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Target Localization Based on Distributed Array

Networks with Magnitude-Only Measurements
Zhengyu Wan, Wei Liu and Peter Willett

Abstract—The source localization problem based on dis-
tributed array networks is formulated into a group sparsity based
phase retrieval problem where only the magnitude of received
signals is available. Under such a framework, a two-dimensional
(2D) localization method is proposed, where unlike traditional
methods, random phase errors at array sensors will not affect
estimation results. In addition, to deal with the off-grid problem
for sparsity based solutions, a model for off-grid bias is proposed
and an efficient two-step method is developed accordingly to
solve the 2-D off-grid problem. Simulation results show that the
proposed solutions can solve the problem effectively.

Index Terms—Distributed array networks, localization,
magnitude-only measurements, group sparsity, off-grid.

I. INTRODUCTION

Target or source localization is a very important problem in

sensor array signal processing and many methods have been

proposed such as those based on received signal strength (RSS)

[1], [2], time of arrival (TOA) [3], time difference of arrival

(TDOA) [4]–[6], direct position determination (DPD) [7], [8]

and angle of arrival (AOA) [9], [10].

For AOA based methods, a structure with multiple sensor ar-

rays distributed in a two-dimensional (2-D) space is employed,

where synchronization among all distributed sensor arrays is

not required. There are normally two steps: the first is applying

existing direction of arrival (DOA) estimation methods such as

those proposed in [11]–[13] to estimate AOAs at all distributed

sensor arrays, while the second is to find intersections of

those estimated AOAs in order to localize the sources [9],

[10]. Recently, in [14], with the distributed array network,

information across all sensor arrays is jointly exploited and the

source localization problem was re-formulated into a sparsity

maximization problem, where the area of interest in a 2-D

Cartesian system is divided into grids along the x-axis and

y-axis; under such a framework, a common spatial sparsity

support corresponding to all distributed sensor arrays is en-

forced, leading to a better estimation performance, which also

avoids the possible pairing and ambiguity problems associated

with a two-step AOA based solution.

The above AOA and sparsity based methods have assumed

that there are no phase errors in the array model. In real
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applications, however, the phase information may not be

reliable due to various reasons, and in the extreme case, the

phase information may be lost completely, which unavoidably

leads to an inaccurate estimation result. On the other hand,

inspired by the work in non-coherent (i.e. magnitude-only

measurements) DOA estimation, where only magnitude infor-

mation is captured at all sensors [15]–[22], an non-coherent

source localization problem has been proposed in our earlier

conference publication [23]. The ambiguities associated with

non-coherent measurements at each sub-array is resolved by

employing a uniform circular array (UCA) [24]; otherwise,

some reference source signals may be needed to remove the

resultant ambiguities [16], [21].

One problem associated with the sparsity based estimation

approach is that the source locations are implicitly assumed

to fall on the discrete grid points. However, in practice,

quite often the assumption would not be satisfied, which

leads to an off-grid problem. A straightforward solution is to

employ a sufficiently dense grid so that the assumption can

be considered to be valid to a great degree. However, this

will increase the complexity significantly. Another solution

is grid refinement, where instead of creating a dense grid

initially to alleviate the off-grid problem, a coarse grid is firstly

made, and then a denser grid is built around the estimated

locations/directions for more accurate estimation. Such a strat-

egy works well, but still incurs a large amount of additional

computations. An alternative is to develop solutions which can

estimate the grid bias directly, such as those proposed for off-

grid DOA estimation in [24]–[28]. To our best knowledge, the

off-grid source localization problem have not been addressed

yet under the framework of sparsity maximization. In order to

deal with the challenge, a two-step off-grid source localization

method is also developed. In the first step, the source locations

are roughly estimated with a coarser grid, while in the second

step, their off-grid bias is estimated through an iterative

process, which has a closed-form solution at each iteration.

As a performance benchmark, the Cramér-Rao Bound (CRB)

is also derived. As demonstrated by computer simulations,

compared to the grid refinement method, the proposed one can

provide a better result with a lower computational complexity

in terms of running time.

