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1. INTRODUCTION

Static output feedback (SOF) synthesis for multi-variable
linear systems is a key challenge in control design, and still
remains to be one of the most important problems in this
area: see Silva and Frezzatto (2021) for a recent example
of robust SOF applied to linear-parameter-varying (LPV)
systems, and Duan et al. (2022) for a recent investigation
on SOF synthesis using gradient-based optimisation. The
relevance of SOF stems not only from its importance for
output feedback control, but also from its applicability
to fixed-order controller synthesis (Dabboussi and Zrida,
2012), as well as to distributed/decentralised control de-
sign (Wang and Davidson, 1973). Extensive efforts have
been made in the literature to solve this problem, and
comprehensive reviews can be found in Syrmos et al.
(1997) and Sadabadi and Peaucelle (2016).

Similar to the full-state feedback case, other goals can be
sought in addition to stability (Skogestad and Postleth-
waite, 2005): robustness, via an H2/H∞ formulation,
and/or some other performance objective, e.g. via opti-
misation of a quadratic cost function. Most of the litera-
ture focuses on the robustness problem, while little to no
attention has been paid to the ‘simpler’ optimal control
case: the output-feedback version of the linear quadratic
regulator (LQR).

The increased interest on robust approaches, moving on
from LQR to H2 formulation, was a logical step, as
the latter can be interpreted as a generalisation of the
former (Skogestad and Postlethwaite, 2005). However,
LQR remains relevant in practice, given that more often
than not the uncertainty matrix of the state equation is

unknown, the tuning and synthesis of the gain is well-
understood by the control community, and its simplicity
and fast computation make it an appealing method to use
during prototyping, or as benchmark for other methods.

Our proposed approach poses the linear quadratic static
output feedback (LQ-SOF) problem in reference to the
full-state-feedback LQR gain, avoiding iterations, and
completing computation faster than current methods.

1.1 Linear quadratic static output feedback

One of the few and earliest attempts towards LQ-SOF
control can be found in Levine and Athans (1970). Their
proposed method formulates the gain as a function of
two Lyapunov variables, related respectively with con-
trollability and observability of the system. An iterative
algorithm provides the solution to these variables. The
method guarantees decay through the iterations, and it
relies on a first guess of the output-feedback controller.

Trofino-Neto and Kucera (1993) present an alternative
approach, defining the gain as a function of one Lya-
punov variable, like in the state-feedback case, using the
pseudo-inverse of the measurement matrix. The method
then proposes to solve the resulting algebraic Riccati
equation (ARE) using homotopy methods, for low-rank
disturbances, as described in Richter et al. (1990). By then,
the interest in the robust formulation (Doyle et al., 1989)
overtook that of solving the LQ-SOF problem directly.

Regarding the robustness problem, the existing approaches
can be classified in two main categories (Sadabadi and
Peaucelle, 2016), depending on whether Lyapunov vari-
ables are used or not. Non-Lyapunov methods are not
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discussed here for brevity, as these are not relevant to
our method. The interested reader is referred to the work
by Apkarian and Noll (2006) for one of the earliest non-
Lyapunov-based alternatives, where a non-smooth optimi-
sation algorithm is used to circumvent the non-convexity
condition of the bilinear matrix inequality (BMI).

1.2 H2/H∞ Lyapunov-based methods

It is well-known that SOF synthesis leads to a BMI that
cannot be linearised using standard strategies, such as
change of variables, Elimination Lemma, or Schur com-
plement (VanAntwerp and Braatz, 2000). Furthermore,
solving the problem, which is non-convex due to the cross-
products between the gain matrix and the Lyapunov vari-
able (Sadabadi and Peaucelle, 2016), has been reported
NP-hard (Blondel and Tsitsiklisz, 1997).

