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Abstract: In cancer treatments, many natural and synthetic products have been examined; 
among them, protease inhibitors are promising candidates for anti-cancer agents. Since dysre
gulated proteolytic activities can contribute to tumor development and metastasis, antagonization 
of proteases with tailored inhibitors is an encouraging approach. Although adverse effects of 
early designs of these inhibitors disappeared after the introduction of next-generation agents, 
most of the proposed inhibitors did not pass the early stages of clinical trials due to their 
nonspecific toxicity and lack of pharmacological effects. Therefore, new applications that 
modulate proteases more specifically and serve their programmed way of administration are 
highly appreciated. In this context, nanosized drug delivery systems have attracted much 
attention because preliminary studies have demonstrated that the therapeutic capacity of inhibi
tors has been improved significantly with encapsulated formulation as compared to their free 
forms. Here, we address this issue and discuss the current application and future clinical 
prospects of this potential combination towards targeted protease-based cancer therapy. 
Keywords: proteases, inhibitors, nanoscale drug-delivery system, combination therapy, 
cancer treatment

Plain Language Summary
Proteases include widely distributed enzymes that are crucial for protein homeostasis and regulate 
many cellular processes, such as gene expression, differentiation, immunological defence, migra
tion and cell death. Recent studies have indicated that the balance between production, activation 
and inhibition of proteases is often disturbed in malignant tumors, leading to tumor progression and 
dissemination. Numerous proteases are therefore under investigation for therapeutic purposes and 
their inhibition properties may serve potential for anti-cancer strategies. However, since protease 
inhibitors have mostly been developed in the form of small molecules or peptides, until recently 
their insufficient metabolic stability has remained an obstacle. Consequently, formulating protease 
inhibitors with a nanoparticle-based delivery system offers a new perspective on protease-targeted 
therapies. Protease inhibitors loaded in nanocarriers may provide improved bioavailability, 
increased circulation time and accumulate specifically in the tumoral tissues. This novel concept 
for the administration of protease inhibitors expands their potential in biomedical applications and 
gives the oportunity to achieve more effective treatment.

Proteases and Their Inhibitors
Proteases are a complex of enzymes that hydrolyze peptide bonds and are responsible for 
the breakdown of proteins into their individual components.1 Based on their amino acid 

Correspondence: Magdalena Rudzińska; 
Andrey A Zamyatnin Jr  
Institute of Molecular Medicine, Sechenov 
First Moscow State Medical University, 
Moscow 119991, Russia  
Tel +74956229843  
Email magdda.rudzinska@gmail.com; 
zamyat@belozersky.msu.ru

submit your manuscript | www.dovepress.com Drug Design, Development and Therapy 2021:15 9–20                                                          9

http://doi.org/10.2147/DDDT.S285852 

DovePress © 2021 Rudzińska et al. This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/ 
terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nc/3.0/). By accessing 

the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. 
For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms (https://www.dovepress.com/terms.php).

Drug Design, Development and Therapy                                               Dovepress
open access to scientific and medical research

Open Access Full Text Article

http://orcid.org/0000-0001-9912-2128
http://orcid.org/0000-0002-3857-2317
http://orcid.org/0000-0003-3745-8173
http://orcid.org/0000-0001-5682-8550
mailto:magdda.rudzinska@gmail.com
mailto:zamyat@belozersky.msu.ru
http://www.dovepress.com
https://www.facebook.com/DoveMedicalPress/
https://twitter.com/dovepress
https://www.linkedin.com/company/dove-medical-press
https://www.youtube.com/user/dovepress
http://www.dovepress.com/permissions.php
http://www.dovepress.com


core in the active site and the mechanism of peptide bond 
cleavage, proteases can be classified into six groups: cysteine, 
serine, threonine, glutamic acid, aspartate proteases and 
metalloproteases.1,2 Their control over protein synthesis, turn
over and function enables them to regulate many biological 
processes, such as protein digestion, fertilization, immunolo
gical response, wound healing, cellular growth, differentia
tion, migration and apoptosis.3 Their enhanced activity and 
changes in expression have frequently been connected with 
disease propagation. Therefore, antagonization of these 
enzymes with designed inhibitors is a promising strategy 
against a wide range of protease-associated diseases such as 
parasitic,4 fungal5 and various infectious (eg, malaria,6 human 
immunodeficiency virus [HIV],7 hepatitis,8 herpes9); 
inflammatory,10 respiratory,11 cardiovascular,12 neurodegen
erative disorders13 as well as cancer disease.14

