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Abstract. Non-singular bouncing cosmologies are well-motivated models for the early uni-
verse. Recent observational data are consistent with positive spatial curvature and allow for
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cosmologies have the potential to rectify conceptual shortcomings identified in the theory of
inflation, such as the singularity problem. In this paper we present a classical bouncing model
in the context of modified gravity, including an R2-term in the action. We show that after
the bounce, the universe enters naturally a period of inflation, driven by the R2-term. We
analyse the stability of the model and find that the scalaron assists the stability of the model.
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1 Introduction

Inflation is a well motivated paradigm which makes a number of non-trivial predictions which
have been found to be in agreement with a variety of cosmological observations. In particular
it is in agreement with measurements of anisotropies in the cosmological microwave back-
ground (CMB) radiation [1] and the fact that the universe is spatially nearly flat. Importantly,
it provides a self-consistent causal explanation for the origin of large scale structures (galaxies
& clusters of galaxies) via quantum fluctuations that are stretched to cosmological scales,
providing the seeds for structure formation [2]. Inflation was proposed as a mechanism to
relieve initial condition problems that arose with the original Hot Big Bang model. Despite
curing these initial conditions problems, the theory of inflation still depicts a universe origi-
nating from a singular point [3, 4].1 The idea of replacing the singular origin, the Big Bang,
with a non-singular transition, a bounce, is not a new one and we refer to extensive reviews
on this topics, such as e.g. [5–7]. A model with a single bounce does not necessarily cure the
initial condition (or singularity) problem, but simply pushes the solution back to an earlier
state. Many different types of cosmological bouncing models have been proposed, e.g. using
extra dimensions and branes [8–13], modifications to gravity or the kinetic terms [14–21], or
simply arising as a fundamental starting point in quantum cosmologies [22]. One of the early
attempts at avoiding the initial singularity was presented in [23], by considering a closed
Robertson-Walker geometry. They found that a violation of the energy conditions due to
the quantum effects in their model results in a transition from a Friedmann-like collapse to
a Friedmann-like expansion. However, in their solution the universe will eventually collapse
after completing a cycle, and their model cannot show if quantum effects would always avoid
a gravitational collapse. Many of these models propose an alternative to inflation and aim
to predict the observed anisotropies of the CMB within these alternative scenarios [24–26].
Unfortunately, many alternatives to inflation will suffer from a fine-tuning problem, due to

1Assuming the validity of General Relativity (GR).
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instabilities in the energy components driving the bounce. Nevertheless, these models pro-
vide a starting point to formulate a more complete theory of the universe, e.g. in which the
universe undergoes cycles.

Another potential conceptual weakness of inflation is the somewhat arbitrary initial
conditions to get inflation started [27, 28]. The idea of an emergent universe proposed in [29]
may provide a scenario of a singularity-free inflationary universe. They do not replace the
initial singularity with a bounce, but rather consider a universe that emerges from an Einstein
static state far in the past, such that quantum gravity effects are negligible before entering
the inflationary phase. This idea could, in principle, be used to resolve any issues with an
inflationary induced bounce by pushing the initial singularity to an earlier cosmological time.
This allows for an emergent universe originating from an Einstein static state, transitioning
through a bounce and into an inflationary epoch.

Nevertheless, theories with a non-singular bounce usually require either a violation of
the null-energy condition or non-zero curvature [30, 31]. A number of papers have studied
bouncing cosmologies in the context of scalar-tensor theories, see e.g. [32–34]. The model we
will discuss in this paper relies on the assumption that our universe is spatially closed and
takes its inspiration from [24].2 It relies on a modified gravity theory with a non-minimally
coupled scalar field. The scalar field is assumed to sit in the minimum of an effective potential
initially. Inflation after the bounce is driven by corrections to the Einstein-Hilbert action,
which we assume to be of the form of R + R2 gravity.3 We find that for a large range of
parameter, the scalar field rolls down towards the minimum of an effective potential, thereby
triggering a bounce, while the scalaron is driven up its potential energy, resulting in a period
of Starobinsky-inflation. Our model is very similar to [24], with the addition of the dynamics
of the scalaron field. The main result of our paper is that inflation driven by the R2-terms
happens naturally in such a setup and we provide evidence that the model is stable for a
large region of parameter space.

The paper is organised as follows: in the next section we present the model and derive
the relevant equations of motion. In section 3, we present the initial conditions for the fields,
discuss the dynamics of the bounce and the period of inflation afterwards. In section 4 we
discuss the evolution of cosmological perturbations. The equations for the field and metric
perturbations are studied numerically. Our conclusions can be found in section 5.