Initial efforts to address the non-convexity turned to
iterative algorithms, which render the problem convex by
freezing one of the variables at each step, while optimising
over the other one (El Ghaoui and Balakrishnan, 1994).
Alternative iterative processes are presented in Iwasaki
et al. (1994), for the H2 problem, and in Cao et al.
(1998), for the H∞ problem. These are solved by iterating
between two Lyapunov variables (the total cost matrix
and its inverse). Iwasaki et al. (1994) mention LQR as
a particularisation of the H2 problem for the full-state-
feedback case.

A different convexification of the problem is achieved
using the S-procedure, which in its initial formulation
(de Oliveira et al., 1999) decouples the controller gain from
the Lyapunov variable exploiting the necessity conditions
in the Projection Lemma (Gahinet and Apkarian, 1994).
This method is well-documented in Ebihara et al. (2015),
where it is observed that the dilated LMI obtained is
computationally more tractable thanks to the additional
degrees of freedom introduced by the slack variables.

Representative examples using the S-procedure are found
in Peaucelle and Arzelier (2001), where the H2 problem is
addressed using an iterative approach with dilated LMIs,
or in Sadabadi and Karimi (2015), where the H∞ problem
is solved using an also iterative approach with a different
dilation, inspired by the Positive Real Lemma.

Iterative approaches are highly dependent on the stopping
criterion, and thus special care is to be taken when defining
this, in order to avoid running into large computation
times. It is also recognised that the solution reached with
these methods is highly dependent on the initial guess
(Sadabadi and Peaucelle, 2016). Most methods found in
the literature also acknowledge that the problem is still
open, and that the solution offered might be sub-optimal.

1.3 Aim and contribution of this paper

In this paper we consider the linear quadratic static output
feedback (LQ-SOF) synthesis, which is the equivalent of
LQR for the SOF case. This allows us to focus on the
main practical challenge: the linearisation of the bilinear
matrix inequality (BMI) that arises in SOF problems, and
to draw particular insights into the conservativeness of the
approach selected.

Our method dilates the original BMI to an LMI by means
of first formulating the output-feedback gain in reference
to the full-state-feedback gain. This makes the resulting
state matrix, which multiplies the Lyapunov variable, both
stable and optimal in the LQR sense.

This differs from Sadabadi and Karimi (2015), which
expresses the LMI in terms of a generic state-feedback
gain. Though this detail seems minor, it allows us to (i)
gain explicit insight into how the LQ-SOF gain compares
to the LQR one and, more significantly, (ii) solve the SOF
problem by solving one ARE followed by one LMI instead
of a sequence of LMIs solved until convergence.

2. PRELIMINARIES

This section defines the notation, the control problem
addressed, useful lemmas used in the paper, and the adap-
tation to LQR of two results from the robust literature that
serve as benchmark for the method presented here, given
the similarities with the dilations used in this paper.

2.1 Notation

Throughout the paper, the standard mathematical nota-
tion is used, with lower case variables, e.g. x, representing
arrays, uppercase matrix variables, e.g. A, and the sym-
bols R and S, are sets of real and symmetric numbers
respectively. The dimensions of the sets are specified as
exponents, and any restrictions as subscripts, e.g. S

nx

++

(Snx

+ ) is the set of positive definite (positive semi-definite)
symmetric matrices with nx rows.

The sum of a square matrix with its transpose is repre-
sented by {A}S = A + AT . The definiteness and semi-
definiteness of a matrix are represented by the mathemat-
ical symbols ≺ and �. Symbol I refers to the identity
matrix of appropriate dimensions. Finally, the symbol ⋆
in the upper-diagonal blocks is used to indicate their
equivalence to the transpose of the corresponding lower-
diagonal blocks in a symmetric matrix.

[

A ⋆
B C

]

≡

[

A BT

B C

]

. (1)

2.2 The linear quadratic static output feedback problem

Let us consider the following LTI continuous-time system:

{

ẋ(t) = Ax(t) +Bu(t) ,

y(t) = Cx(t) ,
(2)

where x ∈ R
nx , u ∈ R

nu , and y ∈ R
ny represent

respectively the state, input, and measurement of the
system, while matrices A, B, and C are of the appropriate
dimensions.

