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1. INTRODUCTION

The Separation Principle is a cornerstone result in modern
control theory (Georgiou and Lindquist, 2013). In its
simplest form, it says that the design of a state-feedback
controller and an output-measurement state estimator may
be executed independently while guaranteeing stability
of the overall loop. The focus of control research over
the last few decades has arguably been allowed to focus
more on the simpler case of state feedback because the
Separation Principle is either known, or assumed, to hold
in the considered setting; once a state feedback control law
has been designed, a state estimator can always be designed
and deployed on the real, output-measured system.

Another important consideration for modern control system
design is the communication channel between controller
and plant; in the advent of new and emerging control
technologies such as smart grids, robotics, and advanced
autonomous systems, it is a realistic proposition that
controller and plant are not co-located and/or physically
connected. In such cases, sensor measurements and control
inputs are sent and received over communication channels
and may be subject to noise, delays, and packet losses. It
may be necessary to consider such effects when designing
the controller and estimator.

An important line of research (Sinopoli et al., 2004,
2005), collected in (Schenato et al., 2007), discovered that
whether the Separation Principle holds depends on the
communication channel protocol employed. In particular,
the authors considered a discrete-time linear time-invariant
system with Gaussian process noise and sensing noise on
the output measurement—a classical LQG-type problem—

and modelled the channel between controller and plant as
being subject to random packet losses. A key result was
to show not just that the Separation Principle holds when
the channel employs a TCP-like communication protocol—
i.e. where an acknowledgement of a received packet is
transmitted—but also that it does not hold when the
channel is UDP-like, i.e. absent of any acknowledgement.
Moreover, the stability region of the TCP-based controller
strictly contains that of the UDP-based controller, in the
sense that the former stabilizes an LTI system when the
latter is unable to.

It is interesting to enquire whether the same result holds
in the presence of constraints. In this paper, therefore,
we consider the same LQG-type setting albeit with the
addition of (general) constraints on the system inputs.
To handle these constraints, we replace the classical
LQG controller based on dynamic programming with
a (conventional) certainty-equivalent stochastic model
predictive controller, wherein the constrained optimal
control problem is solved at each new state estimate
computed by the Kalman filter. In other words, we consider
a standard output-feedback MPC design that may be found
in many industrial applications: MPC in the state estimates,
with a Kalman filter in the loop.

Our contribution is to show the existence of a counterex-
ample where the stability of the predictive controller under
the TCP-like protocol depends on the gain of the estimator.
Thus, the Separation Principle does not hold for the TCP-
like case when constraints are present and the controller
employs a receding horizon, in direct contrast to the fact
that the Separation Principle does hold for a (static) finite-
horizon implementation of LQG (Lim et al., 1996). While
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this is not surprising in itself—for it is well known that the
Separation Principle does not hold in general in constrained
MPC—an interesting observation is that the UDP-based
controller stabilizes the same example. This establishes
that UDP-based estimation and constrained control may
outperform a TCP-based scheme and, moreover, confirms
that the TCP-like stability region no longer contains the
UDP-like stabilty region when constraints are present.
Finally, we provide a theoretical analysis that shows an
interesting relation and trade-off between the estimation
errors and prediction errors in both schemes; owing to an
information asymmetry between estimator and controller
in the TCP-like case, the on-average poorer performance of
the UDP-like estimator may be compensated for by smaller
prediction errors in the controller.

Notation: R≥0 is the set of non-negative real numbers and
N≥0 is the set of non-negative integers. Rn and R

n×m are,
respectively, the sets of real-valued n vectors and n×m
matrices. The notation xk+j|k is the j-step ahead prediction

of xmade at time k∈N≥0. The notation x+ is shorthand for
xk+1 when x=xk. The conditional expectation of x given y
is E{x |y}, and the unconditional expectation of x is E{x}.
The (multivariate) normal distribution with mean µ and
covariance matrix Σ is denoted N (µ,Σ). The (univariate)
Bernoulli distribution with mean µ is denoted B(µ). For
a matrix Q, Q⪰0 denotes positive semidefiniteness and
Q≻0 denotes positive definiteness. The Lp-norm is written
as ∥x∥p, while ∥x∥ denotes a generic vector norm. The
quadratic form x⊤Qx is written as ∥x∥2Q. We recall that

