization and DLO is discussed and 
the basic DLO formulation is presented; in Sect. 3 the most 
important sections of the script are explained; in Sect. 4, the 
formulation is expanded in order to deal with different yield 
surfaces, dead loads, and problems involving a large number 
of nodes, taking advantage of an adaptive solution proce-
dure; in Sect. 5 the expanded formulation is used to solve 
benchmark problems, showing the potential of the method; 
finally, in Sect. 6 conclusions are drawn.

2  Analogy with optimal truss layout 
optimization

2.1  Truss layout optimization

To demonstrate the analogy between truss layout optimiza-
tion and discontinuity layout optimization, it is useful to 
first revisit the basic truss layout optimization formulation.

For a planar truss design problem involving n nodes and 
m potential truss bars connecting those nodes, the plastic 
minimum volume truss layout optimization (equilibrium) 
formulation for a single-load case problem can be written 
as follows: 

where V is the volume of the structure, q
T = {q

+

1
,

q
−
1

, q
+

2
, q

−
2

...q+
m

, q
−
m
} is a vector containing tensile and com-

pressive forces, each non-negative: c
T = {l1∕�1, l1∕�1,

l2∕�2, l2∕�2...l
m
∕�

m
} , where l

i
 and �

i
 are respectively the 

length and yield stress of each bar i. B is a suitable (2n × 2m) 

equilibrium matrix and fT = {f x
1

, f
y

1
, f x

2
, f

y

2
...f

y
n } , where f x

j
 and 

f
y

j
 are the x and y components of the external load applied 

to node j (j = 1, 2...n) . The presence of supports at nodes can 
be accounted for by omitting the relevant terms from f  , 
together with the corresponding rows from B.

Figure 1a–d presents the steps involved in setting up 
and solving a simple truss layout optimization problem.

(1a)min
q

V = c
T
q,

(1b)s.t. Bq = f,

(1c)q ≥ 0,
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2.2  Discontinuity Layout Optimization (DLO)

The layout of discontinuities that form at failure in the 
case of a quasi-statically loaded perfectly cohesive body in 
plane strain has been demonstrated to be analogous to the 
layout of bars forming an optimal truss (Smith and Gilbert 
2007). Thus, the ‘kinematic’ slip-line DLO formulation 
for a body discretized using m nodal connections (slip-line 
discontinuities) and n nodes can be written as follows: 

where E is the total internal energy dissipated due to shear-
ing along the discontinuities, d

T = {s
+

1
, s

−
1

, s
+

2
, s

−
2

...s−
m
} , 

where s+
i

, s
−

i
 are non-negative relative shear displacement 

jumps between blocks of material along discontinuity 
i (i = 1...m) ; gT = {c1l1, c1l1, c2l2, c2l2...c

m
l
m
} , where l

i
 and 

c
i
 are respectively the length and associated cohesive shear 

strength of discontinuity i. B is a suitable (2n × 2 m) compat-

ibility matrix and uT = {u
x

1
, u

y

1
, u

x

2
, u

y

2
...u

y

n} , where ux
j
 and uy

j
 

are the x and y components of the (virtual) displacement 
jumps imposed at node j (j = 1...n) . Figure 1e–f presents a 
coarse nodal discretization DLO solution to the Prandtl 

(2a)min
d

E = gTd,

(2b)s.t. Bd = u,

(2c)d ≥ 0,

punch problem, which results in the same optimal layout as 
for the truss problem described in Fig. 1a–d; the analogy 
between truss equilibrium at a node and the compatibility of 
displacements of bodies sliding relative to each other is illus-
trated in Fig. 2.

The DLO formulation can, thus, be interpreted as finding 
the mechanism that dissipates the minimum internal energy for 
a given imposed displacement u on the system. Conservation 
of energy then means that the load(s) �

�
 associated with this 

displacement can be determined by the equation �T

�
� = �T� , 

albeit the interpretation of �
�
 and u in this context is not par-

ticularly intuitive or convenient. It is, thus, helpful to refor-
mulate formulation (2) to allow easier interpretation and more 
general usage, as will be described in the next section.

Note that, for convenience, the terms ‘energy dissipation’ and 
‘displacement’ are herein used as shorthand for ‘rate of energy 
dissipation’ and ‘displacement rate’ (or ‘velocity’), respectively.

2.3  General form of DLO

While formulation (2) demonstrates the analogy between the 
truss layout optimization and DLO problem formulations, it 
is useful to introduce a more general formulation for DLO, 
which for example also allows the potential for dilational dis-
placements to occur along slip-line discontinuities (see Fig. 3): 

(3a)min
d,p

�fT

L
d = gTp,

(3b)s.t. Bd = 0,

(3c)Np − d = 0,

(3d)f
T

L
d = 1,

(3e)p ≥ 0,

(a) (b)

(c) (d)

(e) (f)

Fig. 1  Truss and discontinuity layout optimization problems: a truss 
design domain, loading and support conditions; b domain populated 
with nodes; c nodes interconnected with potential truss bars; d opti-
mal truss layout (tensile bars shown in red; compressive bars shown 
in blue); e plastic analysis domain and loading conditions; f optimal 
layout of discontinuities at failure, also showing implied movements 
of the enclosed solid bodies

(a) (b)

Fig. 2  Analogy between nodal equilibrium and compatibility condi-
tions: a truss equilibrium enforced at a node; b discontinuity (slip-
line) compatibility condition enforced at a node, shown here with 
infinitesimal displacements magnified for sake of clarity



 L. He et al.

1 3

  152  Page 4 of 17

where fL = {SL1, NL1, SL2, NL2..NLm
} is a vector con-

taining live loads acting on the discontinuities, 
d

T = {s1, n1, s2, n2...n
m
} contains relative shear and nor-

mal displacements along the discontinuities; � is the load 
factor, such that �f

T

L
d in Eq. (3a) is the work done by live 

loads. Also, p is a vector of non-negative plastic multipliers 
describing the plastic flow at discontinuities, such that the 
right-hand side of Eq. (3a) is the internal energy dissipa-
tion. Therefore, the objective function Eq. (3a) identifies 
the minimum live load required to cause plastic flow of the 
structure (i.e., collapse).