The LQ-SOF control problem consists in designing a linear
controller gain K ∈ R

nu×ny , such that the control law
u = Ky stabilises the system in (2), while minimising the
cost function J∞ defined in (3).

J∞ =

∫

∞

0

[

x(t)

u(t)

]T [

Q S

ST R

] [

x(t)

u(t)

]

dt , (3)
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where Q ∈ S
nx

+ is the penalty in the states, R ∈ S
nx

++ is
the penalty in the inputs, and S ∈ R

nx×nu is the cross-
penalty. Once K is designed, the closed-loop dynamics of
the system are defined by (4), and the optimisation cost
as per (5).

ẋ(t) = (A+BKC)x(t) , (4)

J∞ =

∫ ∞

0

x(t)TQKC x(t)dt , (5)

where QKC is obtained by setting K = KC in the
definition of QK in (6).

QK = Q+ SK +KTST +KTRK . (6)

For clarity, the time-dependency of all signals will be
omitted from the notation hereafter.

2.3 Useful lemmas

Lemma 1. LQR control. It is well-known (Boyd et al.,
1994) that solving the Riccati inequality in (7) provides
the optimal state-feedback control gain in the LQR sense.

[

I

K

]T [

ATP + PA+Q ⋆

BTP + ST R

][

I

K

]

� 0 , (7)

where P ∈ S
nx

++ is the Lyapunov variable, and K ∈ R
nu×nx

is the state-feedback gain. The optimum is achieved with
Po and Ko such that the equality holds.

Lemma 2. LQ-SOF. The pair (P,K) that minimises the
trace of P subject to (8) is the optimum solution to the
LQ-SOF problem.

[

I

KC

]T [

ATP + PA+Q ⋆

BTP + ST R

][

I

KC

]

� 0 , (8)

where K ∈ R
nu×ny is the SOF gain, and P ∈ S

nx

++. The
proof follows from setting K = KC in (7).

Lemma 3. The Projection Lemma. Given some matrices
Ψ ∈ S

q, Ω ∈ R
m×q, and Φ ∈ R

m×q, LMI conditions in (9)
and (10) are equivalent.

Ψ + ΦTΩ+ ΩTΦ � 0 . (9)

{

N T
ΩΨNΩ � 0 ,

N T
ΦΨNΦ � 0 ,

(10)

where NΩ and NΦ are the right null-spaces of Ω and
Φ respectively. The proof can be found in Gahinet and
Apkarian (1994).

2.4 Peaucelle and Arzelier’s method

Peaucelle and Arzelier (2001) propose an iterative ap-
proach that is initialised with a Ki solution to (7). It
follows by first freezing Ki and solving for minimum ΥK =
trace(P ), varying P , X, and Y , subject to (11).

[

{

PA−KTY C
}S

+Q ⋆

BTP + ST + Y C +XTK R− {X}S

]

� 0 , (11)

where the LMI has been adapted from their Theorem 1
to the LQ-SOF case, using our naming convention. Next,
Xi and Yi are frozen, and the problem is solved again for
minimum ΥX,Y = trace(P ) by varying P and K.

Convergence is tested by closeness of ΥK and ΥX,Y . If
the criterion is not met, the two problems are solved
again, first freezing Ki+1, and then Xi+1 and Yi+1. Once
converged, the SOF gain is obtained as K = X−1Y . The
solution solves the LQ-SOF problem as proven in Peaucelle
and Arzelier (2001) for the H2-SOF case.

The Peaucelle and Arzelier (2001) method requires to solve
a first LMI problem for the initial condition, and two
additional LMI problems in each iteration. Convergence
is guaranteed locally, after a number of iterations a-priori
unknown.

2.5 Sadabadi and Karimi’s method

In Sadabadi and Karimi (2015) an iterative approach is
also proposed. The initialisation is performed by solving
a different LMI problem, described in their Theorem 4,
resulting in an initial state-feedback gain Ki. This gain is
then used to solve for minimum Υi = trace(P ) by freezing
K = Ki and varying X and Y subject to (12).