In the context of cancerogenesis, most extracellular 
proteases are involved in various processes associated 
with tumor development and progression by different 
mechanisms. Thus, they can act as the base for membrane 
and matrix degradation, inactivation of natural protease 
inhibitors and chemotherapeutics, cell viability regulation, 
immune response modulation and inflammatory cell 
recruitment.15–18 Moreover, proteases localized within the 
intracellular compartments, including in the cytosol, 
nucleus, membrane and mitochondria are associated with 
many signaling pathways through which they can promote: 
adhesion, proliferation, migration, de-differentiation and 
epithelial to mesenchymal transition of cancer cells.18–20 

The release of proteases into various cellular compartments 
and their altered expression can result from different fac
tors, including the activation of membrane receptors (such 
as the tumor necrosis factor receptor21) or the generation of 
reactive oxygen species.22,23

These diverse tumor-promoting roles of proteases has 
emphasized their potential and drawn much attention to 
them as molecular targets.18,24 The inhibition of (1) matrix 
metalloproteases (MMPs), (2) the serine protease – uroki
nase-type plasminogen activator (uPA) system and (3) 
several cathepsins (Cts): CtsB, L, S, K, Z/X and D have 
all been recognized as promising approaches for anti- 
cancer therapy.2,25

Structural information on proteases and their active 
sites is vital to fit, design and introduce the inhibitor 
molecules to the biological systems. Proteolytic blocking 
of these enzymes by inhibitors can naturally occur through 
two different mechanisms that base on their interaction 
with the target protease: (i) irreversible trapping 

interaction, which initiates by cleaving an internal peptide 
bond in the inhibitor and causes its permanent conforma
tional change (Figure 1A) and (ii) reversible tight-binding 
reactions, which directly bind to the active site of the 
protease1,26,27 (Figure 1B).

Apart from exogenous inhibiting molecules, the activ
ity of proteases is also regulated by interactions with 
endogenous inhibitors. Among them, tissue inhibitors of 
metalloproteinases (TIMPs) are key regulators for target
ing metalloproteases,28 while serpins are directed against 
serine proteases29 and cystatins are predominantly inhibit
ing cysteine proteases.30 However, it is important to note 
that the majority of protease inhibitors may interact with 
more than one type of protease, eg, serpins act with serine 
protease but can also inhibit the cysteine proteases.26

Matrix Metalloproteinase Inhibitors
Two general classes of MMP inhibitors, which consist of 
endogenous (TIMPs) and synthetic agents, are mostly 
non-selective. A group of non-peptidic inhibitors, includ
ing MMI270, prinomastat, marimastat and batimastat was 
designed with a zinc-binding hydroxamate group.31 

Investigations to eliminate the significant limitations of 
early agents and decrease their side effects, low lability 
and specificity prompted the development of less toxic 
and more potent inhibitors.31 The second generation of 
non-hydroxamate MMP inhibitors was designed with dif
ferent peptidomimetic and non-peptidomimetic struc
tures, such as carboxylic acids (tanomastat), thiols 
(rebimastat) and others.31,32 Although the early inhibitors 
were improved, both the hydroxamate and non- 
hydroxamate groups failed to pass the early stages of 
human clinical trials.33 Despite their enhanced inhibitory 
effects, the broad-spectrum synthetic MMP inhibitors did 
not meet the relevant criteria when tested in humans.34 

Moreover, there were several MMP inhibitor limitations 
leading to these failures including, metabolic instability, 
poor oral bioavailability and dose-limiting toxicities. 
Prolonged treatment with broad-spectrum MMP inhibi
tors was associated with unwanted side effects and this 
resulted in the use of lower, often inadequate, MMP 
inhibitor doses in trials.35 After the development of 
more potent selective antibodies, high affinity to MMPs 
was achieved without side effects such as musculoskele
tal syndrome.36 One of the selective antibodies 
Andecaliximab (GS-5745; anti-MMP-9), has undergone 
clinical trials and been approved for its beneficial control 
over tumor growth and metastasis in a colorectal 
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carcinoma model.37 Nevertheless, the potential of anti- 
MMP antibodies has yet to be fully realized, because they 
undergo proteolytic degradation during circulation, limit
ing systemic therapeutic application and synthesizing the 
agent at a reasonable cost is difficult and relatively 
slow.38,39