2 The model

We assume a closed, isotropic and homogeneous background described by the Friedmann-
Robertson-Lemaitre-Walker (FRLW) metric

ds2 = −dt2 + a(t)2

[

dr2

1 −Kr2
+ r2

(

dθ2 + sin2 θdφ2
)

]

, (2.1)

with K > 0. Our theory is an extension of Starobinsky’s R2 model [40] with an additional
scalar field non-minimally coupled to gravity,

S =
∫

d4x
√−g

[

1

2

(

M2
Pl − αφ2

)

R+
1

2
AR2 − 1

2
(∇φ)2 − V (φ)

]

. (2.2)

2Recent analyses of Planck data are consistent with a small positive curvature [1, 35–37]. In our model
the spatial curvature at the present can indeed be very close to zero.

3Bouncing cosmologies in these type of modified gravity theories have been discussed in [38, 39].

– 2 –



J
C
A
P
0
6
(
2
0
2
3
)
0
3
0

Here α and A are constants parameterising the coupling of the scalar field to GR and the
modification of Starobinsky’s term respectively. We follow [24] and choose the potential to
be of the form

V =
m2

2
φ2 +

β

3
φ3 +

λ

4
φ4. (2.3)

We map the action (2.2) to a bi-scalar-tensor theory by defining f(φ,R) = 1
2

(

M2
Pl − αφ2

)

R+
1
2AR

2. Our additional scalar degree of freedom is then defined in the standard way setting
ψ = ∂f/∂R ≡ fR. This allows us to write the Ricci scalar and the function f(R,φ) in terms
of the two fields as

R =
1

A

(

ψ − M2
Pl − αφ2

2

)

, f = ψR−

[

ψ − 1
2(M2

Pl − αφ2)
]2

2A
. (2.4)

The field equations are obtained from the action by taking the variation with respect
to the metric. We obtain

ψRµν − fgµν
2

− (∇µ∇ν − gµν�)ψ = T (φ)
µν . (2.5)

Taking the trace of the last equation and making use of equations (2.4) we determine the
evolution equation for ψ,

�ψ =
1

3

[

M2
Pl − αφ2

2A

(

ψ − 1

2
(M2

Pl − αφ2)
)

+ T

]

, (2.6)

where T is the trace of the energy momentum tenor of the φ field. In a closed FRLW
spacetime, the equations of motions for the fields ψ and φ read

ψ̈ + 3Hψ̇ =
1

3

[

M2
Pl − αφ2

2A

(

1

2
(M2

Pl − αφ2) − ψ

)

+ (ρ− 3P )

]

(2.7)

φ̈+ 3Hφ̇ = −Vφ − αφR. (2.8)

The Friedmann equations are given by

H2 +
K

a2
=
ψR− f

6ψ
+

ρ

3ψ
−H

ψ̇

ψ
, (2.9)

Ḣ − K

a2
=
Hψ̇

2ψ
− ψ̈

2ψ
− (ρ+ P )

2ψ
, (2.10)

Ḣ =
R

6
− 2H2 − K

a2
. (2.11)

In what follows, we will study a bouncing cosmological scenario, which is an extension of
the model presented in [24]. We aim to use the bounce to set the initial conditions for a
subsequent inflationary epoch, driven by the R2 term.

3 Bounce dynamics

In what follows, we will be working in the Jordan frame to analyse the cosmological dynamics.
An analysis in the Einstein frame is also possible, but we will refrain here from analysing the

– 3 –
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Figure 1. The potential eq. (2.3) for φ, as studied in [24]. The initial conditions of our scalar field
will be determined by the location of the local minimum given by the choice of parameters of the
potential. The parameters for this potential are m = 10−6MPl, β = −

√
4.4λm and λ = 10−12.

dynamics in that frame. Given the potential (2.3), we utilise the picture set forth by [24]:
pre-bounce we assume a slowly contracting universe dominated by dark energy. During this
time, φ has settled in the false vacuum, thereby providing initial conditions for our fields.
The location of the false vacuum is given by the effective potential for φ. From (2.8) we find
extrema located at φ = 0 (the true vacuum) and at

φ± =
−β ±

√

β2 − 4λ(m2 + αR)

2λ
. (3.1)

The negative solution corresponds to the local maximum shown in figure 1 and the
plus solution is the semi-stable local minimum. To ensure that we have a local minimum,
we require β2 > 4λm2. Furthermore, we assume that the potential is positive at φ− which
constrains β2 < 4.5λm2. It is worth noting that a deeper local minimum corresponds to a
larger β2.

Before the bounce, the field has settled at the initial value φi = φ+. For t → −∞, R will
be very small compared to the mass of the field by considering a slowly contracting universe,
allowing us to disregard R in (3.1).

In order to guarantee that the value of R is initially negligible, we set the parameter A
to be large4 compared to the fields, as seen in eq. (2.4).