The main contributions can be summarized as follows: 1)

the target localization problem with magnitude-only measure-

ments is formulated into a group sparsity based phase retrieval

problem, where the measurements at all arrays are exploited

simultaneously by enforcing the common spatial sparsity; 2)

to reduce the computational complexity, an off-grid estimation

step is further introduced, where the off-grid biases of both x-
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Fig. 1. Source localization geometry.

axis and y-axis are approximated by Taylor series expansion

with two variables. As a result, the proposed method does

not require synchronization among different subarrays and it

works on magnitude-only measurements, which leads to a

robust solution where sensor phase errors have no effect on

its performance, as also verified by simulations.

The remaining part is structured as follows. The array net-

work model is described in Sec. II, and the proposed solution

is presented in Sec. III. Simulation results are provided in Sec.

IV and conclusions drawn in Sec. V.

II. SIGNAL MODEL WITH DISTRIBUTED SENSOR ARRAYS

Consider K narrowband sources located at Cartesian coor-

dinates Lk(xk, yk), k = 1, ...,K, impinging on D deployed

sensor arrays with coordinates Cd(xd, yd), as shown in Fig.

1. The number of sensors at the d-th sensor array is Md, and

the corresponding non-coherent measurements is expressed as

Zd = |AdSd|+ Nd, (1)

with Sd = [sd[1], ..., sd[P ]] and sd[p] = [sd,1[p], ..., sd,K [p]]T ,

where sd,k[p] represents the p-th snapshot of the k-th signal,

Nd is the Md × P random Gaussian noise vector at the d-th

array, |·|, and [·]T are the element-wise absolute value operator

and matrix transpose operator, separately, and

Ad = [a(θd,1), ..., a(θd,K)] (2)

is the steering matrix with its columns a(θd,k), k = 1, ...,K,

being the corresponding steering vectors. When employing a

uniform circular array, a(θd,k) is given by [29]

a(θd,k) = [e−j 2πr
λ

cos(θd,k−γ1), ..., e−j 2πr
λ

cos(θd,k−γMd
)]T ,

(3)

where γm = 2πm/Md, λ is wavelength of the signals, r is

radius of the circular array, and θd,k denotes the arriving angle

between the k-th source and d-th array, expressed as

θd,k = arctan2(∆yd,k,∆xd,k), (4)

with ∆yd,k = yk − yd, ∆xd,k = xk − xd, and arctan2(·)
being the inverse four-quadrant tangent operator.

For D distributed arrays, the measurements can be jointly

expressed as

Z = |AS|+ N, A = blkdiag{A1, ...,AD}, (5)

where blkdiag{·} generates a block diagonal matrix from its

entries, S = [s[1], ..., s[P ]], with s[p] = [s1[p]
T , .., sTD[p]]T , and

N = [NT
1 , ...,NT

D]T .

Note that, magnitude-only measurements suffer from some

ambiguities, and two of them affect the AOA estimation

results: one is mirroring and the other is spatial shift [16],

[17], [19], [21]. The mirroring ambiguity refers to the phe-

nomenon that signals arriving from −θd,k will generate the

measurements with the same magnitude, while for spatial shift

ambiguity, it refers to that all estimated arriving angles at

the array are phase shifted by a specific amount. However,

as shown in [24], while applying a UCA structure, those

ambiguities would not appear if the valid DOA range is limited

within the range of 180 degrees and therefore UCAs are

employed in this work.

By dividing the admissible area of interest into Gx and Gy

grids along the x-axis and y-axis in the Cartesian coordinate

system, separately, the overcomplete steering matrix of the d-

th array can be expressed as

Ãd =[a(θd,1), . . . , a(θd,G)], (6)

where θd,g, g = (gx−1)Gx+ gy ∈ {1, ..., G = GxGy} is the

angle between location (xgx , ygy ) and the d-th array, with

θd,g = arctan2(∆yd,gy ,∆xd,gx), (7)

where ∆yd,gx = ygx − yd, ∆xd,gy = xgy − xd. Accordingly,

the d-th array measurements (1) are changed to

Zd = |ÃdS̃d|+ Nd, (8)

where S̃d = [̃sd[1], ..., s̃d[P ]] is the sparse signal matrix with

K rows corresponding to the targets being non-zero valued,

and s̃d[p] represents the corresponding sparse signal vector at

the p-th snapshot with only K out of G entries being non-zero

valued. Accordingly, a (
∑D

d=1 Md)×DGxGy steering matrix

Ã covering all D sensor arrays can be constructed and the

array measurements are given by

Z = |ÃS̃|+ N, Ã = blkdiag{Ã1, ..., ÃD}, (9)

where S̃ = [̃s[1], ..., s̃[P ]] is the joint signal matrix, with s̃[p] =
[̃s1[p]