the expectation of the quadratic form x⊤Qx is E
{

x⊤Qx
}

=

x̂⊤Qx̂+tr(QΣxx), where Σxy :=E
{

(x− x̂)(y− ŷ)⊤
}

is the
covariance matrix between x and y, and tr(A) is the trace
of matrix A. A function α(·) :R≥0→R≥0 is of class K if it
is continuous, strictly increasing and α(0)=0. In refers for
the n×n identity matrix.

2. PAPER SETTING AND AIMS

We consider the following discrete-time linear system

xk+1=Axk+νkBuk+wk (1a)

yk=γkCxk+sk (1b)

where xk∈R
n, uk∈R

m, and yk∈R
p are, respectively, the

state, input, and output of the system at sample time
k∈N≥0. The system is subject to uncertainty in the form
of (i) process noise wk and measurement noise sk, and
(ii) random packet losses affecting the input and output
channels, via the variables νk and γk. The system input,
uk, is constrained to take values in a set U ⊂R

m but the
states and outputs are unconstrained.

We make the following standing assumptions.

Assumption 1. The matrices A, B and C are known, the
pair (A,B) is stabilizable, and the pair (C,A) is observable.

Assumption 2. The set U is known and compact, contain-
ing the origin in its interior.

Assumption 3. The process noise wk ∈R
n and measure-

ment noise sk ∈R
p are independent and identically dis-

tributed (i.i.d.) random variables, with wk∼N (0,Qw) and
sk∼N (0,Rs).

Assumption 4. The input packet loss variable νk ∈{0,1}
and output packet loss variable γk∈{0,1} are i.i.d random

xk+1=Axk+νkBuk+wk

ȳk=Cxk+sk

ȳk

KF-TCP
x̂k

MPC-TCPuk

νk

νkuk

γk

yk

z−1
ACK

Delay

νk−1

γk

TCP-channel

Fig. 1. Paper setting, including the uncertain system, TCP-
like channel, and control and estimation modules.

variables with νk∼B(ν̄) and γk∼B(γ̄), where ν̄ and γ̄ are
the respective probabilities of successful packet delivery.

Assumption 5. The information set available to the con-
troller at time k∈N≥0 is

Ik=

{

Fk :={yk,γk,νk−1} TCP-like protocol

Gk :={yk,γk} UDP-like protocol
(2)

where yk={yk,yk−1, · · · ,y1}, γk={γk,γk−1, · · · ,γ1}, and
νk={νk,νk−1, · · · ,ν1}.

Assumptions 1 and 2 are mild and standard. Assumptions 3–
5 imply the same setting studied in the literature (e.g.
Sinopoli et al. (2004); Schenato et al. (2007)), wherein
the actuation and sensing channels are either TCP-like—
in which an acknowledgement (ACK) of successful or
unsuccessful packet delivery is sent—or UDP-like where no
such acknowledgement is sent. Fig. 1 illustrates the setup in
the TCP-like case, showing also the controller (MPC-TCP)
and estimator (KF-TCP); the lack of state measurements
(Assumption 5) motivates the need for the latter. The
difference between this setup and that of Schenato et al.
(2007) is the presence of input constraints. The control
objective is to regulate the state x to (a neighbourhood
of) the origin, despite uncertainty and packet losses, while
meeting these constraints.

We remark that even though only input constraints are
considered and the system is linear, this is not a trivial
problem; a common approach to establishing stability
even with state measurements available is to assume
the existence of a global Control Lyapunov Function
(CLF) (Rawlings and Mayne, 2009), which is restrictive
in the presence of constraints. The aim of this paper
is to analyse the closed-loop stability of the system
in the described setting, and establish if, and under
which conditions, the Separation Principle—which allows
independent design of estimator and controller—holds.