Since R is initially negligible by forcing A we place φ at the local minimum, we will also
assume the scaleron is initially at rest. We obtain from eq. (2.7)

ψmin(φ) =
8AV (φi)

M2
Pl − αφ2

i

+
1

2
(M2

Pl − αφ2
i ), (3.2)

where we will set the initial value of the scaleron such that ψi = ψmin(φi).
If φ evolves very slowly, we can immediately see that ψ will track φ. It is also clear

that we cannot allow αφ2 = M2
Pl, otherwise the scaleron will be unbounded. This identifies

4It is worth noting A has units of [mass]−1/2, and in standard Starobinsky inflation, M2
Pl ≫ A−1.
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a constraint on our model. Without loss of generality we assume a natural range for φ up to
O(10 MPl). Therefore we set α = 10−3 throughout this paper, unless stated otherwise.

Using the initial conditions provided above, we find

V (φi) ≈ O(m4) (3.3)

R ≈ 8V

M2
Pl − αφ2

≈ O

(

m4

M2
Pl

)

(3.4)

H2 ≈ V

3(M2
Pl − αφ2)

≈ O

(

m4

M2
Pl

)

(3.5)

Ḣ ≈ 0 (3.6)

Approaching the bounce. In [24] it was argued that the field φ does not need to be
fine tuned to allow a stable solution in the past for this given potential. This was shown by
performing an adiabatic shift to first order around V (φi)):

φ(t) ≈ φi +
φ̇i
ω
e−

3H(t−ti)

2 sin
(

ω(t− ti)

2

)

, (3.7)

where

ω =

√

φi
(β2 − 4λm2)1/2

λ
−H2. (3.8)

Initially, H is constant (and negative), such that Ḣ ≈ 0. Using this assumption as well as
equations (2.11) and (3.1), we can approximate

φ̇i =
Ṙ

β
√

1 − 4λm2

β2

= −12
αHK

a2β
√

1 − 4λm2

β2

(3.9)

Combining this with the adiabatic shift, φ initially behaves as,

φ ≈ φi + 12
α|H|K
ω̄

e
−|H|(t−ti)

2 sin
(

ω(t− ti)

2

)

, (3.10)

where

ω̄ =

√

φi
(β2 − 4λm2)

λ
−H2(β2 − 4λm2)1/2, (3.11)

and we have used the fact that H is a constant.
It is clear that φ → φi as t → −∞. On the other hand we see that a small perturbation

away from the minimum will eventually become important due to the anti-Hubble damping
term, and is dependent on both H and ω̄, both of which are given by the parameters of the
model. This hints that φ determines the dynamics of the bounce irrespective of ψ, assuming
R is set to be negligible at times well before the bounce. We can show this more explicitly by
considering the dynamics approaching the bounce. The beginning and ending of the bouncing
epoch is when the universe switches from an accelerated to a decelerated contraction phase,
or vise versa, characterised by Ḣ = 0, leading to

K

a2
= −Hψ̇

2ψ
+

ψ̈

2ψ
+

(ρ+ P )

2ψ
. (3.12)

– 5 –
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This corresponds to H reaching its extreme value Hmin/max,

H2
min/max =

ψR− f

6ψ
− (ρ+ 3P )

6ψ
+

|H|ψ̇
2ψ

+
ψ̈

2ψ
. (3.13)

At beginning of the bouncing epoch we have that H ≈ Hmin. If we assume that the fields are
well behaved and they do not rapidly diverge in the collapsing epoch to avoid the singularity
(ψ̈, φ̈ < Hψ̇, Hφ̇), we can assume the scaleron will simply trace φ according to (3.2). This
allows us to determine the Hubble parameter at the beginning of the bouncing epoch,

H2
min ≈ 2V

3M2
Pl

+
V − φ̇2

3ψ(φ)
+

φ̇2

54ψ(φ)
. (3.14)

Here we have made use of the assumed the hierarchy ψi > M2
Pl ≫ αφ2

i to allow for inflation,
explained in section 3.2. It is clear from (3.14) that the dynamics before the bounce is
determined by φ.

The scalar field φ will be displaced from the local minimum at some point during the
collapsing phase, e.g. because of the presence of (small) perturbations. Perturbations will
force the field value to slowly grow; however this generally happens very slowly and leads
to two scenarios: either the fields remain being trapped in their local minima, expressed
in figure 2, or the fields escape their minima, a scenario that can be seen in figure 3. The
coupling of φ to the Ricci scalar introduces a time-varying effective potential, which can be
controlled by α, and lead to the local minimum to vanish. The φ-field will roll towards the
global minimum at φ = 0. This is the scenario discussed in [24]. The inclusion of an additional
degree of freedom here (the scalaron) allows R to grow sufficiently, but not to the extent that
the local minimum vanishes. Further below we discuss the different outcomes, the trapped
φ-field and the scenario where the potential is shallower, allowing the φ-field to roll to 0.