T , .., s̃
T
D[p]]T .

III. PROPOSED METHOD

A. Off-Grid Signal Model

In practice, targets may not lay on a pre-defined grid,

leading to the off-grid problem. For the d-th array, the

steering vector corresponding to the real impinging angle

θd,k /∈ {θd,1, . . . , θd,G} can be approximated around its nearest

on-grid angle θd,gk by first-order Taylor expansion as [25]–

[27]
a(θd,k) ≈ a(θd,gk) + b(θd,gk)(θd,k − θd,gk)

≈ a(θd,gk) + b(θd,gk)βd,k,
(10)

where βd,k denotes the off-gird bias and b(θd,gk) is the

derivative of a(θd,gk).
For source localization, the true AOA at the d-th array

θd,k is a function of two variables (∆yd,gy ,∆xd,gx), deter-

mined by two unknown variables xk and yk, as presented
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in Eqs. (6-8). As a result, while xk /∈ {x1, . . . , xGx
} and

yk /∈ {y1, . . . , yGy
}, the steering vector of the d-th array

corresponding to the real source location can be approximated

around its nearest on-grid location (xgk , ygk) by first-order

Taylor expansion of two variables as

a(θd,k) ≈ a(θd,k) + bx(θd,k)(∆xd,k −∆xd,gk)

+ by(θd,k)(∆yd,k −∆yd,gk)

≈ a(θd,k) + bx(θd,k)βk,x + by(θd,k)βk,y,

(11)

where βk,x and βk,y represent the off-gird biases with respect

to x-axis and y-axis, separately, while bx(θd,g) =
∂a(θd,g)

∂xg
and

by(θd,g) =
∂a(θd,g)

∂yg
are the partial derivatives of a(θd,k).

Let x = [x1, ..., xK ] and y = [y1, ..., yK ] denote the true

locations of K sources, and (8) can be approximated by the

first order approximation of two variables, given by

Zd ≈ |(Ãd + B̃d,x∆x + B̃d,y∆y)S̃d|+ Nd, (12)

with Bd,x = [bx(θd,1), ..., bx(θd,G)], ∆x = diag(βx) and

βx = [β1,x, ..., βG,x], where

βg,x =

{

x̄k − xgx , if g = gk,

0, otherwise.
(13)

Similarly, we have B̃d,y = [by(θd,1), ..., by(θd,G)], ∆y =
diag(βy) and βy = [β1,y, ..., βG,y], where

βg,y =

{

ȳk − xgy , if g = gk,

0, otherwise.
(14)

βg,x and βg,y satisfy − vx

2 ≤ βg,x ≤ vx

2 and −
vy

2 ≤ βg,y ≤
vy
2 ,

separately, where vx and vy are grid stepsizes with respect x-

axis and y-axis, respectively.

Noted that, sources from an arbitrary grid point in the

Cartesian coordinate system would share the same spatial

support of Ãd, d = 1, ..., D, although the arriving angles

with respect to different arrays are different. Therefore, the

source localization problem can be formulated as a joint group

sparsity based optimization problem, given by

min
S̃,βx,βy

‖Z − |(Ã + B̃x∆̃x + B̃y∆̃y)S̃|‖
2
F + ρ‖Ŝ‖2,1, (15)

where
Ŝ = [S̃1, . . . , S̃D],

B̃x = blkdiag{B̃1,x, ..., B̃D,x},

B̃y = blkdiag{B̃1,y, ..., B̃D,y},

∆̃x = blkdiag{∆x, ...,∆x},

∆̃y = blkdiag{∆y, ...,∆y},

(16)

with ‖·‖2,1 and ‖·‖F represent l2,1 norm and Frobenius norm,

respectively. The l2,1 norm is defined as

‖Ŝ‖2,1 :=

G∑

g=1

‖ŝg‖2, (17)

with ŝg being the g-th row vector of Ŝ. As a result, Ŝ contains

G = GxGy groups and the g-th group, g ∈ {1, ..., G}, is

a 1 × DP vector, consisting of g-th row vectors of all S̃d,

d ∈ {1, .., D}.

