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1. INTRODUCTION

A fundamental objective in power system operation is the
supply of uninterrupted power at rated quality and least
possible operating cost/disutility. To achieve this, a com-
bination of load-frequency control (LFC) and economic
dispatch (ED) is used in a hierarchical control framework.
The ED acts at a much slower timescale and determines
the optimal equilibrium that maximizes the social welfare
of the power system for an expected/projected value of
the demand. In real-time, unknown fluctuations in the pre-
dicted demand are assumed subtle, hence the equilibrium
from the most recent ED to a large extent remains eco-
nomically optimal. As a result, conventional LFC schemes
such as tie-line bias control are designed to reject these
fluctuations in projected demand and return the power
system to the most recent ED setpoint. This is usually
achieved by driving an area control error (ACE) signal to
zero.

The problem with this conventional LFC strategy is that
with larger and faster demand fluctuations, the previous
ED setpoints may no longer be optimal at the current time.
Studies have shown that under significant variability and
uncertainty in the demand, conventional LFC based on
tie-line bias control can be severely inefficient (Li et al.,
2016).
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With higher penetration of renewable generation and de-
mand responsive loads, future power systems will have
lower inertia with faster, larger, and more uncertain fluc-
tuation in the net predicted demand (uncontrollable load
minus intermittent generation). This can result in frequent
violation of tie-line thermal constraints, large frequency
deviation and a worsening of the economic performance of
LFC. As a result, the conventional approach of separately
considering ED and LFC at different timescales may no
longer achieve economic optimality in frequency control.
To address this problem, it is common practice to dispatch
generation and demand response resources closer to the
timescale of frequency control. However, this can be com-
putationally intensive, non-robust, and may cause stability
issues in the frequency dynamics (Hauswirth et al., 2020).
Therefore, novel LFC schemes capable of achieving ED in
real-time while guaranteeing closed-loop stability and opti-
mal transient performance will be useful in power networks
with high penetration of intermittent generation. Also,
achieving real-time ED in LFC will improve the accuracy
of real-time pricing schemes required for implementing de-
mand response programs (Zhang and Papachristodoulou,
2015).

Recently, the interest in developing LFC schemes with
autonomous ED capabilities has increased significantly
(Dörfler et al., 2019). In recent studies, the goal has been to
autonomously solve the economic dispatch problem within
the feedback loop of LFC (Dörfler et al., 2019; Molzahn
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et al., 2017). Most of the currently proposed algorithms
remodel conventional LFC after optimization algorithms
that take the form of dynamical systems which converge
asymptotically to the optimal ED solutions in closed-loop
(Molzahn et al., 2017; Li et al., 2016; Miao and Fan, 2017;
Dörfler et al., 2019). One limitation of these algorithms is
that the power system dynamics are not considered in the
control design, assuming a pre-stabilized power system.
Therefore, these controllers lack transient performance
guarantees and can be difficult to tune, often yielding an
oscillatory frequency response.

In an attempt to address the above limitations, (Köhler
et al., 2017; Jia et al., 2020) have proposed a distributed
economic MPC approach to the LFC problem. Although
convergence to the ED solution was obtained, the algo-
rithm in (Köhler et al., 2017; Jia et al., 2020) required
explicit estimation of the unknown disturbances and also
to guarantee closed-loop stability, the power system dy-
namics had to be passive (which is hard to satisfy with
second-order turbine-governor dynamics (Trip and De Per-
sis, 2017)). These limitations make it hard to implement
these algorithms on real power system networks. To cir-
cumvent the limitations of economic MPC, a standard
tracking MPC formulation of the LFC problem can be
adopted. However, current formulations of tracking MPC
lack autonomous ED capabilities. Efforts to integrate eco-
nomic performance into a tracking MPC formulation of
the LFC problem rely on scaling the penalty on the control
input by the economic cost/price of activating LFC (Ersdal
et al., 2016; Mc Namara and Milano, 2018), or adopting a
multi-objective function approach incorporating both the
ED and the LFC performance objectives (Sokoler et al.,
2015). Both of these approaches improve the economic
performance of LFC but do not guarantee convergence to
the ED setpoints in steady-state.