Importantly, the failure of MMP inhibitor treatments was 
also partly due to the inhibition of MMP anti-targets that are 
critical in host protection.40 It is tightly connected with the 
role of MMPs in the homeostatic regulation of the extracel
lular environment and controlling innate immunity.41 Thus, 
the knock-down of MMPs, such as MMP-3, −8 and −9 
enhanced tumorigenesis and metastasis in some animal mod
els of cancer.42,43 For a promising cancer therapy by MMP 
inhibition, the treatment must be selective against validated 
MMP targets.

Urokinase-Type Plasminogen Activator 
Inhibitors
Flavonoids are a group of secondary plant metabolites 
with a polyphenolic structure, which have been demon
strated to inhibit trypsin-like serine proteases such as 
uPA.44 The natural flavonoid quercetin was found to 

inhibit serine proteases and show anti-metastatic effects 
against a broad range of cancer models such as prostate, 
cervical, lung, breast and colorectal cancers.44,45 Research 
with uPA inhibitors developed based on aryl guanidine, 
aryl amidine or acyl guanidine backbones has shown their 
modest potency and poor selectivity.46 One uPA inhibitor – 
mesupron has been studied in clinical trials and entered 
Phase II, presenting a suppressor effect on breast cancer 
metastasis and reduction of primary tumor growth.47 

However, its specificity is too low due to it targeting the 
S1 pockets, which are highly conserved among the serine 
protease family.48 In contrast, peptide-based inhibitors 
(cyclic peptides) showed higher selectivity for contacting 
multiple other regions outside the S1 pockets.49 Their 
unique structure provided by cyclization makes them 
more resistant to proteolytic degradation and better 
absorbed after oral administration.48,50 Cyclic peptides 
are of considerable interest as uPA modulators because 
they exhibit much higher specificity than small-molecule 
inhibitors.51 For example, a peptide-based uPA inhibitor 
CJ-463 (benzylsulfonyl-D-Ser-Ser-4- amidinobenzyla
mide) with Ki (inhibitory constant) value of 20 nM51 

Figure 1 Protease inhibitor action mechanisms. Left panel: “trapping reaction” – the binding of inhibitor with protease activates the cleavage of an internal peptide bond, 
triggering an irreversible conformational change of the inhibitor; Right panel: “tight-binding interaction” – the reversible interplay of the inhibitor with the active site of 
protease is similar to the enzyme-substrate reaction.27,134
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experimentally demonstrated good anti-tumor efficacy in 
a lung cancer animal mode.51,52

Cathepsin Inhibitors
Cts are expressed as pro-enzymes with inactive form, which 
on cleavage of the pro-domain, are usually dissociated from 
mature enzymes, thereby activating their catalytic function, 
whereas endogenous and exogenous protease inhibitors 
regulate their activities.53 The endogenic inhibitors includ
ing cystatins, thyropins, alpha2-macroglobulin, cytotoxic 
antigen 2β and members of the serpin family protect Cts 
from lysosomes that may be released, but they also possess 
other specialized roles.53 Therefore, misbalanced ratio of 
inhibitor family members to Cts can promote tumor growth, 
invasion and metastasis.18 Exogenous inhibitors can be 
divided into molecules isolated from animals, microorgan
isms, plants and fungi, monoclonal antibodies and small 
synthetic molecules. Among the natural inhibitors, the best- 
known is E-64 (1-[L-N-(trans-epoxysuccinyl)leucyl] 
amino-4-guanidinobutane), a wide-range peptidase inhibi
tor, isolated from Aspergillus japonicus, which serves as the 
base for more specific derivatives.54 Owing to the low cell 
permeability, off-target binding and the irreversible nature 
of inhibition, development has been directed towards cova
lent and non-covalent reversible inhibitors.55 The difference 
is based on the mechanistic approaches to enzyme inactiva
tion. Generally, irreversible covalent inhibitors, perma
nently modify the protein of interest via the formation of 
a stable bond; its an off-rate that is slow relative to the rate 
of re-synthesis of the target protein.52,56 Reversible inhibi
tors bind to the target protein using non-covalent or cova
lent interactions, depending on the binding strength; 
reversible covalent bonds increases the binding affinity to 
proteases by 10–1000 times.57 While both reversible and 
irreversible inhibitors have their pros and cons, there has 
been a tendency to avoid irreversible, covalent inhibitors 
due to the risk of the immune response,58,59 unpredictable 
side effects (such as the generation of allergenic modified 
proteins; haptens), non-specific, irreversible modification of 
off-target proteins; and the difficulty in tracking metabolites 
when covalently bound to proteins.55