B. Proposed Method

First, for the on-grid solution, i.e. the off-grid biases ∆̃x

and ∆̃y are assumed to be zero, and the corresponding

optimization problem in (15) is simplified to

min
S̃

‖Z − |ÃS̃|‖2F + ρ‖Ŝ‖2,1. (18)

The above formulation has the same form as those considered

in group sparsity based phase retrieval problem for DOA

estimation, which can be solved by the algorithm ToyBar [21].

For the general off-grid case, instead of jointly estimate ∆̃x,

∆̃y and S̃ in (15), this problem is solved iteratively. In the first

step, we employ (18) to find the rough grid locations of targets.

In the second step, the PRIME technique [30] is employed,

and the first term of (15) without off-grid bias at the p-th

snapshot is reformulated as

min
s̃

M∑

m=1

(|ãms̃[p]|2 − 2zm[p]|ãms̃[p]|+ |zm[p]|2)

= min
s̃

M∑

m=1

(|ãms̃[p]|2 − 2zm[p]|ãms̃[p]|),

(19)

where ãm represents the m-th row of the steering matrix Ã,

and zm[p] is the m-th element of z[p]. Since

Re(ãms̃[p](s̃q[p])H ã
H
m) ≤ |ãms̃[p]||ãms̃

q[p]|, (20)

where Re(·) represents the real part and the equality is met

while s̃[p] = s̃
q[p], it can be majorized as

min
s̃

M∑

m=1

(|ãms̃[p]|2 − 2|zm[p]|
Re(ãms̃[p](s̃q[p])HaH

m)

|ãms̃
q[p]|

), (21)

which can be formulated as

min
s̃

‖Ãs̃[p]−cq[p]‖22, with cq[p] = y⊙ejarg(Ãs̃q [p]), (22)

where ⊙ denotes the Hadamard product, s̃
q

is a known com-

plex vector and arg(·) represents the phase applied element-

wise. Consider the off-grid biases, the PRIME technique is

applied column by column to the first term of (15), and the

corresponding objective function is changed to

min
βx,βy

‖(Ã + B̃x∆̃x + B̃y∆̃y)S̃ − C̄‖2F + ρ‖Ŝ‖2,1, (23)

with C̄ = Z ⊙ ejarg(ÃS̃e), where S̃e is estimated signals from

step one, which is susceptible to global phase ambiguity.

After that, an iterative algorithm for estimating dictionary

bias β̃ is proposed. This method first estimates K non-zero

rows of estimated signals S̃
i

K as

S̄i
K = (Āi

K)†C̄, (24)

where (·)† is the pseudo-inverse operator, i ∈ {1, ..., I} is

iteration index, Āi
K is the steering matrix with K columns

corresponding to the estimated source locations, given by

Ā
i
K = blkdiag{Ā

i
1,K , ..., Ā

i
D,K},

Ā
i
d,K = [a(θid,1), ..., a(θid,K)],

(25)
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and θid,K is updated with xi and yi obtained from the

previous iteration. x0 and y0 is initialized as K columns

of Ãd, which corresponds to locations of estimated sources

S̃e. As the biases β̃x and β̃y share the same support with

S̃e, B̄d,x and B̄d,y are obtained, which are the sub-matrix

of B̃d,x and B̃d,y . Similarly, the biases of corresponding

source locations ∆̄i
K,x = diag(β̄i

x) = [βi
1,x, ...β

i
K,x]

T and

∆̄i
K,y = diag(β̄i

y) = [βi
1,y, ...β

i
K,y]

T are obtained.