While theoretically live loads can be applied to any discon-
tinuity, in general, they will only be applied to discontinuities 
lying on free boundaries, such that S

Li
 and N

Li
 will be zero for 

any non-free boundary i.
It is also important to note that the displacements involved 

are all relative and that in this paper, the following sign con-
vention is adopted: shear displacements s are taken as posi-
tive clockwise (as shown in Fig. 2b) and for normal displace-
ments n, dilational displacements are taken as positive. Thus, 
‘inward’ displacement into a body at a boundary corresponds 
to dilation at that boundary (where the dilation is acting rela-
tive to a fixed ‘external’ domain). Correspondingly, a nor-
mal load at a boundary is considered positive if it is applied 
inwards with respect to the domain boundary, such that it does 
positive work. So, for example, if the same positive load is 
applied to the upper boundary or to the lower boundary, it 
is oriented downwards or upwards, respectively. Similarly a 
boundary shear load is considered positive if it acts in an anti-
clockwise direction around the boundary.

In constraint (3b), the compatibility matrix B
i
 of the ith 

discontinuity can be written as follows:

(4)B
i
d

i
=

⎡⎢⎢⎢⎣

�
i

− �
i

�
i

�
i

−�
i

�
i

−�
i
− �

i

⎤⎥⎥⎥⎦

�
s

i

n
i

�
= 0,

where �
i
 and �

i
 are suitable direction cosines for this 

boundary.
Constraint (3c) imposes a flow rule linking displacements 

s
i
 and n

i
 . For the example shown in Fig. 2b, only shear plas-

tic flow is involved, such that the flow rule for the ith slip 
line would be written as follows:

where the normal plastic flow is set to zero. Note that the 
flow rule constraint (5) is applied to all internal slip lines. 
For boundary slip lines, the flow rules need to be modified 
to satisfy the particular boundary conditions involved.

Note that the use of p1,i + p2,i in the work equation (3a), 
with p1,i , p2,i ≥ 0 , ensures that work done is always posi-
tive, regardless of the direction of displacement s

i
 . Since 

Eq. (3a) is being minimized, the flow rule can be viewed 
as being equivalent p1,i + p2,i = |si| ; this is illustrated in 
Table 1, which shows a range of possible p1,i , p2,i values for 
cases where s

i
= 10 or s

i
= −10 , indicating that the optimal 

(minimum) value will always occur when p1,i + p2,i = |si| , 
where one of the values of p will always be zero.

Live load is applied directly on boundary discontinuities. 
For sake of simplicity, here only a unit (inward, compres-
sive) normal load is used:

(5)Nipi − di =

[

1 − 1

0 0

][

p1,i

p2,i

]

−

[

si

ni

]

= 0,

(a) (b) (c)

Fig. 3  Variables in truss and DLO problems: a force variable of a 
truss bar i; b shear displacement variable of a slip-line i moving from 
AB to A

′
B
′ ; c shear and normal displacement variables. For b and c  

when using the sign convention adopted in this paper, the indicated 
relative displacement jump occurs moving across the discontinuity 
from below to above

Table 1  Examples of plastic multiplier values, p1,i , p2,i , showing that 
the optimal (minimum) work value coincides with p1,i + p2,i = |si|

Work

si = p1,i − p2,i p1,i p2,i (p1,i + p2,i)cili Minimum?

10 10 0 10c
i
l
i

Yes

10 11 1 12c
i
l
i

No

10 15 5 20c
i
l
i

No

− 10 0 10 10c
i
l
i

Yes

− 10 1 11 12c
i
l
i

No

− 10 5 15 20c
i
l
i

No
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where �  is a set containing the loaded boundary discontinui-
ties, and l

i
 is the length of the ith discontinuity. Note that 

this defines a ‘flexible’ load, i.e., the loaded boundary line 
is free to deform.

2.4  Boundary conditions

Boundary conditions affect the flow rule and work terms 
associated with the relevant discontinuities. For a fixed 
boundary, no additional conditions are required, since 
the relevant discontinuities have the same properties as 
internal ones. For discontinuities at free boundaries, the 
flow rules in Eq. (3c) do not need to be applied, since 
there is no requirement that the displacements (i.e., s

i
 

and n
i
 ) are coupled. In addition, since no internal energy 

is dissipated on free boundaries, plastic multiplier 
terms are not included in the work calculation, Eq. (3a). 
Appendix 1 shows all boundary conditions considered 
in this work.

In the examples considered in this paper, each boundary 
is visually represented as follows:

– Free boundary: line only
– Fixed boundary: cross hatch
– Symmetry boundary: dot-dash line
– Loaded boundary: directional load arrows

3  Python implementation of basic DLO 
formulation

The formulation described in Sect. 2.3 has been programmed 
in the Python script dlo_basic.

3.1  Program code excerpts

Python is an open-source high-level interpreted program-
ming language that is becoming an increasingly popular tool 
when solving scientific and engineering problems.

The key parts of the formulation described in Sect. 2.3 
are now associated with the corresponding program code. 
Specifically, function DLO performs the high-level steps 
required to solve a DLO problem.

First, a polygonal problem domain is created:

 where here the geometrical library shapely is used to 
generate a polygon using its vertices vt.