Irreversible specific CtsB (CA-074 and CA-03060) and 
CtsL (CLIK-148 and CLIK-19561) inhibitors have been 
developed from the structure of epoxysuccinate derivatives 
using X-ray crystallography and in vivo test results have 
shown that they reduced breast cancer metastasis.62

Oral therapy using the reversible CtsK inhibitor 
(L-235) can protect against tumor-induced osteolytic 
lesions and cortical disruption. The administration of 
L-235 in an experimental model of breast cancer bone 
metastasis reduced skeletal tumor burden.63

Furthermore, several small molecule inhibitors of 
cathepsins have been tested in clinical trials with good 
outcomes observed. Following, a selected anti-CtsS anti
body, Fsn0503, significantly blocked the invasion of dif
ferent tumor cell lines with the most significant result for 
colorectal carcinoma cells (HCT116). Moreover, a better 
anti-tumoral effect of Fsn0503 was shown in vivo where it 
retarded the tumor vascularization.64,65

Future Aims for Protease Inhibitors 
Designing
Most protease inhibitors (eg marimastat, prinomastat, non- 
hydroxamates neovastat, rebimastat, and tanomasta), 
which have been tested in pre-clinical and clinical trials 
for cancer treatments, have failed due to poor outcomes 
and pharmacological effects.33,34,66 Only a few, such as 
proteasome (multicatalytic protease complex) inhibitors: 
bortezomib, carfilzomib, ixazomib and MMPs inhibitor 
(doxycycline) have passed the Food and Drug 
Administration (FDA)-approval process. Using them with 
other therapies, including a combination of proteasome 
inhibitors with DNA-damaging drugs (eg doxorubicin 
and melphalan), has shown promise in the treatment of 
multiple myeloma and demonstrated the potential benefits 
for the development of antitumor therapy.67,68

Taken together, the in-depth exploration of natural inhi
bitors and synthesis of peptidomimetic antagonists, which 
control proteases, has provided many promising approaches 
for cancer studies.46,69 However, therapy with protease inhi
bitor is complicated in practical applications since different 
types of cancers use various proteases at different stages of 
tumor.3 As a result, no single inhibitor can be used on all 
classes of proteases. To develop suitable protease inhibitors 
successfully, the small molecule inhibitors need to be 
designed and tested against dedicated diseases and 
tissue.70,71 In this context, transcriptomic and proteomic 
analyses are crucial to validate inhibitors as specific 
targets.72,73 Additionally, comprehensive molecular experi
ments need to be performed to investigate the cross-talk 
between signal transduction pathways and protease activa
tion cascades,70,74 which will be a base for maximizing their 
specificity and approving their repressor potential in vivo. 
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Moreover, as an artificial class of drugs, protease inhibitors 
need to be designed with proper conformation to provide an 
extended interaction with specific proteases, while at the 
same time avoiding random degradation by the digestive 
tract, in plasma and inside cells.46,75

Furthermore, protease inhibitor delivery can incur pro
blems due to (1) low membrane permeability,59 (2) rapid 
elimination from plasma,76 (3) high first-pass metabolism,77 

(4) very low oral bioavailability,78 (5) fast renal clearance79 

and (5) short in vivo retention times.80 To address these 
obstacles, finally, nanotechnology has been deployed to 
ensure the bioavailability of these inhibitors at the target 
site, thereby rendering improved pharmacokinetic and drug 
performance properties. In recent years, novel nanoparticle 
(NP) formulations such as non-traditional drug distribution 
platforms have been studied extensively for selective target
ing and neutralizing proteases.81–85