3. OUTPUT-FEEDBACK STOCHASTIC MPC
FORMULATION

The control scheme we study is composed of two steps: first,
a Kalman filter performs state estimation conditioned on
the information set Ik (Schenato et al., 2007). Subsequently,
a stochastic model predictive controller computes and sends
an optimal control input to the plant, based on minimizing
the expectation of a cost function conditioned on the state
estimate and covariance.



3820 Paul Trodden  et al. / IFAC PapersOnLine 56-2 (2023) 3818–3823

3.1 Estimator formulation

We briefly recall the Kalman filter conditioned on either
TCP-like or UDP-like information sets, as given in (Schen-
ato et al., 2007). Let

x̂k :=E{xk |Ik}, (3a)

ek :=xk− x̂k, (3b)

Pk :=E
{

eke
⊤
k |Ik

}

. (3c)

Considering the problem of estimating the state xk at time
k, the two cases differ on whether the value of νk−1 is
available to perform the innovation step.

TCP-like protocol:

x̂k|k−1=E{xk |Fk−1,νk−1}

=Ax̂k−1|k−1+νk−1Buk−1,
(4a)

ek|k−1=Aek−1+wk−1, (4b)

Pk|k−1=APk−1A
⊤+Qw. (4c)

UDP-like protocol:

x̂k|k−1=E{xk |Gk−1}=Ax̂k−1|k−1+ ν̄Buk−1, (5a)

ek|k−1=Aek−1+(νk−1− ν̄)Buk−1+wk−1, (5b)

Pk|k−1=APk−1A
⊤+ ν̄(1− ν̄)Buk−1u

⊤
k−1B

⊤+Qw. (5c)

In both cases, and because yk, γk, wk and Ik are indepen-
dent, the correction step gives

x̂k= x̂k|k−1+γkKk

(

yk−Cx̂k|k−1

)

, (6a)

ek=(I−γkKkC)ek|k−1−γkKksk, (6b)

Pk=(I−γkKkC)Pk|k−1, (6c)

Kk=Pk|k−1C
⊤(CPk|k−1C

⊤+Rs)
−1. (6d)

In both cases the Kalman gain Kk is time-varying and
stochastic, given its dependency on γk; it is well known
that Kk, even for a stable process, does not converge to a
steady value (Schenato et al., 2007).

It is also well known and easy to see from the innovation
equations that the state error covariance Pk|k−1 is indepen-
dent of the control input in the TCP-like case but not so in
the UDP-like case. Indeed, a cornerstone result of Schenato
et al. (2007) and its underlying work was to establish that
the Separation Principle holds in the TCP-like case but
does not in the UDP-like case. In particular, Schenato
et al. (2007) considered a classical LQG setup and showed
that in the TCP-like case the optimal controller is a linear
function of the state estimate and the optimal estimator
is independent of this; on the other hand, the optimal
controller in the UDP-like case is a nonlinear function of
the state estimate and the optimal estimator depends in a
non-straightforward way on this control law.

We aim to study the same issue, albeit in the context
of an input-constrained LQG setting. To deal with the
input constraints in a systematic manner, we employ a
conventional model predictive controller in the loop. The
next subsection describes the formulation of the controller.

3.2 Controller formulation

The stochastic optimal control problem we consider, for
the system at a state xk and the information Ik available
to the controller, is

V 0
N (Ik)= min

uk∈U

E
{

JN (xk,uk,ν·|k) |Ik
}

(7)

where the decision variable

uk :=
{

uk|k,uk+1|k, . . . ,uk+N−1|k

}

, (8)

is the finite sequence of future control inputs, selected such
that it lies in the constraint set

U :=U ×·· ·×U (9)

and minimizes the expectation of a cost function

JN (xk,uk,ν·|k) :=βVf (xk+N |k)

+

N−1
∑

j=0

ℓ(xk+j|k,νk+j|kuk+j|k)
(10a)

with

ℓ(x,u)=∥x∥2Q+∥u∥2R, (10b)

Vf (x)=∥x∥2Qf
. (10c)

Assumption 6. Q≻0, R≻0, Qf ≻0 and β≥1.