By denoting B̄
i
x = blkdiag{Bi

1,x, ...,Bi
D,x}, B̄

i
y =

blkdiag{Bi
1,y, ...,Bi

D,y}, ∆̄i
x = blkdiag{∆̄i

K,x, ..., ∆̄
i
K,x},

and ∆̄i
y = blkdiag{∆̄i

K,y, ..., ∆̄
i
K,y}, the off-grid biases can

be estimated by solving

min
β̄x,β̄y

‖(Ā
i
K + B̄

i
d,x∆̄

i
x + B̄

i
d,y∆̄

i
y)S̄

i
K − C̄‖2F . (26)

Once the PRIME technique is done, this process updates each

off-grid bias β̄x and β̄y in (26) at a time.

Firstly, with β̄i
y fixed to zero, β̄i

x is pursued by solving

min
β̄x

‖(Ā
i
K + B̄

i
x∆̄

i
x)S̄

i
K − C̄d‖

2
F . (27)

Since Ā
i
K and B̄

i
x are block diagonal, (27) can be reformulated

as

min
β̄x

D∑

d=1

‖|(Ā
i
d,K + B̄

i
d,x∆̄

i
x)S̄

i
d,K − C̄d‖

2
F , (28)

where Cd and S̄
i
d,K are the approximated measurements and

estimated signals of the d-th subarray. Dropping index i for

simplicity, (28) can be approximated as [24]–[26]

D∑

d=1

‖(Ād,K + B̄d,x∆̄K)S̄d,K − C̄d‖
2
F

≈

D∑

d=1

{

β̄T
x

(
B̄
H
d,xB̄d,x ⊙ (S̄d,K S̄

H
d,K)∗

)
β̄x

− 2Re{diag[S̄d,K(C̄d − ĀK S̄d,K)H B̄d,x]β̄x}
}

,

(29)

where tr(·) and Re(·) represent the trace and real part of its

variable, separately. The optimal condition, β̄i
x can be obtained

by

β̄i+1
x = Re{(Jix)

−1hi}, Jix =

D∑

d=1

Ji
d,x, hx =

D∑

d=1

hi
d,x,

Jid,x = (Bi
d,x)

H B̄
i
d,x ⊙ (S̄

i
d,K S̄

i
d,K)∗,

hi
d,x =

{
diag[S̄

i
d,K(C̄d − Ā

i
d,K S̄

i
d,K)H B̄

i
d,x]

}T
.

(30)

where (·)−1 is the inverse operator. While the off-grid bias

with respect to x-axis is fixed, the off-grid bias of the y-axis

βy can be obtained by

min
β̄y

D∑

d=1

‖|(Ā
i
d,K + B̄

i
d,x∆̄

i
x + B̄

i
d,y∆̄

i
y)S̄

i
d,K − C̄d‖

2
F . (31)

Similarly, we have

β̄i
y = Re{(Jiy)

−1hi
y}, Ji

y =

D∑

d=1

Jid,y, hi
y =

D∑

d=1

hi
d,y,

Ji
d,y = (Bi

d,y)
H B̄

i
d,y ⊙ (S̄

i
d,K S̄

i
d,K)∗,

hi
d,y =

{
diag[S̄

i
d,K(C̄d − (Ā

i
d,K + Bi+1

d,x ∆̄
i+1
x )S̄

i
d,K)H B̄

i
d,y]

}T
.

(32)

Note that, the non-coherent DOA estimation results still suffer

from the global phase ambiguity, that is

C̄ = Z ⊙ ejarg(ÃS̃e) ≈ ArSre
jφ,

S̄K = (Āi
K)†C̄ ≈ Sre

jφ,
(33)

where Sr and Ar represent the real signal and its correspond-

ing real steering matrix, respectively, and φ is a global phase

factor. It can be seen that, when substituting (33) into (30)

and (32), the global phase factor cancels, which means that

the global phase ambiguity will not affect bias estimation in

this step.

With β̄i
x and β̄i

y , the steering matrix Ad,K is updated as

xi+1
k = xi

k + βi
k,x, yi+1

k = yik + βi
k,y, (34)

where βk,x and βk,y represent the bias of the k-th source,

x0
d,k and y0d,k are the initial locations obtained from the first

step, i.e corresponding locations of S̃e. Finally, the estimated

locations of the k-th source can be obtained after I iterations.