Nanosized Drug Delivery Systems
Nanosized drug delivery systems are rapidly being devel
oped in science and medicine where materials (liposomes, 
solid lipid NPs, dendrimers, polymers, silicon or carbon 

materials and magnetic NPs) in the nanoscale (10 nm to < 
1000 nm) are used to serve as a scaffold for both diagnostic 
and therapeutic moieties.86 NP-based drug delivery systems 
enable the encapsulation of a variety of therapeutic agents, 
such as protein-based drugs, nucleic acids, peptides and 
small-molecule inhibitors, thereby increasing their therapeu
tic index and clinical significance (Figure 2).87 Considerable 
efforts have been devoted to improving novel nano-platforms 
toward the development of next-generation NP-based deliv
ery systems.88–91 Among nanomaterials, ultra-small fluores
cent metal gold nanoclusters92 (size < 2 nm) have gained 
increased attention for fluorescence imaging,93–95 

diagnosis96 and cancer therapy.97,98 Protein protected gold 
nanoclusters (GNC) as a dual-functional nanoplatform for 
drug delivery and fluorescence imaging of tumors have 
recently been developed. The GNC were conjugated with 
a reduction-sensitive cisplatin prodrug and then functiona
lized with folic acid target ligand, targeting breast tumors.99 

GNC could efficiently inhibit the growth of the primary 
tumor and suppress the metastasis of cancer cells. Insights 
for designing new GNC-based drug delivery systems are 
reported by Wu and coworkers who developed gold 

Figure 2 Nanostructured drug delivery systems. Schematic representation of the nanocarriers used in smart drug delivery systems showing their structure: size, material, 
shape and surface. A smart drug delivery system uses passive targeting and active targeting. Passive targeting employs the enhanced permeability and retention to locate 
cancer sites. The accumulation rate of nanoparticles (NPs) in a tumor is higher than in healthy tissue due to the leaky endothelium of the tumor vasculature. Furthermore, 
a deficiency of the lymphatic system leads to the retention of NPs in the tumor. Active targeting uses the ligand-receptor interaction to locate cancer cells; drug-loaded NPs 
are conjugated with targeting ligands.135,136
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nanocage/cluster hybrid structures displaying high antitumor 
efficacy owing to the combined actions of epidermal growth 
factor receptor signaling pathway blockage and photothermal 
therapy.100 These have been developed as an all-in-one bio
medical platform with proposed configurations with (i) sig
nificantly improved stability and solubility of treatments, (ii) 
prevention of degradation or premature interactions, (iii) 
improved drug absorption, (iv) targeted delivery of the drug 
to specific tissues, cells or subcellular compartments, (v) 
controlled drug distribution and pharmacokinetics.101,102 

Furthermore, by engineering the NP formulations, more 
properties could be incorporated into the NPs according to 
requirements of disease states, such as multi-drug co- 
administration, programmed drug-delivery or triggered 
drug release, thereby reducing adverse effects of inhibitor/ 
drug combinations to the healthy tissues or organs and 
improving the quality of life for patients.101,102

Consequently, in this context, formulating protease inhi
bitors with nanostructured carriers presents new perspec
tives on protease-targeted cancer therapies. Currently, there 
are several promising studies in this field. The proteasome 
inhibitors, bortezomib- and carfilzomib-loaded different NP 
systems (such as PEGylated lipid micelle, liposomes, gold 
NPs, mesoporous silica NPs) have demonstrated superior 
therapeutic effects such as biocompatibility, higher efficacy, 
increased circulation time and decreased systemic toxicity 
as compared to free drug formulations in breast cancer 
models, non-small cell lung and colon carcinomas.103,104

Combination of Matrix Metalloprotease 
Inhibitors with Nanosized Drug Delivery 
Systems
Wide-range MMP inhibitor (marimastat), loaded into lyso
lipid-containing thermosensitive liposomes (LTSLs), has 
exhibited higher accumulation in tumor tissue accompanied 
by decreased cancer angiogenesis and metastatic potential. 
Compared to saline control, the treatment with marimastat- 
LTSLs of mice-bearing the human breast tumor presented 
a 20-fold decrease in tumor growth and lower metastatic 
potential. Moreover, the MMP-2 and MMP-9 expression 
and activity were remarkably reduced.105 To conclude this 
effect, the encapsulation of active compounds into the 
bilayer of the liposomes facilitates the drug solubilization 
in aqueous media and also provides additional protection 
and control against drug degradation.106