3.1 Numerical analysis

We perform a numerically analysis to determine the evolution of the fields and the evolution
of the universe. To this end, we integrate the field equations eqs. (2.7), (2.8), (2.9) and (2.11),
with initial conditions given by eqs. (3.1) and (3.2) and with both fields starting at rest. Due
to the long time of integration, the time has been re-scaled by m/MPl. For ease we also plot
the e-fold, defined as N = log(a) normalised at the time of the bounce, to illustrate the transi-
tion. We have checked the validity of our numerical solutions by ensuring that the conditions
for a bounce have been met (see section A for details) and verified that the Ricci scalar

R = 6
(

Ḣ + 2H2 +
K

a2

)

is in agreement with eq. (2.4). From our analysis we establish three possible outcomes on how
the universe can evolve in this scenario. These outcomes are controlled by a choice of param-
eters that determine the evolution of φ and correspondingly the Ricci scalar at the bounce.

• φ ≈ 0 at or near the bounce. The field φ is able to escape the false vacuum before the
bounce and rolls towards the true minimum. This scenario can be obtained by forcing
the evolution of R such that R ≥ Rcrit, at which point the local minimum cease to
exist and the field φ starts to evolve. This was explored by [24] for a single field, where
they were able to avoid the singularity by forcing the local minimum to be very close

– 6 –
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to the global minimum. Another way to allow the scalar field to freely oscillate is to
construct the potential to have a very shallow and small barrier. This allows for the
anti-friction term in (2.8) to be the initial dominating term removing any oscillations.
Unless severely fine tuned, the fields in this scenario will exhibit the standard divergent
nature of bouncing mechanisms quickly leading to a singularity [30, 41]. Therefore, we
do not explore this scenario further.

• φ ≈ φi at bounce. The field φ is never significantly displaced from φi the fields will
remain trapped in their false vacuum state andR never reaches Rcrit and does not evolve
sufficiently to alter the potential. Therefore after the bounce φ, ψ, and consequently
R will settle back in their initial conditions. This scenario is depicted in figure 2,
clearly showing a return to initial conditions after the bounce. This then leads to an
eternal inflation scenario with the dark energy of the previous universe continuing to
dominate. This can be due to either parameter choices creating a very steep and deep
false vacuum, trapping the field through the bouncing epoch. Another reason is the
chosen parameters do not allow R to vary. R can be set to have a minimal evolution
through a parameter choice, such as setting the scalaron mass very high or reducing
the coupling between φ and gravity. In both cases the field only undergoes minor
oscillations as the spatial curvature dominates. This means that the effective potential
remains unchanged (V,φ ≫ αφR). The velocity term never dominates the right hand
side of (2.7), hence ψ ≈ ψmin, tracing the φ field. This creates a symmetric bounce as
illustrated in figure 2 as the scaleron is determined completely by the evolution of φ.
Since we end up in an eternally inflating universe, we focus our attention to scenarios
with a bounce resulting in standard inflation.

• 0 < φ . φ− at the bounce. In the final scenario, the Ricci scalar can evolve sufficiently
such that φ is displaced but the false vacuum is not removed (i.e. the value of the Ricci
scalar remains below Rcrit). In this case, φ exhibits growing oscillations due to the fact
that the effective potential changes its form, eventually allowing the field to leave the
local minimum before or as the bounce occurs, but remaining displaced from the global
minimum at the time of the bounce, shown in figure 3. The change of the potential is
provides φ with enough kinetic energy to overcome the barrier (|H|φ̇2 > V (φ−)). In this
scenario, the period of inflation following the bounce is initially driven by both fields.
The field φ will always settle at the origin before ψ resulting in a period of standard
single field inflation driven by ψ, the behaviour of which can be seen in figure 3. This
epoch of inflation can then be constructed to last much longer than 60 e-folds. Our
choice of parameters forces the φ-field to settle immediately, resulting in an almost
entirely single field inflation. We present more details in section 3.2.

We assume the fields to be in a slow rolling regime (φ̈, ψ̈ ≪ Hφ̇,Hψ̇) corresponding to
the fields evolving slowly and φ gradually escaping the false vacuum. We can then approxi-
mate, using eq. (2.7),

3Hψ̇ ≃ M2
Pl(

1
2M

2
Pl − ψ)

6A
− φ̇2 + 4V

3
(3.15)

Given that we are motivated to find inflation after the bounce, we set the parameters such
that ψi > 2M2