The expectation in (7) is to be taken over predicted states
and the actuation channel packet loss variable ν:

ν·|k :=
{

νk|k,νk+1|k, . . .
}

. (11)

This motivates the consideration of the two different
information sets, TCP-like and UDP-like, and how they
affect the formulation of the optimal control problem.

• In the UDP-like case, Ik = Gk = {yk,γk} contains
no additional information on which to condition the
expectation in (7) beyond the state estimate and
covariance—provided by the estimator—and, as in
the UDP-like estimator, the expected value E{ν}= ν̄.

• In the TCP-like case, Ik =Fk = {yk,γk,νk−1} con-
tains information of the past realizations of ν. The
predictive control formulation would require, however,
information on future realizations of νk if the use of
the expected value E{ν}= ν̄ is to be avoided.

In both cases, therefore, and since ν is i.i.d. with E{νu}=
ν̄u, the expectations over νk+j|k are replaced by ν̄:

E{xk+j+1 |Ik}=zk+j+1|k=Azk+j|k+ ν̄Buk+j|k (12a)

Pk+j+1|k=APk+j|kA
⊤+Qw (12b)

with zk|k = x̂k and Pk|k =Pk. Note that we use z·|k and
P·|k to denote open-loop predictions by the controller, and
reserve x̂·|k and P·|k for the estimator; as we will show,
the prediction zk+1|k is not necessarily equal to innovation
x̂k+1|k.

The optimal control problem (7) may be rewritten in the
deterministic form

V 0
N (Ik)=V 0

N (x̂k,Pk)= min
uk∈U

JN (x̂k,uk, ν̄)+c(Pk) (13)

subject to, for j∈N[0,N−1],

zk|k= x̂k, (14a)

zk+j+1|k=Azk+j|k+ ν̄Buk+j|k, (14b)

uk+j|k∈U , (14c)

where

c(Pk)=

N
∑

j=0

tr(QjPk+j|k), Qj=

{

Q j∈N[0,N−1]

βQf j=N

is a constant term that may be omitted from the optimiza-
tion, but is required to determine the value function.
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Remark 1. The additional information contained in the
TCP-like case benefits the estimator but provides no
additional information for use by the predictive controller.
Problem (13) subject to (14) is therefore of a form close to
a conventional input-constrained MPC problem; the only
difference is the inclusion of the mean of the input packet
loss variable in the dynamic model.

Remark 2. It is well known (Heirung et al., 2018) that
the value of c(Pk) may be reduced by parametrizing the
control input as uk+j|k =Kzk+j|k+vk+j|k, K stabilizing
for (A,B). This, however, replaces pure input constraints
with state constraints, resulting in the recursive feasibility
of the controller being non-trivial to establish.

Solving PN (x̂k,Pk) yields the (unique) optimal solution

u
0
k(x̂k)=

{

u0

k|k(x̂k), . . . ,u
0

k+N−1|k(x̂k)
}

, (15)

with associated optimal cost value V 0
N (x̂k,Pk); the former

does not depend on Pk but the latter does. The application
of the first control in the optimal sequence to the plant,
followed by a repetition of the process at the next sampling
instant, defines the implicit control law

uk=κN (x̂k) :=u0

k|k(x̂k). (16)

In view of the lack of state constraints, the domain of
the value function V 0

N (·,P ) and control law κN (·) is the
whole state space, meaning that recursive feasibility of the
optimal control problem is trivially established. Stability
of the closed-loop system, including the KF in the loop,
is much harder to establish, exacerbated by the lack of
terminal state constraints (Rawlings and Mayne, 2009).

4. STABILITY AND THE SEPARATION PRINCIPLE

We open this section with an interesting example. Under a
particular choice of parameters, we find an instance where
the TCP-like scheme loses stability while the UDP-like one
retains it. We find the stability of the TCP-like controller
depends on the gain of the estimator, showing that the
controller and estimator cannot necessarily be designed
separately. This serves as a counterexample to show that
the Separation Principle does not necessarily hold in the
presence of constraints.