[

{PA+ PBK}S +QK ⋆

BTP + ST + Y C + (R−X)K R− {X}S

]

� 0 ,

(12)

where the LMI has been reinterpreted from their Theorem
2 to the LQ-SOF case. Convergence is tested by changes in
the cost function, i.e. if Υi and Υi−1 are close enough, where
i is the iteration number. If the convergence criterion is not
met, the state-feedback gain is set to Ki+1 = X−1

i YiC, and
the problem is solved again.

Once converged, the SOF gain is obtained as K = X−1Y .
This gain solves the LQ-SOF as proven in Sadabadi and
Karimi (2015) for the H∞-SOF problem.

The Sadabadi and Karimi (2015) method requires to solve
a first LMI problem for the initial condition, where an
arbitrary small positive value has to be assigned to a
scalar variable, and one additional LMI problem for each
iteration. Like in the Peaucelle and Arzelier’s method, con-
vergence is guaranteed locally, after a number of iterations
a-priori unknown.

Remark 1. Updating the state-feedback gain in (12) causes
the result to differ more and more from that initial gain.
If this initial guess is already the optimum with respect to
the state-feedback criterion, updating K may cause KC to
diverge more from Ko with each iteration.

3. MAIN RESULT

This section presents our proposed method to solve the
LQ-SOF problem. First, some key definitions are de-
scribed, needed for our dilation of the BMI. Then, our
method is enunciated and compared to the existing ones.
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3.1 Initial definitions

Let us start with Ko, which solves the ARE resulting from
the equality in (7). This gain can be obtained analytically,
when R ≻ 0 and Q � 0 (Lewis et al., 2012), or as the
solution to a stabilizability LMI (Boyd et al., 1994).

Let us now define the error from any possible SOF gain K
to this optimum gain as:

K̃ = KC −Ko . (13)

Using this definition by setting KC = K̃+Ko in (8) leads
to (14), where ΨP ∈ S

nx+nu is defined as per (15), and Ko

has been used in (6) to get QKo
.

[
I

K̃

]T

ΨP

[
I

K̃

]
� 0 , (14)

ΨP =

[
{PA+ PBKo}

S
+QKo

⋆

BTP + ST +RKo R

]
, (15)

For future reference, we also define ΨP by blocks as in (16)
according to the block matrices in (15).

ΨP =

[
Ψ

(1,1)
P Ψ

(1,2)
P

Ψ
(2,1)
P Ψ

(2,2)
P

]
. (16)

One can realise now that the first block matrix Ψ
(1,1)
P is in

fact equivalent to (7) when K = Ko. Therefore, a suitable

P such that Ψ
(1,1)
P � 0 is guaranteed to exist.

Let us also define Ω ∈ R
nu×(nx+nu), and its right null-

spaceNΩ as per (17), whereN
K̃
is the joint right null-space

of C and Ko, according to the definition of K̃ in (13).

Ω = [ K̃ − I ] , NΩ =

[
I N

K̃

K̃ 0

]
. (17)

Finally, let us define Φ ∈ R
nu×(nx+nu), and its right null-

space NΦ as in (18), where F ∈ R
nx×nu and X ∈ R

nx×nx

++
are two new matrix variables, and NFT is the right null-
space of FT .

Φ = [ FT XT ] , NΦ =

[
−I NFT

X−TFT 0

]
. (18)

3.2 A dilation using the SOF gain error

A dilated BMI condition is reached in (19) by using the
definitions of ΨP from (15), Ω from (17), and Φ from
(18) into (9). The additional degrees of freedom obtained
with X and F still render the inequality bilinear, however,
as it will be clear later, this does not introduce a new
complication.

ΨP +

{[
F

X

]
[ K̃ − I ]

}S

� 0 . (19)

By virtue of the Projection Lemma, the dilated BMI in
(19) is a necessary and sufficient condition for compliance

with (20), formed by taking the first inequality from (10).