Nodes and discontinuities are then created:

(6)f
T

Li
=

{ [

0, l
i

]

, for i ∈ � ,

[0, 0], otherwise,

 where Nd is a (n × 2) array of nodes, with rows defining 
the x and y coordinates of nodes. Cn is a (m × 3) array of 
discontinuities, with each row defining the indices of the 
connected nodes and the discontinuity length. Note that only 
nodes and discontinuities lying entirely inside the polygo-
nal domain are created. Also, to remove redundant collinear 
discontinuities, overlapping connections are filtered out by 
imposing the following condition:

 where gcd is a function that finds the greatest common 
divisor of the x and y increments, dx and dy. Note that 
for sake of simplicity, only regular Cartesian nodal grids 
are considered here; alternative nodal grid and connection 
schemes can, however, be employed if required, e.g., see 
Zegard and Paulino (2014).

Boundary conditions are then defined:

 which generates an array bd defining boundary conditions 
for all discontinuities.

A DLO problem is then set up and solved:

 and results are displayed graphically:

Further details of the key steps involved are now presented.

3.1.1  Setting up the DLO optimization problem

As successfully utilized by He et al. (2019), the convex opti-
mization package cvxpy (Diamond and Boyd 2016) is here 
used to solve the minimization problem Eq. (3), processed 
via function solveLP.

Firstly, all coefficient vectors and matrices in problem 
(3) are obtained:

Boundary conditions are then considered:
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which generate two vectors activeN and activeG, 
containing binary data used later to impose boundary con-
ditions  when working with the flow rule matrix N and the 
energy dissipation vector g.

Optimization variables are then created:

To improve readability, mathematical expressions are writ-
ten in as natural a format as possible. Also note that matrix 
multiplications in cvxpy (from version 1.0) are defined 
using the symbol “@". The objective function Eq. (3a) is 
created using:

 where the array activeG is used as a mask to set cer-
tain coefficients in g to 0, to fit the boundary conditions 
involved.

All constraints in problem (3) are contained in a list 
cons:

The optimization problem can now be created and 
solved:

 where here the LP problem is initially solved via the free 
ECOS solver (Domahidi et al. 2013), which is installed with 
the cvxpy package. The optimization variables can then 
be obtained:

3.1.2  Compatibility constraints

To improve computer memory efficiency, the compatibility 
matrix in Eq. (4) is stored in a sparse matrix. Therefore, it 
is necessary only to store the values and locations of non-
zeros (i.e., row and column identifiers) in matrix B . Since 
numpy can handle element-wise calculations in arrays, it 
is convenient to define local compatibility matrices for all 
discontinuities:

where here s and n are respectively index vectors of shear 
and normal displacements in d ; see Eq. (4). Also n1 and 
n2 are indices of the first and second nodes connected by 
discontinuities.

The above script collects all non-zeros in the B matrix and 
their corresponding locations. To create the sparse matrix, the 
following function is called:

 which creates a 2n × 2m sparse matrix using the non-zeros 
provided.

3.1.3  Flow rule

The flow rule matrix N in Eq. (5) is calculated as follows:

3.1.4  Applied loading

In accordance with Eq. (6), loads can be applied to discontinui-
ties lying along boundaries using the following code fragment:

Note that this applies a ‘flexible’ unit load (since no kin-
ematic constraints have been created to link together the 
displacements of adjacent loaded segments).
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3.2  Illustrative examples

The formulation described is now applied to simple litera-
ture problems. For all problems, a laptop PC equipped with 
an Intel I7-7700HQ CPU and running 64-bit Windows 10 
was used. These problems are characterized by a pure cohe-
sive model (i.e., one that can be described by the Tresca 
failure envelope, in which only shear plastic strains occur). 
Appendix 2 indicates the function name to be called to rec-
reate the following and all other examples presented in the 
paper.

3.2.1  Metal extrusion

The first example is a classical metal extrusion prob-
lem considered by Hill (1950), in which metal is pushed 
through a rectangular die by a ram, leading to ‘steady 
motion’ metal extrusion (i.e., a uniform displacement 
(rate) field exists at the bottom boundary) (Fig. 4).

Figure 5 presents results for three different domain 
heights. It is evident that a slip-line field similar to 
that obtained by Hill is only obtained when the loaded 
boundary is a sufficient distance from the opening. This 
is because the loading presented in Sect. 3.1.4 is ‘flex-
ible,’ and does not ensure a uniform displacement field 
is present at the loaded boundary; this can be addressed 
by instead using a rigid load, as will be described in 
Sect. 4.2.

3.2.2  Prandtl punch

Figure  6a shows a variant of the well-known Prandtl 
punch problem (Hill 1950). Taking symmetry conditions 
into account, a rectangular domain with 10 × 5 nodal divi-
sions is used here; see Fig. 6b. The computed load factor 
� = 5.222 , which is just 1.56% above the analytical solu-
tion of 2 + � . An important benefit of the DLO method 
compared with comparable finite element analysis meth-
ods is that the singularity in the displacement field that 
occurs at the edge of the punch is identified automati-
cally, without the need for e.g., tailored meshes or adap-
tive mesh refinement.

Dead

metal

Dead

metal

Fig. 4  Metal extrusion: form of slip-line failure mechanism proposed 
by Hill (1950)

(a) (b) (c)

Fig. 5  Metal extrusion—DLO solutions for: a 15 × 12 nodal divisions, � = 4.237 ; b 15 × 15 nodal divisions, � = 4.841 ; c 15x18 nodal divisions, 
� = 5.320 (with unit load and 1/3 of top edge open, taking cohesion c = 1)
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4  Extensions

A range of extensions to the basic DLO method are now 
considered, to increase its range of applicability.

4.1  Cohesive‑frictional materials

By changing the flow rule matrix, it is possible to treat dif-
ferent convex yield surfaces. For example, it is straightfor-
ward to implement the Mohr–Coulomb model for handling 
cohesive-frictional materials.