4.1 A counterexample

Consider a system with

A=

[

2 1
0 1

]

, B=

[

0.5
1

]

, C=[1 0],

noise covariances Qw=0.0001I2, Rs=0.0001I1, and input
constraint set U = {u : |u|≤1}. The expected values of ν
and γ are ν̄=0.95 and γ̄=0.7.

We design the controller with Q=I, R=1, N=3, β=1,

Qf =

[

12.7021 4.8583
4.8583 3.7103

]

.

It is easily verified that this choice satisfies Assumption 7,
given in the next section.

Let x0 = [0.731 0.7]
⊤
, the initial state estimate x̂0 =

[3.66 0.7]
⊤
, and the covariance P0 = diag(2.6,2). Fig. 2

shows the true state and estimation error trajectories under
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Fig. 2. True state trajectories, applied controls and es-
timation errors under u=κN (x̂) with TCP-like and
UDP-like estimation.

TCP-like and UDP-like state estimation schemes, with
νk=1,k=0,1, . . . (i.e. no packet losses on the actuation
channel) and

{γk}={0,1,1,1,1,0,0,0,1,0,1,0,0,1,1,1,1,0,0}.

Note the TCP-based trajectory loses stability but the
UDP-based solution maintains stability. Nevertheless, the
estimation error in the TCP-like scheme is generally smaller.
It should be emphasized that when there are no dropped
packets at all (γk=1), both controllers maintain stability.

Changing the initial covariance to P0=diag(8.579,0), and
repeating the same simulation under the same realizations
of random variables, finds that both controllers maintain
stability. Since Kk depends on P0, this shows that the
stability of the TCP-based controller can depend on the
estimator gain.

4.2 Analysis

Adhering to the aim of analysing stability of a formulation
that omits state constraints, we consider the use of just the
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terminal cost βVf (·) and horizon length N as stabilizing
ingredients. These and the cost function are supposed to
satisfy certain assumptions (Limon et al., 2006), outlined
in the next subsection.

Preliminaries: stability without a terminal set.

Assumption 7. The matrix Qf ≻0 is such that

(A+ ν̄BKf )
⊤Qf (A+ ν̄BKf )−Qf =−(Q+ ν̄2K⊤

f RKf )

for some Kf that stabilizes the pair (A,B).

The assumption says that Vf (x)=x⊤Qfx is a CLF for the
expected terminal dynamics; it follows that βVf (·),β≥1,
is also a CLF.

Assumption 8. Let d1>0 be such that Kfx∈U for all

x∈Xf (d1) :={x :Vf (x)≤d1}. (17)

Such a d1 is guaranteed to exist in view of the positive
definiteness of Qf (Assumption 6) and the fact that U
contains the origin in its interior (Assumption 2).

The following result is an immediate consequence of these
two assumptions.

Lemma 1. For all x∈Xf (d1),

Vf (Ax+ ν̄BKfx)−Vf (x)≤−ℓ(x, ν̄Kfx). (18)

We require one more assumption (Limon et al., 2006):

Assumption 9. Let d2>0 be such that

d2≤ℓ(x, ν̄u) (19)

for all x /∈Xf (d1) and u∈U , and the given ν̄∈(0,1).

Such a d2 is guaranteed to exist in view of positive
definiteness of Q and R (Assumption 6) and compactness
of U (Assumption 2).

Finally, we define the following set of states:

Γβ
N
:=

{

x∈R
n :J0

N (x,u0(z), ν̄)≤βd1+Nd2
}

. (20)

By construction,

x̂k=E{xk |Ik}∈Γβ
N ⇐⇒ JN (x̂k,u

0
k, ν̄)≤βd1+Nd2.

The following result is adapted from Limon et al. (2006),
and concerns the evolution of the system x+=Ax+Bu
and optimal cost function JN (x,u0(x), ν̄) when the loop is
closed with u=κN (x).