The full algorithm is summarized in the Algorithm Sum-

mary table.

Algorithm Summary (Two-Step Off-Grid)

Input: Ã, Z,

Initializtion: β̄0
x = 0, β̄0

y = 0.

Step 1: Estimate S̃e via existing group sparse phase retrieval algorithms

Obtain Ā0
K

, x0 and y0

Calculate C̄ = Z ⊙ e
jarg(ÃS̃e).

Step 2: for i=1, ..., I

1) Calculate S̄
i
K = (Āi

K
)†C̄.

2) Calculate β̄i
x = Re{(Jix)

−1hi} from (30)

3) Restrict elements of β̄i
x within range [− vx

2
,
vx
2
].

4) Calculate β̄i
y = Re{(Jiy)

−1hi} from (32)

5) Restrict elements of β̄i
y within range [−

vy
2
,
vy
2
].

6) Calculate xi+1 = xi + βi
x, yi+1 = y

i + βi
y

7) Ā
i+1
d,K = ĀK(θi+1

d
).

Output localization results: xi, yi.

C. Cramér-Rao Bound (CRB)

From (5), the probability density function is expressed as

p(Z;Φ) =
P∏

p=1

M∏

m=1

1

2πσ2
m

e(zm[p]−|ams[p]|)2/2σ2

m , (35)

where M =
∑D

d=1 Md, am is the m-th row of A, zm[p]
represents the m-th entry of Z at the p-th snapshot and σm is

noise power.

Since the reconstructed signals are up to a global phase

factor, for complex signals, the Fisher information matrix

(FIM) would be singular [31]. Thus, similar to [21], instead

of estimating the phase information of signals, only phase

differences between signals are considered. Assuming the
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noise level at all distributed sensor arrays are identical, the

unknown parameter vector of arriving angles, magnitude,

phase difference and noise level can be represented as

Φ = [LT
x ,LT

y , |s[p]|,∆γ[p], σ2
m]T

Lx = [x1, ..., xK ]T , Ly = [y1, ..., yK ]T ,

|s[p]| = [|sT1 [p]|, ..., |s
T
D[p]|]T ,

∆γ[p] = [∆γT
1 [p], ...,∆γT

D[p]]T ,

∆γd[p] = [∆γ12,d[p],∆γ13,d[p], ...,∆γ(K−1)K,d[p]]
T ,

(36)

where ∆γd[p] contains (K2 − K)/2 entries, ∆γkk′,d[p] =
γk,d[p]−γk′,d[p], γk,d[p] is the phase of the k-th signal of the

d-th sensor array at the p-th snapshot and σ2
m is noise power.

For the deterministic model, the FIM F is defined as [32]

F = E{
∂ln2p(Z;Φ)

∂Φ∂ΦT
} (37)

The {i,j}-th entry of F is given by [33]

Fi,j =
[∂µ(Φ)

∂Φi

]T

Γ−1(Φ)
[∂µ(Φ)

∂Φj

]

+
1

2

[

Γ−1(Φ)
∂Γ−1(Φ)

∂Φi
Γ−1(Φ)

∂Γ−1(Φ)

∂Φj

]

,

(38)

where Γ−1(Φ) = 1
σ2
m

IM , IM is the identity matrix, (·)−1 is

the matrix inverse operator, and µ(Φ) = |AS|. Since µ(Φ) is

independent of the noise level, we have

F =

[
F̃ 0
0 0

]

+

[
0 0
0 Fσm

]

, (39)

As the FIM is block diagonal, Fσm
has no effect on the CRB

result of locations. Thus, the location CRB can be determined

by the inverse of F. Computing the derivatives of µ(Φ) with

respect to Φ, we have

C =
∂µ(Φ)

∂ΦT
= [G,H,∆,0], (40)