To achieve this, no changes to the compatibility con-
ditions imposed in Eq. (3b) are required, since normal 
displacements are already represented in the basic DLO 
formulation (e.g., to permit the presence of normal dis-
placements at boundaries). However, to implement the 
Mohr–Coulomb model, the flow rule constraint for the ith 
slip line needs to be modified to read as follows:

where N
i
 is the local plastic flow matrix, p

i
 is a vector con-

taining non-negative plastic multipliers, and � is the angle 
of friction of the material.

4.2  Rigid loads

In contrast to the ‘flexible’ loads defined using Eq. (6), it 
is possible to specify loads that are rigid, i.e., such that the 
shape of a given loaded boundary line remains fixed, with 
discontinuities belonging to the boundary all displacing 

(7)Nipi − di =

[

1 − 1

tan� tan�

][

p1

i

p2

i

]

−

[

si

ni

]

= 0,

the same amount. This can be implemented by introducing 
additional equality constraints that link the displacement 
variables involved:

where linkN and linkS are arrays containing the indi-
ces of discontinuities to be linked, considering normal and 
shear displacements, respectively; also sL and nL are arrays 
of the corresponding displacement variables. Appendix 1 
presents further details of how various types of load can be 
represented.

4.3  Treatment of body forces

4.3.1  Theory

In previous work (e.g Smith and Gilbert 2007), the work 
done by body forces was implemented by considering the 
work done moving a column of material that lies, e.g., verti-
cally above a given slip-line discontinuity. For simple exam-
ples involving domains with a flat uppermost boundary (e.g., 
see Fig. 7a), it is relatively easy to calculate the gravity load 
imposed by materials lying above any discontinuity. How-
ever, for general cases, the calculations can become rather 
complex. For example, in Fig. 7b, since the uppermost edge 
is non-smooth, any algorithm developed to calculate the 
gravity load would need to first identify intersection points 
and vertices along this edge in order to obtain the polygonal 
areas above a given underlying discontinuity line. Due to 
the requirement to calculate intersection points, this process 
can also become computationally expensive when a large 
number of discontinuities are present in a given DLO prob-
lem. For this reason, handling distributed body forces was 

(a)

(b)

Fig. 6  Prandtl punch: a problem specification; b DLO solution for 
half domain discretized using 10 × 5 nodal divisions, � = 5.222 (unit 
load applied across 3 nodal divisions of top edge, taking cohesion 
c = 1)

(a) (b)

Fig. 7  Calculating the body force G associated with the shaded area 
for a discontinuity AB using the approach described in Smith and Gil-
bert (2007): a if the top edge is flat then it is straightforward to calcu-
late the area ‘above’ the discontinuity, e.g., see Gilbert et al. (2010); 
b however, if a non-smooth top edge is present, then a more complex 
algorithm is required, as the profile of the top edge must be considered
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identified as being somewhat challenging when using DLO 
by He and Gilbert (2016).

However, following recent work by Smith and Gilbert (2022), 
a much simpler and more elegant approach becomes possible. 
Here, this will be described from a conceptual standpoint.

Consider first a body containing only a non-dilational 
material within which a translational mechanism is formed 
(Fig. 8a). Due to conservation of volume, all normal displace-
ments at the domain boundary must sum to zero. To an exter-
nal observer, material that is displaced at one boundary dis-
continuity by a normal displacement must ‘reappear’ at one or 
more other boundary discontinuities as illustrated for example 
in Fig. 8b. Here the volume of material pushed downwards at 
the top of the slope must equal the volume of material pushed 
outwards on the slope face, i.e., n

1
l
1
+ n

5
l
5
= 0 . Given that 

adopted sign convention for n is dilation positive, the interpre-
tation at boundaries is thus that n

1
 is positive and n

5
 is negative.

To compute the work done by body forces, it is therefore 
not necessary to track the movement of material throughout 
a body (since this is done implicitly by enforcing compat-
ibility elsewhere in the DLO formulation), but to simply 
note the potential of material that vanishes (positive normal 
displacement), or appears (negative normal displacement) 
at a boundary, and to sum these to form the body force work 
term. Since shear displacements do not affect volume, these 
need not be considered. Additionally, since the calculation 
is in terms of a body force energy potential, the computa-
tion is independent of the direction of the normal displace-
ment. Hence in Fig. 8b, under normal 1 g gravity, the poten-
tial energy change of this global movement of material is 
equal to −�(l

1
n

1
h

1
+ l

5
n

5
h

5
) , where h is the height from an 

arbitrary datum to the centroid of the discontinuity that is 
undergoing normal displacement. Since displacement n is 
assumed to be small, the centroid can be assumed to remain 
at the mid-point of the discontinuity.

For a material that undergoes volume change on defor-
mation, e.g., dilation, the argument can be extended to 
include volume generation (or loss) internal to the body, 
as illustrated in Fig. 8c, with the same principles apply-
ing as for the non-dilational material. Here the volume 
of material pushed downwards on the soil surface plus 
the volume of dilation on interfaces 2, 3 and 4, must 
equal the volume of material pushed upwards at the 
soil surface, i.e., n

1
l
1
+ n

2
l
2
+ n

3
l
3
+ n

4
l
4
+ n

5
l
5
= 0 . 

Under normal 1  g gravity, the potential energy change 
of this global movement of material is thus equal to 
- �(l

1
n

1
h

1
+ l

2
n

2
h

2
+ l

3
n

3
h

3
+ l

4
n

4
h

4
+ l

5
n

5
h

5
).