Doxorubicin and Fab fragments (Fab’222–1D8) co- 
conjugated PEGylated liposomes directed against 

membrane type-1 matrix metalloproteinase led to reduced 
tumor growth and side effects, while prolonging the survi
val time of tested mice.107 PEGylated liposomes contain 
a hydrophilic polymer polyethylene glycol (PEG) moiety 
onto the surface of the vesicle.108 Herein the Fab′ frag
ments of antibody were conjugated at a distal end of PEG 
for sterically stabilization of doxorubicin-encapsulating 
liposomes. This modification significantly enhanced the 
cellular uptake of carriers into the HT1080 fibrosarcoma 
cells in comparison with the non-targeted liposomes. 
Systemic in vivo administration of Fab-doxorubicin struc
ture into the tumor-bearing mice showed the notable sup
pression of tumor growth compared to control nanocarriers 
without Fab fragment.

Another strategy, which combines a monoclonal nucleo
some-specific antibody (mAb 2C5) expressed on carcino
genic cells with an MMP-2 cleavable peptide, provided 
additional selectivity for tumor cells and shielded a carried 
cell-penetrating peptide.109 This system represents 
a liposomal nanocarrier in which two-sensitive bond 
between PEG and lipid undergoes cleavage in the tumor 
by the highly expressed extracellular MMP2. The conjugates 
combined with mAb 2C5 allow for the specific targeting of 
tumor cells. Additionally, cell-penetrating peptide triggering 
the enhanced intracellular delivery of the system after long- 
chain PEG removal and exposure. As a result, paclitaxel 
loaded PEG-poly-caprolactone NPs, which formulated with 
cell-penetrating peptides, attached through an MMP-2/9 
cleavable sequence and showed longer survival in mice 
with glioblastoma than in controls.110

Combination of Urokinase-Type 
Plasminogen Activator Inhibitors with 
Nanosized Drug Delivery Systems
The novel formulation strategy, which encapsulated a high 
concentration of arsenic (As) in a stable precipitate with 
nickel acetate, was presented as a treatment that inhibited 
tumor cell growth in an orthotopictriple-negative human 
breast cancer xenograft model.111 However, in further 
experiments, this composition showed a poor pharmacoki
netic profile, including a short plasma half-life and dose- 
limiting toxicity, therefore As2O3 formulation served as 
a solution for these disadvantages.112 To improve the anti- 
tumor properties of arsenic nanobins, then the anti-uPA 
antibody (ATN-291) was conjugated.113 In experiments 
with ovarian cancer cells, uPA-targeted nanobins were 
internalized about four-fold higher when compared with 
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untargeted nanobins. The in vivo treatment with ATN-293- 
As2O3 nanobins decreased 47% of tumor burden in tested 
mice bearing orthotopic ovarian tumors.

Besides, several groups have demonstrated that NPs 
with different scaffolds (like liposomes, iron oxide, or 
gold NPs) conjugate with an inactive amino-terminal frag
ment (ATF) or 11-amino-acid sequence (U11) to target the 
expression of uPA in cancer cells.114–116

Iron oxide nanoparticles conjugated with ATF can 
work as the therapeutic system internalized via endocyto
sis pathway117 and also provide probes for monitoring the 
drug delivery by using MRI.118 Following, it was shown 
that ATF-conjugated iron oxide nanoparticles loaded with 
doxorubicin,118 noscapine119 or gemicitabine120 efficiently 
inhibited the breast, prostate and pancreatic tumor growth, 
respectively. Furthermore, the retained MRI contrasting 
effect making them as useful for the theranostic approach.

In another technique, PEGylated polylactide-based NPs, 
activated by uPA-specific sequence, have been designed to 
hinder nonspecific internalization of cell-penetrating pep
tides (CPP) and improve the therapeutic potential of drug 
treatment with paclitaxel.121 CPPs are a class of peptides 
with the ability to cross the cellular membrane without 
incurring significant cytotoxicity, therefore they became 
a good vectors for carrier systems.122 Due to the ectopic 
expression of uPA in tumor tissues, the uPA specific 
sequence was added to the CPP-conjugated nanoparticles 
and protected them from nonspecific internalization. Next, 
the uPA cleavage allowed the CPP-conjugated nanoparticles 
to internalize. The uPA-activated CPP-conjugated nanopar
ticles loaded with paclitaxel showed greater therapeutic effi
cacy in an in vivo glioma mouse model.121