Denotes |ams| = (sHaHmams)
1

2 = (sHAms)
1

2 and drop

index p for convenience, the first block of C is

G = [GT
1,x, ...,GT

D,x,GT
1,y, ...,GT

D,y]
T ,

Gd,x = [gTd,1,x, ..., gTd,Md,x
]T ,

Gd,y = [gTd,1,y, ..., gTd,Md,y
]T ,

gd,m,x = [
∂|am,dsd|

∂x1
, ...,

∂|am,dsd|

∂xK
],

gd,m,y = [
∂|am,dsd|

∂y1
, ...,

∂|am,dsd|

∂yK
],

(41)

with

∂|am,dsd|

∂xk
= αd,x,kIm

(

ξ sin(θd,k − γm)s∗d,kAm,d(k, :)s
)

,

αd,x,k = (sHAm,ds)−
1

2

−∆yd,k
∆x2

d,k +∆y2d,k
, ξ = 2πr/λ,

∂|am,dsd|

∂yk
= αd,y,kIm

(

ξ sin(θd,k − γm)s∗d,kAm,d(k, :)s
)

,

αd,y,k = (sHAm,ds)−
1

2

∆xd,k

∆x2
d,k +∆y2d,k

,

(42)

where (·)∗ is the complex conjugate operator, Am,d(k, :) is the

k-th row of Am,d and Am,d(:, k) is the k-th column of Am,d.

The second block is expressed by

H =
∂|As|

∂|sT |
= blkdiag{H1, ...,HD},

HT
d = Re

(

diag(e−jγd)AH
d diag(Adsd)]

)

z̃d,

z̃d = diag{|Adsd|}
− 1

2 .

(43)

Then, the third block is given by

∆ =
∂|As|

∂|∆γT |
= blkdiag{∆1, ...,∆D},

∆T
d = −Im

(

diag{ṡd}Ȧd ⊙ diag{s̈d}Äd

)

z̃d,

ṡd =
[

K−1
︷ ︸︸ ︷
sd,1, ..., sd,1,

K−2
︷ ︸︸ ︷
sd,2..., sd,2, ..., sd,K−1

]
,

Ȧd = [

K−1
︷ ︸︸ ︷

A(:, 1)Td , ...,A(:, 1)Td , ...,A(:,K − 1)Td ],

s̈d =
[
s∗d,2, ..., s

∗
d,K , s∗d,3, ..., s

∗
d,K , ..., s∗d,K

]
,

Ä = [A(:, 2)Hd , ...,A(:,K)Hd , ...,A(:,K)Hd ],

(44)

where ⊙ stands for the Hadamard product.

Then, F̃ can be given by

F̃ =

P∑

p=1

1

σ2
m

C[p]HC[p]. (45)

The CRB associated with locations of signals can be obtained

by the inverse of F̃.

IV. SIMULATIONS

In this section, simulation results are provided to show the

performance of the proposed methods in comparison with

the existing sparsity based on-grid method with coherent

measurements (with both magnitude and phase information)

[14]. For on-grid methods, when grid refinement is employed,

it is referred to as the refinement method, while for the off-grid

method, the iteration number for the second step is 20. The

sparse phase retrieval algorithm ToyBar in [21] is applied in

the non-coherent scenario, and the number of iterations before

stop is set to 300, with 30 random initialisations used in order

to find the global minimum.

The area of interest is set as [−20, 20]m along both x-

axis and y-axis. In the initial step for both on-grid and off-

grid methods, 2m is used as the stepsize for constructing the

overcomplete steering matrix Ã unless specified otherwise.

In the refinement step, a new grid with stepsize 0.2m is

formed around a distance of 1m to either side of the estimated

location from the initial step. There are D = 4 distributed

sensor arrays placed at C1 = (10, 40)m, C2 = (30, 10)m,

C3 = (−80, 90)m and C4 = (−20, 40)m, while the off-grid

locations for K = 2 sources are L1 = (−10.5,−9.5)m and

L2 = (0.5, 12.5)m. The number of sensors at each distributed

sensor array Md is set as 20, while the radius r of the UCAs is

set as r =
Md

λ
2

2π , and P = 100 snapshots are collected unless

specified otherwise.
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For the first set of simulations, the signal to noise ratio

(SNR) is 20 dB. The spatial spectrum of the proposed non-

coherent localization results is shown in Fig. 2, where Fig. 2a

provides the result of the on-grid step, while Fig. 2b is for the

extra off-grid step. It can be seen that the two sources have

been identified successfully, but the off-grid step significantly

increases the accuracy.