4.3.2  General equations

Taking the origin as datum, for an individual discontinuity i, 
the loss of body force potential P

i
 due to a normal displace-

ment n
i
 is given by:

where (x
m

, y
m
) is the coordinate of the mid-point of the dis-

continuity, � is the material unit weight; l
i
 is the discontinuity 

length; k
v
 and k

h
 are respectively the vertical and horizontal 

body force accelerations acting in the positive x and y direc-
tions (e.g., for normal gravity set k

v
= −1 ). Smith and Gil-

bert (2022) provide an analytical proof of this formulation 

(8)ΔPi = −nili(kh�xm + kv�ym),

l2

l4

l1

l5l3

l4

DATUM

h1

h5

h2, h3

h4

(a)

2

4

1

n1

5

n5

3

4

DATUM

(b)

2

n2

4

n4

1

n1

5

n5

3

n3

4

n4

DATUM

(c)

Fig. 8  Calculating body force potential energy changes using the cur-
rent approach based on normal displacements: a example two wedge 
slope problem, showing dimensions; b displaced wedges for problem 
with non-dilational material with normal displacements at the bound-
aries only; c displaced wedges for problem with dilational material 
with internal and boundary normal displacements. Centroid of dilat-
ing volumes are marked with a dot. Normal displacements are exag-
gerated for illustrative purposes but are considered infinitesimal in the 
analysis (hence, for example, the centroid positions for interfaces 1 
and 5 coincide with the soil surface)
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in terms of the integral of a body force potential function 
within the dual equilibrium form of DLO, discussed later 
in this paper.

When combined with discrete loads applied to any dis-
continuity, this gives the general equation for loading (live 
or dead) on a discontinuity i as follows:

where S
i
 and N

i
 are respectively shear and normal loads 

applied to the discontinuity. Body forces may be applied as 
either live or dead loads. In this paper, only gravity loads 
are considered as dead loads, and therefore Eq. (9) can be 
simplified to

which involves significantly simpler computations than those 
associated with the strip model shown in Fig. 7.

To accommodate such body forces it is necessary to 
extend Eq. (3a) to now include dead loads (D) as follows:

4.4  Alternative LP solvers

By default, the LP problem (3) is solved using the open-
source solver ECOS (Domahidi et al. 2013) that is distrib-
uted with cvxpy. However, cvxpy also supports many 
other, potentially more efficient, solvers—albeit these need 
to be installed separately by users. For example, to use the 
MOSEK solver (MOSEK 2019), the solve command in 
function solveLP is replaced with the following:

 where the MOSEK parameter "MSK_IPAR_INTPNT_
BASIS" disables the unnecessary basis identification step 
to improve speed.

4.5  Adaptive solution procedure

Similar to the adaptive ‘member adding’ procedure proposed 
for numerical truss layout optimization problems (Gilbert 
and Tyas 2003; He et al. 2019), an adaptive solution scheme 
can also be employed when solving DLO problems, signifi-
cantly improving computational efficiency. Figure 9 shows 
how a solution is obtained for a Prandtl punch problem when 
using the adaptive solution process. For sake of simplicity, in 
this work, all potential discontinuities are created (Fig. 9c), 

(9)f
T

i
di =

[

Si, �li(−kv ⋅ ym − kh ⋅ xm) + Ni

]

[

si

ni

]

,

(10)f
T

D,i
di =

[

0, � ⋅ li ⋅ ym,i

]

[

si

ni

]

,

(11)min
d,p

�fT

L
d = gTp − fT

D
d.

though only small subsets of these are actually used to solve 
problem (3), e.g., Fig. 9d–i. (Note however that, to improve 
the memory efficiency further, the step in Fig. 9c can alter-
natively be omitted, with only required subsets stored.)

In the adaptive solution procedure, the dual problem of 
Eq. (3) is examined. Using duality theory (e.g., see He et al. 
2019), the dual problem of Eq. (3), extended in Eq. (11), can 
be derived as follows: 

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Fig. 9  Solving a DLO problem via the adaptive solution scheme: a 
problem specification; b node discretization ( 10 × 5 divisions); c cre-
ate set of potential discontinuities by interconnecting all node pairs 
(total: 1361); d activate subset of potential discontinuities (215); e 
iteration 1, solve problem (3), � = 6.000 ; f check dual violation using 
(13), and activate most violating discontinuities via (14); g iteration 
2, � = 5.333 , with dual violation; h iteration 4, � = 5.259 , with dual 
violation; i final iteration, � = 5.222 , no dual violation (total activated 
discontinuities: 248); j discontinuities with non-zero energy dissipa-
tion highlighted and showing displacement vectors obtained using 
algorithm presented in Sect. 4.6 (taking cohesion c = 1)
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where t  is  a vector containing nodal forces, 
q = [S1, N1, S2, N2, ..., S

m
, N

m
]T is a vector of discontinuity 

forces, and where S
i
 and N

i
 are shear and normal forces act-

ing on discontinuity i of m discontinuities. Note that the 
inequality constraint Eq. (12c) now defines the Mohr–Cou-
lomb yield-criterion, e.g., for discontinuity i:

When primal problem (3) is solved via the primal-dual 
interior point method, the nodal forces t at every node are 
obtained from the compatibility constraints. Therefore, the 
discontinuity force vector q for all potential discontinuities 
(i.e., discontinuities that are not included in the primal prob-
lem) can be obtained from equality constraint Eq. (12b):

Since the potential discontinuities are not included in the 
primal problem, yield condition Eq. (12c) is unlikely to be 
satisfied for all these discontinuities. However, the degree to 
which the yield condition is violated can be calculated from

 where, for each discontinuity, two violation numbers, cor-
responding to the two inequality constraints in (13), are 
obtained. These are extracted using

The violation for all potential discontinuities can now be 
sorted, in descending order:

The solution obtained in the next iteration is clearly likely to 
be improved if discontinuities where violation of the yield 
condition has been identified are added to the primal prob-
lem. However, in the interests of computational efficiency, 
only discontinuities where violation is greatest should be 