Lemma 2. If x∈Γβ
N , then x+=Ax+ ν̄BκN (x)∈Γβ

N and

JN (x+,u0(x+), ν̄)−JN (x,u0(x), ν̄)≤−ℓ(x, ν̄κN (x)).

Closed-loop analysis: prediction and estimation errors. In
our setting, Lemma 2 means

x̂k=E{xk |Ik}∈Γβ
N =⇒

zk+1|k=E{xk+1 |Ik}=Ax̂k+ ν̄Bκ(x̂k)∈Γβ
N . (21)

This successor state zk+1|k=E{xk+1 |Ik} is, however, the
state estimate predicted by the controller at time k, using
information Ik, while the actual estimated state determined
by the estimator at time k+1 is x̂k+1=E{xk+1 |Ik+1}:

x̂k+1= x̂k+1|k+γk+1Kk+1

(

yk+1−Cx̂k+1|k

)

We note that x̂k+1|k in this equation is not necessarily
equal to the zk+1|k predicted by the controller:

zk+1|k=Ax̂k+ ν̄Bu0
k|k MPC prediction

x̂k+1|k=Ax̂k+νkBu0
k|k ̸=zk+1|k TCP-like innovation

x̂k+1|k=Ax̂k+ ν̄Bu0
k|k=zk+1|k UDP-like innovation

Therefore, the error between the one-step ahead state
prediction and the new state estimate

εk+1 := x̂k+1−zk+1|k (22)

differs according to the protocol employed.

TCP-like protocol:

Since x̂k+1|k is computed (at time k+1) using the available
νk but the prediction zk+1|k used only ν̄, we have

εtcpk+1=(νk− ν̄)Bu0
k|k

+γk+1Kk+1C(Aek+wk)+γk+1Kk+1sk+1. (23)

while the estimation error is

etcpk+1=(I−γk+1Kk+1C)(Aek+wk)−γk+1Kk+1sk+1.

Thus note that

etcpk+1+εtcpk+1=Aek+(νk− ν̄)Bu0
k|k+wk. (24)

UDP-like protocol:

In this case both x̂k+1|k and the prediction zk+1|k are
computed using knowledge of only ν̄:

εudpk+1=γk+1Kk+1C(νk− ν̄)Bu0
k|k

+γk+1Kk+1C(Aek+wk)+γk+1Kk+1sk+1. (25)

The estimation error is

eudpk+1=(I−γk+1Kk+1C)(νk− ν̄)Bu0
k|k

+(I−γk+1Kk+1C)(Aek+wk)−γk+1Kk+1sk+1.

Thus note that, again,

eudpk+1+εudpk+1=Aek+(νk− ν̄)Bu0
k|k+wk. (26)

This, together with the fact that if xk and ek are given,
then u0

k|k=κN (x̂k=xk−ek) is the same control in both

UDP and TCP cases, proves the following.

Proposition 1. For a given xk and ek, the following state-
ments are true:

eudpk+1+εudpk+1=etcpk+1+εtcpk+1 (27)

and

eudpk+1=etcpk+1+(I−γk+1Kk+1C)(νk− ν̄)Bu0
k|k (28)

εudpk+1=εtcpk+1−(I−γk+1Kk+1C)(νk− ν̄)Bu0
k|k (29)

The result characterizes a trade-off between the estimation
error and prediction error depending on the channel
protocol employed; if the effect of the input u0

k|k is to

increase the estimation error in the UCP case compared
with the TCP case, then a counter effect is to reduce
the prediction error by the same margin. It is also worth
pointing out that

ek+1+εk+1=(xk+1− x̂k+1)+(x̂k+1−zk+1|k)

=xk+1−zk+1|k
(30)

so this quantity represents the (unknown) total error
between true state and MPC prediction.