Pl. Therefore in a collapsing universe, we see that ψ is driven up its effective

– 7 –



J
C
A
P
0
6
(
2
0
2
3
)
0
3
0

Figure 2. Behaviour of the fields whilst the fields are trapped in the false vacuum. We see that
the field behave initially as expected in a collapsing universe, oscillating around their local minimum
growing in amplitude. The bounce is then caused when the spatial curvature dominates, switching to
a expanding universe and the fields become damped. The parameters used are m = 10−6MPl, β =
−

√
4.49λm, λ = 10−12, α = 10−3, V0 = 0, A = 1012, a = 102,K = m2 which in turn determine the

initial conditions, φi and ψi.

potential to larger values because its time-derivative is given by

ψ̇c ≃
M2

Plψ

A + 2φ̇2 + 8V

18|Hc|
> 0, (3.16)

due to the fact the right hand side will remain positive. Therefore, while φ is driven towards
zero, the potential energy of ψ will become more relevant at time progresses. Hence, we arrive
at a situation in which the bounce naturally produces the initial conditions for inflation,
driven by the ψ-field. This period of inflation begins when H reaches its maximum value.
We can use (3.14) to determine the value of ψ when inflation begins. For simplicity we
assume that Hmin is reached when φ = φ− and the potential is dominating (3.14). Therefore,
we can equate H2

min = H2
max,

2V (φ−)

3M2
Pl

=
ψR− f

6ψ
− Hψ̇

ψ
(3.17)

using (2.7) and the definition of f this results in

ψinf =
4AV (φ−)

3M2
Pl

− M2
Pl

18
, (3.18)

where the subscript inf denotes the start of inflation. This calculation relies on the assump-
tion of a symmetrical bounce. Due to the presence of the coupling of φ to the Ricci scalar

– 8 –
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Figure 3. The dynamics of the fields provided they are able to leave the local minimum but the
potential has not been sufficiently warped by the evolution of R. Although not realistic for our
current universe, it illustrates the dynamics that creates slow-roll inflation desired. As the bounce
occurs and φ escapes the local minimum, ψ is driven up its potential. The parameters used are
m = 10−5MPl, β = −

√
4.49λm, λ = 10−12, α = 10−3, V0 = 0, A = 1012, and K = m2 which in turn

determine the initial conditions, φi and ψi.

as well as the scalaron, the bounce will not be symmetrical. However, given our choice of
parameters, we have numerically verified that the scaleron plays a very minor role during the
bounce. Therefore, the approximation H2

min ≈ H2
max is reasonable to find an approximation

for ψinf . Nevertheless, the scenario in which H2
max > H2

min is more realistic. In this case the
ψinf will be smaller, resulting in a shorter period of inflation. If H2

min > H2
max, ψinf is larger,

resulting in a longer period of inflation.

3.2 Resulting inflation

As stated before, in the scenario in which φ settles at 0 after the bounce, inflation is driven by
the scalaron, with initial conditions provided at the end of the bouncing epoch. The slow-roll
parameter becomes

ǫv =
M2

Pl

8ψ2





M2
Pl

2 − ψ

M2
Pl − ψ





2

. (3.19)

Setting ǫv = 1 we can determine the end of inflation occurs when ψ = 2M2
Pl. Therefore

we require to have ψi > 2M2
Pl at the beginning of that period. Integrating our slow roll

parameter allows us to determine the initial conditions of inflation for ψ to achieve at least
60 e-folds of inflation.

N =
∫ ψ

2M2
Pl

√

2

MPlǫv
(3.20)

– 9 –
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Figure 4. The evolution of the fields during inflation, using the same parameters as in figure 3. We
are using the e-fold number (measured after the bounce) as time variable in these figures.

Using the same parameters as in figure 3, we find that ψinf > 16M2
Pl to provide at least 60

e-folds of inflation driven by ψ. We can then use this value and eq. (3.18) to constrain the
potential and the initial conditions of φ. We leave the detailed analysis for future work. In
figure 4 we show the evolution of the fields during inflation.

4 Cosmological perturbations

We now turn our attention to determining whether our model exhibits instabilities. We do
this by considering the evolution of cosmological perturbations at linear order, decomposing
into scalar, vector and tesnor perturbations. In this section we set MPl = 1, unless stated
otherwise.