(12a)max
t,q,�

�,

(12b)s.t. BTt − q + �fL = −fD,

(12c)NTq ≤ g,

(13)

[

1 tan�

−1 tan�

] [

S
i

N
i

]

≤

[

c
i
l
i

c
i
l
i

]

.

added initially. Taking m
v
 to be the number of potential (i.e., 

currently non-activated) discontinuities where violation has 
been found, and m

p
 as the total number of potential discon-

tinuities, the following selection criteria are used to obtain 
the set of potential discontinuities to be added to the problem 
at the next iteration:

where Δm is the number of discontinuities to be added; �
1
 

and �
2
 are coefficients determining the percentage of new 

discontinuities to be added; in this work, both coefficients 
are taken as 0.05. In Eq. (14), if the number of violated 
discontinuities is relatively large (i.e., mv ≥ �2mp ), only a 
small proportion of the violated discontinuities are added, 
Eq. (14a). This prevents the problem from growing very 
rapidly during early iterations of the adaptive solution pro-
cess, when a large number of dual violations are expected. 
On the other hand, if the number of violated discontinuities 
is relatively small (i.e., mv ≤ �1�2mp ), all violated discon-
tinuities are added, Eq. (14b), since adding these will only 
increase the size of the problem slightly. Alternatively, if the 
number of violated discontinuities is neither large nor small, 
a fixed proportion of currently non-activated discontinui-
ties are added, Eq. (14c). Finally, if no violation is detected, 
considering all potential discontinuities (i.e., Δm = m

v
= 0 ), 

then no discontinuities need to be added to the problem and 
the adaptive procedure terminates.

Note that although the selection criteria given in Eq. (14) is 
based on heuristics, and different heuristic strategies are pos-
sible, the adaptive procedure will always obtain the same load 
factor as that obtained by solving the full problem, regardless 
of the specific heuristics used.

4.6  Graphical display of mechanism kinematics

To provide a visual indication of the movements associated 
with any given failure mechanism, the latter can be overlain 
with a grid of displacement vectors. This is here achieved by 
passing horizontal rays across the domain at regular y-inter-
vals. For each ray, the absolute displacement is first set to 
zero, and then, as the ray passes across the domain from 
left to right, the absolute displacement is updated as each 
discontinuity is crossed (by adding the relative displacement 
occurring at that discontinuity), as shown in Fig. 10. It is 
convenient to then display vectors of absolute displacement 
at regular x- and y-intervals; this grid need not coincide with 
the grid of DLO nodes.

Δm =

⎧
⎪
⎨
⎪
⎩

𝜅1mv, mv ≥ 𝜅2mp (14a)

mv, mv ≤ 𝜅1𝜅2mp (14b)

𝜅1𝜅2mp, 𝜅1𝜅2mp < mv < 𝜅2mp, (14c)
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5  Numerical examples

In this section, a range of examples that illustrate the exten-
sions described in Sect. 4 are presented. All applied loads 
are ‘rigid’ unless stated otherwise.

5.1  Metal forming examples

5.1.1  Metal extrusion example revisited

Taking advantage of features introduced in Sect. 4, the metal 
extrusion example described in Sect. 3.2.1 is now revisited. 

First, the ram can now be modeled as a rigid load, ensuring 
‘steady motion’ without the need to set the loaded boundary 
far from the opening. Also, to obtain more accurate solutions 
than shown in Fig. 5c, the number of nodal divisions con-
sidered can be increased by taking advantage of the adap-
tive solution scheme described in Sect. 4.5. Figure 11 shows 
results obtained using 30 × 30 and 60 × 60 nodal divisions 
while Table 2 provides a summary of the solutions obtained 
with varying numbers of nodal divisions.

Note that if the adaptive solution procedure is not 
employed, the open-source ECOS solver fails to obtain 
solutions when the number of nodal divisions is increased 
from 15 × 15 to 30 × 30 , though solutions to this problem 
can be obtained using the more robust MOSEK solver. On 
the other hand, the ECOS solver is able to solve the prob-
lem with 60 × 60 nodal divisions when the adaptive solu-
tion scheme is used. Also, increasingly significant reduc-
tions in CPU time are observed as problem size increases, 
when using the MOSEK solver. It is important to note 
that, although for each problem the CPU cost may vary 
markedly depending on the solution strategy (i.e., solving 

Fig. 10  Generating displacement field by collecting displacements d 
at intersections between discontinuities and a ray

Fig. 11  Metal extrusion exam-
ple revisited—DLO solutions 
for: a 30 × 30 nodal divisions, 
� = 4.880 ; b 60 × 60 nodal divi-
sions, � = 4.861 (with unit load 
and 1/3 of top edge open, taking 
cohesion c = 1)

(a) (b)

Table 2  Metal extrusion example revisited: results for various nodal divisions

aCumulative CPU time spent in function solveLP
bCumulative CPU time spent in functions solveLP and stopViolation
cMaximum number of iterations reached in ECOS

ECOS solver MOSEK solver

Nodal divisions Total number of Load factor CPU time CPU time

(x × y) discontinuities � Full (s)a Adaptive (s)b Full (s)a Adaptive (s)b Speed up factor

15×15 20,074 4.920 3 1 1 1 1

30×30 280,916 4.880 c 9 21 9 2.3

45×45 1,362,082 4.868 c 52 114 24 4.8

60×60 4,209,056 4.861 c 457 514 98 5.2

75×75 10,145,578 4.858 c c 2281 183 12.5
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the full problem directly vs using the adaptive solution 
scheme) and solver (i.e., using ECOS vs using MOSEK), 
the reported load factors remain the same for any given 
nodal discretization.