It is now clear that monotonicity of the value function
cannot be assured since, in general, x̂k+1 ≠zk+1|k. Indeed,
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we may write for the cost function (Rawlings and Mayne,
2009)

JN (x̃k+1,u
0
k+1(x̃k+1), ν̄)≤JN (zk+1|k,u

0
k+1(zk+1|k), ν̄)

+σ(∥εk+1∥)

where σ(·) is a function of class K, and so, for all x̂k∈Γβ
N ,

JN (x̃k+1,u
0
k+1(x̃k+1), ν̄)−JN (x̂k,u

0
k(x̂k), ν̄)

≤−ℓ(x̂k, ν̄κN (x̂k))+σ(∥εk+1∥). (31)

It is then of interest to determine when ∥εk+1∥ is zero (or
small), in order that

x̃k∈Γβ
N =⇒ x̃k+1∈Γβ

N (32)

as a key step towards ensuring stability of the controller.

The next result is an immediate result of the developed
expressions (23) and (25).

Proposition 2. If γk+1=0 then

(1) (UDP-like) εudpk+1=0 necessarily, so for all x̂k∈Γβ
N ,

JN (x̃k+1,u
0
k+1(x̃k+1), ν̄)−JN (x̂k,u

0
k(x̂k), ν̄)

≤−ℓ(x̂k, ν̄κN (x̂k)), (33)

and (32) holds. However,

e
udp

k+1=Aek+(νk− ν̄)Bu0
k|k+wk.

(2) (TCP-like) εtcpk+1=(νk− ν̄)Bu0
k|k ̸=0 whenever Bu0

k|k ̸=

0. Therefore, for all x̂k∈Γβ
N ,

JN (x̃k+1,u
0
k+1(x̃k+1), ν̄)−JN (x̂k,u

0
k(x̂k), ν̄)

≤−ℓ(x̂k, ν̄κN (x̂k))+σ
(

∥(νk− ν̄)Bu0
k|k∥

)

, (34)

and (32) does not necessarily hold. Moreover,

e
tcp

k+1=Aek+wk.

This result depicts a kind of reverse separation principle
wherein, in the case of sensor dropouts, the UDP-MPC
cost function enjoys a monotonic decrease, independent

of the estimator, if x̂k ∈Γβ
N . The estimator performance

is, however, dependent on the control input. In the TCP
case, on the other hand, the estimator is independent of
the controller (c.f. the separation observed by Schenato
et al. (2007)), but the monotonicity of the controller cost
function is now assured only for suitably small inputs.

4.3 Revisiting the counterexample

The designed controller in Section 4.1 satisfies Assump-
tions 6–9, the latter with d1=1.85 and d2=1.2; therefore,
with N=3 and β=1,

Γ1
3={x :JN (x,u0(x), ν̄)≤5.45}.

The initial state estimate x̂0 ̸∈Γ1
3; however, in the UDP

case the state estimate enters Γ1
3 at k=11 and remains

therein—see Fig. 3. It can be seen that whenever γk+1=
0, JN (x̂k+1,u

0
k+1(x̂k+1), ν̄) < JN (x̂k,u

0
k(x̂k), ν̄) (Proposi-

tion 2). The increase at k=14 (when γk rises from 0 to
1) is explained by Proposition 1: the state estimate x̂14 is
improved over the prediction x̄14|13=z14|13 at the expense
of higher prediction error.

In the TCP case, the state estimate never enters Γ1
3; the

cost reaches a minimum of 41.16 before diverging. However,
increasing N to 4 results in the state estimate entering

Γ1
4={x :JN (x,u0(x), ν̄)≤6.65}

11 12 13 14 15 16 17 18

0
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0 k
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Fig. 3. Optimal cost value in the UDP case.

at k=9, and subsequently maintaining stability.

5. CONCLUSIONS

This paper has considered an input-constrained LQG-type
problem under random packet losses on the sensing and
actuation channels. A counterexample established that,
unlike in the unconstrained case, the Separation Principle
does not hold when a TCP-like protocol is employed on
the channels. Further analysis identified a relationship
between the estimation errors and controller prediction
errors, suggesting that controller performance may be
worsened by improving estimation performance.
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