Focusing on the scalar branch, working in the longitudinal gauge, the metric at first
order scalar perturbation is [42]5

ds2
(s) = −(1 + 2Φ)dt2 + a2(1 − 2Ψ)γijdx

idxj , (4.1)

where Φ and Ψ are metric perturbations and γij is the metric on constant time hypersurfaces.
The gauge invariant formalism for modified gravity is detailed in e.g. [44–46] and references

5The scalar perturbations can also be derived using the variational approach as illustrated in [43].
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therein. The perturbed Einstein equation reads6 [47]

3H
(

Ψ̇ +HΦ
)

+
k2 − 3K

a2
Ψ = −δρ, (4.2)

Ψ̇ +HΦ = −δq, (4.3)

3
(

Ψ̈ + ḢΦ −HΦ̇
)

+ 6H
(

Ψ̇ +HΦ
)

+ Φ

(

3Ḣ − k2

a2

)

= −δX, . (4.4)

Ψ − Φ =
δψ

ψ
, (4.5)

where we have defined

δρ =
1

2ψ

[

3ψ̇
(

Ψ̇ +HΦ
)

−
(

φ̇2 + 3V
)

Φ − 3H ˙δψ + ˙δφφ̇ (4.6)

+δψ

(

3Ḣ − k2

a2
+ 3H2

)

+ δφ

(

Vφ − fφ
2

)

]

, (4.7)

δq =
˙δψ + δφφ̇−Hδψ − ψ̇Φ

2ψ
, (4.8)

δX =
1

2ψ

[

3ψ̇Φ̇ + 3
(

Ψ̇ +HΦ
)

ψ̇ + Φ
(

6ψ̈ + 3Hψ̇ + 4φ̇2
)

+δψ

(

6K − k2

a2
+ 6H

)

− δφ (fφ − 2Vφ) − 3H ˙δψ − 3δ̈ψ − 4 ˙δφφ̇

]

. (4.9)

The perturbed Klein-Gordon equations read,

δ̈ψ + 3H ˙δψ −
(

R

3
− k2

a2

)

δψ +
1

3
(2fφ − 4Vφ) δφ+

1

3
ψδR+

2

3
˙δφφ̇ (4.10)

= ψ̇
(

Φ̇ + 3HΦ + 3Ψ̇
)

+ Φ
(

2ψ̈ + 3Hψ̇ +
2

3
φ̇2
)

,

δ̈φ+ 3Hδφ̇+

(

k2

a2
− fφφ + 2Vφφ

)

δφ− 1

2
δRψφ (4.11)

= Φ̇φ̇+ Φ
(

3Hφ̇+ 2φ̈
)

+ 3
(

HΦ + Ψ̇
)

φ̇,

where δR is the perturbation of (2.4),

δR =
δψ + αφδφ

A
. (4.12)

As usual, we define the standard full comoving curvature perturbation as

R = Ψ − H

ρ+ P
δq, (4.13)

where δq is the field momentum perturbation. In the longitudinal gauge this can be written
in the nice form

R = Ψ − H

Ḣ

(

Ψ̇ +HΦ
)

= Ψ +
H

Ḣ

(

˙δψ + δφφ̇−Hδψ − ψ̇Φ

2ψ

)

. (4.14)

6Often in the literature in modified gravity the above equations will have a replacement of ψ → F [47].
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In a closed universe the wave-number will correspond to the eigenfunctions of the
Laplace-Beltrami operator on spatial sections [48, 49], given by

k2

a2
= n(n+ 2)

K

a2
, (4.15)

where n > 2 is an integer eigenvalue.7

To further analyse the evolution of the perturbations we can combine the perturbed
Einstein equations and the equations of motion (4.2)–(4.11) into two second order differential
equations. This is achieved by using the relation (4.5) and (4.7)–(4.8) to remove Φ, Φ̇, δφ̇ and
δφ respectively. Assuming that fRR 6= 0, this results in two coupled second order equations,

δψ̈ +

[

5H +
ψ̇

ψ
+

(2Vφ − fφ)

φ̇

]

δψ̇ (4.16)

−
[

2(2Ḣ +H2) +
(3ψH − ψ̇)(2Vφ − fφ)

ψφ̇
− 10Hψ̇

ψ
− 2ψ̈

ψ
+
ψ̇2

ψ2
+

1

3

k2

a2

]

δψ

= ψ

[

4H − 6
(2Vφ − fφ)

φ̇
+ 6

ψ̇

ψ

]

Ψ̇

+ 2ψ

[

H2 +

(

ψ̇

6ψ
−H

)

(2Vφ − fφ)

φ̇
+

2

3

(k2 − 3K)

a2
+ 5H

ψ̇

ψ
+
ψ̈

ψ

]

Ψ

Ψ̈ + 5HΨ̇ +

[

2(2Ḣ +H2) +
1

3

k2 − 2K

a2

]

Ψ (4.17)

=
H

ψ
δψ̇ +

2(2H ′ +H2) −H ψ̇
ψ + 1

3
(2k2−3K)

a2

ψ
δψ

However, the scaleron can aid in the stability of Ψ. Grouping common terms in (4.17),
we see that within each term there is a counteracting effect between δψ and Ψ: ,

Ψ̈ = −
(

δψ̇

ψ
− ψ̇

ψ

δψ

ψ
− 5Ψ̇

)

|H| − 2
(

2Ḣ +H2
)

(

Ψ − δψ

ψ

)

− K

3a2

[

(n(n+ 2) − 2) Ψ − (2n(n+ 2) − 3)
δψ

ψ

]

. (4.18)

From eq. (4.5) we expect the two perturbations δψ/ψ and Ψ to have similar magnitudes which
is also supported by our numerical results shown in figures 5 and 6. In the last equation,
terms containing δψ/ψ and Ψ have opposite signs, which implies an counteracting effect,
reducing possible divergent behaviour during a collapse in this specific R2 theory.