Combination of Cysteine Cathepsin 
Inhibitors with Nanosized Drug Delivery 
Systems
Encapsulated cystatin into PLGA (Poly(lactic-co-glycolic 
acid)) has been shown to be more stable compared to its 
free form, while strongly absorbed by human breast 
epithelial cell line, MCF-10A neoT and presenting signifi
cantly decreased CtsB activity. The created complex was 
able to pass from cellular membrane to the lysosomal 
compartments that are rich in proteases enzymes after 
five minutes through endocytosis.123 At the other work, 
the same carriers were loaded with cystatin and labeled 
with the monoclonal antibody anty- cytokeratins, which 
are overexpressed in breast tumor cells. This selective 

uptake of tested treatment was presented in co-cultures 
of invasive breast cells, enterocytes (Caco-2) and mono
cytes/macrophages. Additionally, the provided drug deliv
ery system significantly inhibited the proteolytic activity 
and reduced the invasive and metastatic potential of tumor 
cells.124 On the other hand, the broad-spectrum inhibitor 
JPM-565 has been successfully loaded in ~95 nm lipidated 
magnetic nanocarrier (ferri-liposomes) and tested in 
in vivo orthotopic murine models of primary mammary 
cancer (MMTV-PyMT). The results showed that the lipo
some-based application markedly decreased the cysteine 
Cts activity and, consequently, the tumor growth. 
Importantly, these nanocarriers possess contrast properties 
and were able to target the tumoral part and its microen
vironment – stroma cells.125 Next, the lipidated CtsB inhi
bitor (NS-629) was designed to target extracellular CtsB 
exclusively. NS-629 was incorporated through a lipid lin
ker into the preformed sterically stabilized PEG-coated 
nanosized stealth liposomes, thereby forming a lipidated 
nanocarrier capable of specific CtsB targeting (LNC-NS 
-629). Encapsulated doxorubicin in LNC-NS-629 has 
demonstrated a 22-fold improvement in inhibitory activity 
as compared to its free form against mammary tumor 
cells.126

Future Aims for Nanosized Drug 
Delivery Development
Although remarkable efforts have been made in recent 
years toward the development of next-generation NPs to 
improve the pharmacological and therapeutic properties 
of traditional medicine, there are still rate-limiting steps 
that need to be addressed. NP-based targeting systems 
can be subjected to aggregation with their small size 
and large surface area, or be phagocytosed by macro
phages, which may cause cytotoxic effects through their 
intracellular degradation.127 Other important issues, 
including (1) low drug loading capacity,128 (2) lack of 
control during the distribution of carriers,129 (3) lack of 
biocompatibility,130 (4) controlling the interaction with 
biological barriers,131 (5) detecting and monitoring the 
exposure level132 and (6) assessing the impact on the 
environment,133 are also seen as significant drawbacks. 
In this context, novel techniques for developing and 
implementing nano-devices with approved quality and 
severe toxicity are needed. A real therapeutic break
through can be achieved solely by carrying out rigorous 
studies in the field of nano-therapy. As a result of these, 
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nanosized systems combining multifunctional properties 
with pharmacological targets may improve the curative 
effect of antagonist agents and thus contribute to making 
an effective cancer treatment tool.

Conclusions
Conventional chemotherapy uses individual anti-cancer 
agents or combinations for the treatment of tumor cells, 
which intervenes primarily with the macromolecular 
synthesis processes, interfering with DNA synthesis and 
mitosis and leading to the death of proliferating cancer 
cells. However, tumor cells often present challenges to 
chemotherapeutic agents and endow high levels of che
moresistance. Therefore, new therapeutic approaches are 
urgently needed. The protease inhibitors are promising 
candidates for anti-cancer agents. By combining them 
with NP-based delivery systems, they can be exploited as 
a powerful medical tool, which may help to overcome the 
chemoresistance. This novel therapy form may substan
tially improve drug bioavailability, increase circulation 
time and achieve specific accumulation of treatment in 
the tumor tissues. Eventually, the decreased doses will 
protect healthy tissues, reduce side effects and ultimately 
lead to better outcomes and a higher quality of life for 
patients.
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