5.1.2  Metal block compressed between rough platens

The second example is a rectangular metal block com-
pressed vertically between two rough platens. The ana-
lytical solution to this problem has been presented by 
Chakrabarty (1991, 2006). As observed by Smith and Gil-
bert (2007), when considering half the width of the metal 
block, the optimal layout of discontinuities is identical 
to the optimal layout of truss bars in a minimum volume 
cantilever truss, e.g., see Johnson (1961) and Lewiński 
et al. (1994).

Here, three different aspect ratios are considered, with 
sample graphical output shown in Fig. 12, and with higher 
resolution numerical solutions provided in Table 3 to per-
mit comparison with analytical solutions. This indicates 
that highly accurate solutions can be obtained using the 
DLO procedure described herein.

5.2  Geotechnical examples

Availability of the Mohr–Coulomb failure criterion and the 
capability to apply body forces makes DLO formulation Eq. 
(3) suitable for solving a range of geotechnical engineering 
problems, examples of which are now presented.

5.2.1  Bearing capacity problem with cohesive‑frictional 

soil

In this example, the purely cohesive material present in 
the Prandtl punch problem considered in Sect.  3.2.2 is 
replaced with a cohesive-frictional material to represent a 
classical geotechnical bearing capacity problem. Here, the 
Mohr–Coulomb failure criterion is used, with the analyti-
cal solution for a weightless soil material obtainable from 
�

0
= c ⋅ (Nq − 1) cot� , where c is the cohesion, � is the 

angle of friction, and Nq = exp(� tan�) tan2(45 + �∕2) (see 
e.g., Smith 2005).

Taking advantage of symmetry, a half domain is here 
discretized using 48 × 16 nodal divisions, with a unit rigid 
load applied across 5 nodal divisions. Taking c = 1 and 
� = 25◦ , a � value of 21.0124 can be computed using the 
DLO script presented herein, which differs from the exact 
analytical value of 20.721 by just 1.4%. The correspond-
ing failure mechanism is presented in Fig. 13, which clearly 
shows how the introduction of friction affects the geometry 
of the failure mechanism.

5.2.2  Retaining wall

In the case of geotechnical engineering problems, self-
weight is often important. Thus, the next example involves 
a smooth-faced rectangular retaining wall with self-weight 
taken into account. In this case, the ‘passive’ condition is 
considered, where the lateral resistance to movement of the 
wall into the retained soil body is to be determined. The soil 
cohesion and unit weight are taken as unity and the angle of 
friction of the soil � = 20

◦ . The domain is discretized using 
40× 20 nodal divisions and a unit load is applied on the left 
boundary.

In this case the computed load factor � = 23.254 is 
just 0.007% higher than the theoretical value of 23.252 
(ca lcula ted  f rom �

0
= 0.5Kp�H + 2c

√

Kp  ,  where 

(a)

(b)

(c)

Fig. 12  Metal block compressed between rough platens—DLO solu-
tions for: a 10× 10 nodal divisions, aspect ratio = 1, � = 2.000 ; b 
36× 10 nodal divisions, aspect ratio = 3.6, � = 3.325 ; c 67× 10 nodal 
divisions, aspect ratio = 6.7, � = 4.978 (taking cohesion c = 1)

Table 3  Metal block compressed between rough platens: results for 
various block width: height aspect ratios (taking cohesion c = 1)

aAdaptive solution procedure via the MOSEK solver
bAspect ratios of 3.64 and 6.72 were used in the numerical studies

Block Analytical Numerical

aspect ratio � Nodal 
divisions 
( x × y)

� Error% CPU (s)a

1 2.000 25 × 25 2.000 0.00 2

3.644 3.334 91 × 25 3.335b 0.03 80

6.718 4.894 168 × 25 4.900b 0.11 116
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Kp = tan2(45 + �∕2) , and H = 20 is the wall height, after 
Rankine (1857) and Bell (1915)). The failure mechanism 

shown in Fig. 14 also matches perfectly the expected single 
‘wedge’ failure mechanism for a smooth wall. It is straight-
forward to analyse the equivalent active condition, by revers-
ing the direction of the live load, as defined in Eq. (6).

5.2.3  Terraced slope with crest surcharge

A key benefit of DLO and other generally applicable numeri-
cal methods over hand calculation methods is that they can 
be applied to problems with arbitrary geometry, where the 
mode of response is not known in advance. Thus, Fig. 15 
depicts a more geometrically complex problem, a terraced 
slope with crest surcharge. The Mohr–Coulomb failure cri-
terion is used, taking c = 1 and � = 25◦ , and the unit weight 
is taken as � = 1 . The non-convex domain is discretized with 
20 × 12 nodal divisions; nodes lying outside the domain are 
removed in function createNodes, and discontinuities 
intersecting concave edges on the top surface are removed 
in function createDiscontinuities. Since the slope 
has a non-smooth top surface, calculating the effects of the 
self-weight using previously described approaches (e.g., 

Smith and Gilbert 2007; Gilbert et al. 2010) becomes quite 
involved; see also Fig. 7. However, using the new body force 
formulation encapsulated in Eq. (8), the load effects can be 
calculated very efficiently.

The computed DLO failure mechanism shown in Fig. 15 
includes a piecewise linear-curved slip line, which converts 
the vertical displacement of the rigid load into horizontal 
movement of the underlying soil, as observed from the dis-
placement vectors. The example, therefore, demonstrates 
the flexibility of the DLO method, and its ability to deal 
with complex geometries and boundary conditions that pose 
challenges when traditional hand analysis methods are used, 
given that it will often not be clear a priori whether failure 
will involve e.g., bearing capacity failure, slope failure, or a 
combined failure mechanism.

6  Concluding remarks

Discontinuity layout optimization (DLO) is a powerful 
numerical limit analysis technique that can be used to auto-
matically identify the collapse load and associated failure 
mechanism of a solid or structure. Output is in the form of 
slip-line failure mechanisms that are familiar to engineers. 
DLO is a member of a wider family of layout optimization 
procedures that includes the well-known truss layout opti-
mization method originated by Dorn et al. (1964). These 
methods rely on node and interconnecting lines, forming 
what is referred to as a ‘ground structure’ in the case of the 
truss layout optimization problem.