[
I

K̃

]T

ΨP

[
I

K̃

] [
I

K̃

]T

ΨP

[
N

K̃

0

]

⋆ N T

K̃
Ψ

(1,1)
P N

K̃



� 0 . (20)

Compliance with (20) implies (14), as all blocks in the
diagonal have to be negative semi-definite. Furthermore,
it can be said that it strictly complies with (14), since
(20) is equivalent to (21), where ΠP,K � 0 is the resulting
matrix after applying the Schur complement (Boyd et al.,
1994) to (20).

[
I

K̃

]T

ΨP

[
I

K̃

]
+ΠP,K � 0 , (21)

Remark 2. Matrix ΠP,K offers a measure of the conserva-
tiveness of this method: the closer ΠP,K is to 0, the closer
(19) and (14) are to exact equivalence. This is trivially
achieved when N

K̃
= 0, as (20) would collapse to (14),

and in cases when Ψ
(1,1)
P is ‘negatively big’.

Finally, the BMI in (19) can be rewritten as the BMI in

(22) by replacing back the definition of K̃ from (13), and
performing the linearising change of variable Y = XK.

[
Ψ

(1,1)
P +

{
F (X−1Y C −Ko)

}S
⋆

Ψ
(2,1)
P + Y C −XKo − FT R− {X}S

]
� 0 . (22)

The BMI obtained might seem difficult to linearise at first,

but taking advantage of the fact that Ψ
(1,1)
P � 0, this

BMI can be turned into an LMI by choosing F = 0. This
conclusion leads us to our main result. The proof follows
from recalling that (22) is necessary and sufficient for (20),
which in turn is sufficient for (14).

Proposition 1. The tuple (P,X, Y ) obtained from minimi-
sation of the trace of P , subject to (22) with F = 0, solves
the LQ-SOF problem with K = X−1Y .

Remark 3. The additional conservativeness introduced by
forcing F = 0 is related to the difference Y C−XKo, which
is minimised as a by-product of minimising the trace of P
subject to (22).

Remark 4. The resulting LMI obtained when setting F = 0
is the same that results when adapting the second step of
Sadabadi and Karimi (2015) to the LQ-SOF case in (12),
by setting the state-feedback gain equal to the LQR gain.

4. NUMERICAL EXAMPLES

In order to assess and compare our approach with the
methods by Peaucelle and Arzelier (2001) and Sadabadi
and Karimi (2015), all algorithms have been implemented
in Matlab, using the LMI toolbox introduced by Gahinet
et al. (1994).

Given that the true optimum for the LQ-SOF case is
not yet known, comparing methods can be challenging.
Hence, in order to enable some assessment of optimality, all



9544 Hadriano Morales Escamilla  et al. / IFAC PapersOnLine 56-2 (2023) 9540–9545

Fig. 1. Probability distribution of the computation time,
with logarithmic scale in the time axis.

three approaches are compared against the state-feedback

solution using the cost deviation defined by J̃ in (23).

J̃[method] = 100
J
[method]
∞ − JLQR

∞

J
LQR
∞

, (23)

where JLQR
∞

is the optimum LQR cost when using state

feedback, and J
[method]
∞ is the quadratic cost for each

output-feedback method, as defined in (3).

The SOF gain was derived, using the three different
methods being compared, for 1000 systems generated
randomly, with 20 states, 3 outputs and 2 inputs. The
penalties were set to Q = I, S = 0, and R = I, while the
initial state was set to an array of ones: x0 = 1

nx .

The results are evaluated in terms of: J̃ , the cost devi-
ation from the state-feedback optimum, tCPU, the total
computation time needed to obtain each gain, niter, the
number of iterations performed, and nLMI, the number of
LMI problems solved.

Our method shows a remarkable improvement in terms of
the computation time, as it is clear from Fig. 1, where a
noticeable difference can be appreciated between the three
methods. The normalised probability distribution for tCPU

is shown to have considerably lower values for the method
proposed here.