As discussed further below, for small values of n, our numerical calculations show that
last two terms will remain negative during the collapse and bouncing epoch. However, the
bracket in the first term will remain overall positive during the collapse and bounce, acting
as a source term which can lead to an instability. This instability is not present in our
simulations, due to the fact that δψ̇ increases slower than δψ.

7n = 0 is the homogeneous background and n = 1 is a gauge choice, so we limit ourselves to n ≥ 2 [50].
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Figure 5. A plot demonstrating the effects of varying k. We see that the perturbations stabilise at
and tend towards zero as the fields settle back to their initial values. There seems to be no substantial
difference in varying the value of n. These plots used the same parameter and initial conditions for
the background fields as figure 2.

Figure 6. A plot demonstrating the effects of varying k. We see that as δφ → 0, δψ stabilises at
some constant non-zero value. For k2 ≫ K we see that the system is more bounded, with rapid
oscillations through the bounce but ultimately tending towards a zero value. These plots used the
same parameter and initial conditions for the background fields as figure 3.
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Figure 7. A contour plot illustrating the effect of initial conditions on the perturbations. It is clear
there is a large range of initial conditions that lead to stable dynamics. The red line indicates the
de-Sitter initial value, δφi = (H/2π) corresponding to a given δψi via eq. (3.2).

4.1 Numerical analysis

The equations just presented are difficult to solve analytically and we therefore resort to a
numerical analysis. We numerically integrate eqs. (4.3), (4.8), (4.10) and (4.11), together
with (4.5) to remove Φ and Φ̇. This also allows us to calculate R from (4.14). We use the
following initial conditions, unless stated otherwise: δφi = H/(2π), δφ̇i = Ḣ/(2π), δψi =
α(8AV (φi)−1)φiδφi, δψ̇i = α(8AV (φi)−1)φiδφ̇i from (3.2), and setting Ψ̇ = 0. The metric
perturbation Ψ is then given by (4.3).8 We explore a range of wave-numbers by varying n by
orders of magnitude shown in figure 5 and figure 6. It is clear that the perturbations increase
in amplitude towards the bounce, as expected, but always remain finite. Furthermore the
perturbations behave as expected once the inflation regime begins, they settle to a constant
value while stretched to superhorizon scales. We analyse the following two scenarios:

• φ ≈ φi at the bounce. This is the case resulting in eternal inflation after the bounce with
the resulting numerical perturbations shown in figure 5. As expected the perturbations
remain very well behaved, with a slight growth similar to the background field values
during the bounce, but ultimately stabilising to zero. A noticeable feature is that a
much larger wave number is required to have a noticeable effect, unlike the case for
finite inflation shown in figure 6. This is due to the φ-field dominating the dynamics,
and has been set to have a lower mass than in the finite inflation case.

• 0 < φ . φ− at the bounce. For the scenario which results in finite inflation after the
bounce, expressed in 6. The wavelength has a prominent effect on the perturbations.

8It we were to set the time derivatives to zero, this would result in a slower growth of the perturbations,
resulting in a more stable solution.
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Larger wavelengths exhibit a larger growth than perturbations on smaller wavelengths,
which is then carried through to the inflationary epoch.

The initial conditions determine the evolution of the perturbations and accordingly
whether instabilities are present. We therefore study the stability of the model by changing
the initial conditions of the perturbations. Due to the fact φ-field in the finite inflation
scenario will always tend towards zero, we only need to analyse the behaviour of the scaleron.
This has been numerically verified and is clear from figure 6. If an instability is present, it will
manifest a growth in δψ. The results are shown in figure 7. As expected there is a stronger
effect of varying the initial condition of δψ. However, an interesting feature is that δφ has a
noticeable effect on δψ. This is a result we have already seen in the background: the scaleron
tracking the φ-field. Forcing a larger growth in δφ we also force a larger growth in δψ.