In this paper, a practical Python implementation of the 
DLO method is described. This allows the critical failure 
mechanism and associated load factor to be obtained using 
linear optimization for a wide range of translational plane 

Fig. 13  Bearing capacity problem with cohesive-frictional soil: 
DLO solution for domain discretized with 48× 16 nodal divisions, 
� = 21.024 (with unit load applied over a length of 5 nodal divisions 
and taking c = 1,� = 25◦ , � = 0)

Fig. 14  Retaining wall: DLO solution for 40× 20 nodal divi-
sion case, � = 23.254 (smooth wall subject to unit load and taking 
c = 1,� = 20◦ , � = 1)

Fig. 15  Terraced slope with crest surcharge: DLO solution for 
20 × 12 nodal division case, � = 9.170 (using unit load and taking 
c = 1,� = 25◦, � = 1)
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plasticity problems. Specifically, the presented script is 
capable of treating problems involving 

1. Cohesive-frictional materials.
2. Free, rigid, and symmetry boundaries.
3. Flexible and rigid live loads.
4. Horizontal and vertical body forces, taking advantage of 

a new approach.
5. Domains with arbitrary boundary geometries.
6. Failure mechanisms that include singularities in the dis-

placement field.

The paper also describes an adaptive solution procedure to 
enable treatment of large-scale problems, and a routine to 
plot absolute displacement vectors to help users interpret the 
graphical output obtained.

Finally, a series of examples encompassing metal form-
ing and geotechnical engineering problems are presented. 
These demonstrate the simple Python code implementation 
described in this paper can be used to obtain close agreement 
with known solutions, considering both identified mecha-
nism and computed failure load. The Python script can also 
be readily applied to a wide range of other problems, and 
while the focus has been on single domain problems in this 
paper, it is relatively straightforward to extend the approach 
to modeling multiple domains (e.g., see He and Gilbert 
2016; Salinas and Zegard 2022), with each domain contain-
ing a material with different strength and density.

7  Supplementary material

Downloadable Python scripts (DLO_basic.py, DLO.py 
and example.py) are available from: https:// doi. org/ 10. 
15131/ shef. data. 21175 060.

Appendix 1: Boundary conditions

Symmetry boundary: in this case, the material adjacent 
to the boundary and its symmetrical counterpart must slide 
in the same direction. This is equivalent to a relative shear 
displacement that does not dissipate energy.

Loaded boundary (flexible): this boundary condition is 
equivalent to a free boundary, except for the live load term, 
Eq. (6).

Loaded boundary (rigid): all relative displacements asso-
ciated with discontinuities belonging to a rigid load must 
be the same (i.e., all loads making up a line load remain 
in-line after deformations have taken place). This requires 
additional constraints to be applied:

where �rigid is a set containing all discontinuities belonging 
to the region of the boundary subjected to the rigid load. 
Also note that there is no energy dissipation or flow rule 
associated with relative displacements in this case.

Loaded boundary (rigid, laterally constrained): all nor-
mal displacements associated with loaded discontinuities 
must be the same, i.e.:

where �
lateral

 is a set containing all discontinuities belong-
ing to the region of the boundary subjected to the laterally 
constrained rigid load. Since the load is constrained later-
ally, there will be energy dissipation associated with shear 
displacements.

A summary of all boundary conditions considered in this 
work is shown in Table 4.

Appendix 2: Running the example problems

Two main scripts have been prepared and made available 
as supplementary material; the first, DLO_basic.py, 
covers the basic DLO formulation described in Sect. 3; the 
second, DLO.py, incorporates the extensions described 
in Sect. 4. For readers unfamiliar with DLO, it is strongly 
recommended that DLO_basic.py is referred to first as 
this is shorter and has been designed to be as accessible as 
possible. (Note that DLO.py also includes code optimiza-
tions to improve speed, e.g., loops have been replaced with 
vectorized calculations.)

Both the scripts depend on a number of packages that 
can be installed via the conda cross-platform command 
line package management tool distributed with Anaconda 
(which is freely available from https:// www. anaco nda. 

(14)
si = sj

ni = nj

}

∀i, j ∈ �rigid,

(15)ni = nj, ∀i, j ∈ �lateral,

Table 4  Boundary conditions: implementation details

aEnergy only dissipated in the presence of limiting normal tension or 
compression at a symmetry boundary

Boundary type Flow rule Internal energy 
dissipation

Additional 
constraint

Free None No No

Rigid/Internal s
i
 and n

i
Yes No

Symmetry n
i Yesa No

Flexible load None No No

Rigid load None No Eq. (14)

Lateral load s
i

Yes Eq. (15)

https://doi.org/10.15131/shef.data.21175060
https://doi.org/10.15131/shef.data.21175060
https://www.anaconda.com/download
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com/ downl oad and also includes a Python development 
environment):

To allow readers to run the example problems, an addi-
tional script, example.py, has been prepared. This 
includes functions to run each of the examples considered 
in this work (Table 5) and to solve all examples considered 
in the paper in sequence, readers can run the following 
command in a terminal:

In addition, to obviate the need to install Python and 
associated packages, the scripts have also been made avail-
able via Google Colab (Bisong 2019), at: https:// colab. 
resea rch. google. com/ drive/ 1qgXh lD2JSC_ pKU_ PF0p3 
kECFi M9gXT Yd. Entering this url in a web browser auto-
matically runs all examples – scroll to the bottom of the 
page to view the text and graphical output generated for 
all problems, which will take a few seconds to appear. This 
link will work for as long as Google Colab services remain 
publicly available.
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