This improvement in the computation time has a negligible
effect in the performance. Fig. 2 shows the distribution of
the cost deviation for the three methods, normalised by the
number of experiments in order to obtain the probability
distribution from data. Similar distributions are observed
for the three methods.

All metrics are summarised in Tab. 1, where the operator
E[ ] represents the expected value.

The method proposed in Proposition 1 develops, on aver-
age, a slightly higher cost error when compared to the best
of the methods chosen (Peaucelle and Arzelier, 2001), but
the difference is of less than 1%.

In general, it can be said that the three methods perform
similarly with respect to cost optimality, and therefore

Fig. 2. Probability distribution of the cost deviation

the conservativeness introduced when setting F = 0 in
(19) has not had a major impact on the optimality of the
solution.

In addition, it can be observed that the method from
Sadabadi and Karimi (2015) is the one that requires the
most computation effort, as it attains the highest average
time, but with fewer iterations than the method from
Peaucelle and Arzelier (2001). This is likely due to the
differences in the way the iterations are performed in these
two methods: Sadabadi and Karimi (2015) perform an
inversion at each iteration in order to obtain the next
state-feedback gain, while Peaucelle and Arzelier (2001)
solve an LMI problem to find that gain.

The method from Proposition 1 achieves an average com-
putation time over ten times faster than the fastest of the
methods, which is mainly a result of being non-iterative.
The lack of iterations also adds a certain degree of confi-
dence to the computation time, as it can be seen in Fig. 1,
where the ‘tail’ of the probability distribution does not
extend beyond 0.6 seconds for our method.

A measure of this improved certainty can be seen in Tab. 2,
where the operator σ[ ] represents the standard deviation.

Table 1. Comparison of average values

Method E[J̃ ] (%) E[tCPU] (s) E[niter] E[nLMI]

Proposition 1 24.78 0.14 0 1

Peaucelle and
Arzelier (2001)

24.06 3.24 10.27 21.55

Sadabadi and
Karimi (2015)

27.98 13.61 3.25 4.25

Table 2. Comparison of standard deviations

Method σ[J̃ ] (%) σ[tCPU] (s) σ[niter] σ[nLMI]

Proposition 1 26.01 0.03 0 0

Peaucelle and
Arzelier (2001)

23.11 9.92 33.58 21.55

Sadabadi and
Karimi (2015)

30.28 4.24 1.09 1.1
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5. CONCLUSION

This paper presents a static output feedback synthesis
method with linear quadratic optimality. The approach
consists of two steps: first, the well-known algebraic Riccati
equation is solved for the full-state-feedback case, and
second, the bilinear matrix inequality for output feedback
is dilated into a linear matrix inequality. The dilation uses
the error from any possible SOF controller to the optimum
gain from the first step. The negative-definiteness obtained
in the first step is key to achieve the second step.

Unlike other methods based on dilated LMI conditions, our
proposed approach does not rely on an iterative algorithm
to provide a solution sufficiently close to the optimum.

In order to assess our method, the SOF gain was synthe-
sised for a large number of systems generated randomly,
and as benchmark, the gains were also derived using two
closely related methods. The resulting quadratic cost dif-
fers, on average, in less than 1% from the best of the
approaches, while the computation time is at least ten
times faster. In addition, the lack of iterations makes our
controller synthesis more deterministic in time.

Future studies will include iterations over parameter F in
(22) to better understand the conservativeness induced by
setting it to 0, comparison with other types of approaches,
and numerical results for different system sizes.

The method has been derived here for linear continuous-
time invariant systems. Extension to discrete-time is triv-
ial, via formulation of the equivalent ARE and BMI con-
ditions. Similarly, extension to LPV systems is possible by
means of the Lyapunov shaping paradigm (Scherer et al.,
1997). Application to structured (Wang and Davidson,
1973) and reduced-order (Sadabadi and Peaucelle, 2016)
controller synthesis is also achievable. Finally, robustness
can also be attained by extension to H2 and H∞ cases.
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