(a) The first step. (b) The second step.

Fig. 2. Spatial spectra of the proposed method.

Next, performances of the three methods are evaluated with

different SNR values ranging from 0 dB to 20 dB in terms of

the root mean square error (RMSE) in the absence of phase

error. The results are shown in Fig. 3, with each point obtained

by averaging over 100 trials. It can be observed that, although

all methods achieve more accurate results with increasing

SNR, the method with full coherent measurements consistently

outperforms those with magnitude-only ones, especially when

the noise level is high. This is not surprising since only

magnitude information is used in the non-coherent scenario,

and the coherent method effectively provides a performance

floor (in terms of RMSE, like some kind of practical “CRB”)

when phase error is zero. Under the non-coherent scenario,

the off-grid model clearly outperforms the on-grid model even

when the on-grid model has a denser grid; moreover, the

improvement achieved by a denser grid for the proposed off-

grid method is not significant. In addition, the proposed non-

coherent off-grid method with a 2m stepsize has a better

performance than the non-coherent grid-refinement method.

0 5 10 15 20

SNR: dB

0

0.5

1

1.5

2

2.5

3

R
M

S
E

: 
d
e
g
re

e

Non-coherent: off-grid, v=2m

Non-coherent: off-grid, v=4m

Non-coherent: refinement

Non-coherent: on-grid, v=2m

Non-coherent: on-grid, v=4m

Coherent: refinement

CRB

Fig. 3. RMSEs versus SNRs.

Then, we examine the performance in the presence of sensor

phase errors. The array measurements with phase error is

modelled as Zd = |EdAdSd|+ Nd, where Ed is an Md ×Md

diagonal matrix with each entry being unit complex variable

with a random phase term generated independently from the

Gaussian distribution with standard derivation σ, representing

the phase errors at the d-th array. RMSE results are obtained

with an average of 100 trials and the SNR is fixed at 20 dB.

As shown in the figure, the proposed non-coherent methods

are not affected by phase errors, with a steady performance;

on the other hand, the performance of the coherent method

declines as the intensity of phase errors increases and becomes

much worse than the non-coherent methods when the standard

deviation σ of the phase error is larger than 0.15, and in this

case, the proposed non-coherent methods are preferred.
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Fig. 4. RMSEs versus sensor phase error.

To evaluate the performance for different number of snap-

shots, the RMSE results with phase error σ = 0 and σ = 0.2
are presented in Fig. 5, with SNR set to be 20dB. Clearly, a

larger number of snapshots yield more accurate results and the

coherent method consistently outperforms the non-coherent

one in the absence of phase errors. However, in the presence of

phase errors, the coherent method suffers from a much larger

RMSE.
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Fig. 5. RMSEs versus number of snapshots.

Finally, the computational complexity is compared in terms

of running time, and the results are shown in Table 1, based

on a computer with 4.2GHz CPU i7-7700K and 16GB RAM.

We can see that although the computational time of off-grid

method is higher than the on-grid method, the time cost by

the second step of the off-grid model is minimal, especially

compared with the refinement method.

Table I: Running time of different non-coherent methods.

Snapshots On-grid (s) Off-grid (s) Refinement (s)

100 226.11 226.22 395.84

V. CONCLUSIONS

A novel source localization method with magnitude-only

measurements based on distributed array networks has been
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proposed. The non-coherent source localization problem was

first formulated into a joint sparse phase retrieval form, and

the l2,1 norm is employed to enforce spatial sparsity, while

to tackle the off-grid problem in the second step, dictionary

bias is estimated through an iterative process with closed-form

solutions at each iteration. As phase error at sensor arrays has

no effect on the proposed solution, phase calibration is no

longer required. Furthermore, the proposed off-grid method

has provided more accurate results than the on-grid method

with marginal computational cost, which is significantly less

than the widely adopted grid-refinement approach.
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