4.1.1 Vector and tensor perturbations

We briefly discuss the behaviour of vector and tensor perturbations. Let us focus on the
vector perturbations first. The vector part of the metric perturbation reads [51, 52]

ds2
(v) = −dt2 + 2aSidtdx

i +
(

a2γij + 2a2∂jFi
)

dxidxj . (4.19)

We can define the gauge independent vector shear σi = Ḟi + Si/a. The field equations for
the vector degrees of freedom read

δq̇i + 3Hδqi =
k2 − 2K

a2
δΠi (4.20)

k2 − 2K

2a2
σi =

δqi
ψ
, (4.21)

where, δΠij = ∂(iΠj) is the vector part of the anisotropic stress and δqi is the momentum
density perturbation. Interestingly only one equation is modified by the additional degree of
freedom [47]. Assuming that the anisotropic stress vanishes, we can solve the first equation
above to give

δqi = δq
(ini)
i

(

aini

a

)3

,

where the subscript ‘ini’ denotes the initial values for the scale factor and δqi. The second
equation above leads then to

(

k2 − 2K
)

σi = δq
(ini)
i

a3
ini

a

2

ψ
.

As it can be seen from these solutions, the vector perturbations remain small during the col-

lapsing phase as long as the initial amplitude δq(ini)
i is small. The scalaron ψ shows an almost

exponential behaviour, while a behaves closer to a quadratic centred around the bounce, thus
we expect the quantity (aψ)−1 to peak around the bounce. Numerically we see a growth of
two orders of magnitude. After the bounce, the expansion of the universe will cause the
vector perturbations to become subdominant, decaying with the expansion of the universe.

Finally we examine the evolution of tensor perturbations hij , defined by

ds2
(T ) = −dt2 + a2 (γij + hij) dx

idxj . (4.22)
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Figure 8. Here we see the amplitude growth of tensor perturbations governed by eq. (4.23) for a
range of wavelengths. The parameters used are the same for figure 7, with initial perturbation chosen
to be hi = 10−5.

In the context of modified gravity and in a closed universe, the gravitational wave equation
reads

ḧ+

(

3H +
ψ̇

ψ

)

ḣ+

(

k2 + 2K

a2

)

h = 0, (4.23)

where h is the amplitude of the two polarisation sates, hij = he
(+,×)
ij . Provided the scale

factor does not vanish, we see that the amplitude will remain finite as illustrated in figure 8.
Moreover, the addition of modified gravity reduces the growth of h during the collapse, as
ψ̇/ψ counteracts the Hubble term. We therefore conclude that the tensor modes remain small.

5 Conclusions

We studied a classical bouncing universe with a transition into an inflationary phase, using
a generalised Starobinsky f(R) model. In order to achieve the bounce without violating
the null energy condition, our model assumes a spatially closed universe. Our work builds
upon the work conducted by [24] to address the initial conditions leading to a bounce: we
considered a collapsing universe, dominated by dark energy. The field responsible for dark
energy sits in a false vacuum up until about the time the bounce happens. It then settles at
the true minimum of the effective potential. Our approach to this model purposefully allows
the method to be further generalised for other f(R,φ) models with false vacuum potentials.
In our work the scalaron is responsible for driving a period of inflation after the bounce,
which occurs naturally in our setup. The scaleron obtains a kick from φ during the bounce,
driving it up its effective potential, but remaining almost dormant before and during the
bounce. Thus, the interaction between the dark energy field and the scalaron leads naturally
to an inflationary epoch after the bounce. Moreover, the inclusion of an additional degree of
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freedom does not lead to an avoidance of the bounce and we find evidence that the scalaron
assist stability of the model, as discussed in section 4.

In future work, further details regarding the perturbations will be explored. This in-
cludes constraining the model, e.g. calculating the power spectra of perturbations generated
before and during inflation. It would be interesting to investigate the features in the pri-
mordial power spectra arising the non-standard dynamics before inflation. It will also be
interesting to extend the model to study a cyclic cosmology. We address these questions in
future work.
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A Bounce conditions

In this appendix we briefly discuss the conditions for the bounce and the implications for our
model. The necessary conditions for a bounce are (see: [53])

H(tb) = 0, Ḣ(tb) > 0, ρ+ 3p < 0.

If we assume a barotropic fluid of the form p = wρ, the violation of the strong energy
condition constrains the equation of state to wb < −1/3. An obvious quantity we can check
at the bounce by imposing the first two bounce conditions above is (using eq. (2.11))

ψb +
α

2
φ2
b >

6AK

a2
b

+
M2

Pl

2
. (A.1)

This equation is fulfilled using the values in figure 2. The “slow-roll” parameter ǫ = −Ḣ/H2

is related to the equation of state via

ǫ =
3

2
(1 + w) . (A.2)

The condition on ǫ at the bounce is ǫb < 1.
Using eqs. (2.9)–(2.11) and the bounce conditions above, we find the expression for ǫb:

ǫb =
3

2

(

ρb + pb
ρb

)

=
3A(4Kψb − a2

b ψ̈b − a2
bRbψb)

2AKψb + 1
6a

2
b

[

1
2(M2

Pl − αφ2
b) − ψb

]2 < 1
(A.3)
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