In this paper, we propose an LFC algorithm based on
the feedback-optimizing MPC framework in (Asuk and
Trodden, 2021), to address the limitations of currently
available MPC-based solutions for simultaneous ED and
LFC. The main contribution is a novel tracking MPC for-
mulation of the LFC problem that guarantees convergence
to the ‘true’ ED setpoints without estimating the unknown
disturbances (when they are piecewise constant), while re-
taining the complexity of standard tracking MPC. Because
most commercially available MPC packages are based on
the standard tracking MPC formulation (Mc Namara and
Milano, 2018), it can be argued that the proposed formula-
tion is easier to implement in practice compared to an eco-
nomic MPC formulation. Also, the feedback approach to
steady-state optimization endows the proposed algorithm
with an inherent robustness to model uncertainty.

The paper is structured as follows: Section 2 presents the
power system model and the economic dispatch problem.
Section 3 formulates the control problem as a feedback-
optimizing load-frequency control problem and Section
4 presents a MPC solution to the control problem with
theoretical performance guarantees. Section 5 presents
numerical simulations of the algorithm for a two-area
power system and compares the performance with other
solutions in the literature. Section 6 concludes the paper
and discusses further research questions.

2. POWER SYSTEM MODEL, LOAD FREQUENCY
CONTROL AND ECONOMIC RE-DISPATCH

Consider a transmission level network with arbitrary
topology described by a weighted directed graph G =
(N ,E ,W ), where N = {1, . . . , i, . . . Na} is the set of nodes
or control areas and E ⊆ N ×N is the set of edges or tie-
line interconnection between the nodes. The set W con-
tains the weights of the edges E i.e W = {Tij , ∀(i, j) ∈ E }
where Tij

[

pu MW/Hz
]

is the synchronizing coefficient of
the edge/tie-line (i, j) ∈ E . The neighbourhood set of the
node i is denoted by Ni. For the transmission graph G , the
graph Laplacian LG contains the topology information in
G . For simplicity, we model the renewable generation as a
negative demand, i.e. if PRES

i is the renewable generation
and PL

i the uncontrollable load in node i, then the net-
demand (or net-load), wi = PL

i − PRES
i . Each node is

assumed to have a single generator, a demand responsive
load, and a net-load.

Let the power network be operating around a nominal
equilibrium determined by an ED problem at a slower
timescale. As common in power system control at the
transmission level, the following assumptions are made
(see Li et al. (2016) for details).

Assumption 1. The voltage magnitudes are fixed at all
nodes, i.e. vi ∀i ∈ N are constant. The transmission lines
are of negligible resistance and reactive power injections
and flows are omitted.

With Assumption 1 in place, each control area i ∈ N ,
is modelled by the following dynamic linear differential
equation (Wang et al., 2017).

Hiḟi = Pm
i − P dr

i −Difi − P tie
i − wi, (1a)

Ṗ tie
i =

∑

j∈Ni

Tij(fi − fj), (1b)

τt,iṖ
m
i = −Pm

i + P v
i (1c)

τv,iṖ
v
i = −P v

i + αm
i ui − (1/ri)fi (1d)

τdri Ṗ dr
i = −P dr

i + αdr
i ui (1e)

where fi [Hz], Pm
i [pu MW ], P dr

i [pu MW ], P tie
i ,

P v
i [pu MW ], are respectively the deviations in frequency,

mechanical power input, responsive demand, tie-line power
flow, and governor valve position. τt,i, ri, τ

v
i and ui are

respectively the turbine charging time constant, the droop
coefficient, the speed-governor time constant, and the load-
reference set-point for node/control area i. The control
inputs um

i and udr
i applied to the governor and demand

response loads respectively, are derived from ui via the
generation and demand participation factors, αm

i and αdr
i

respectively.

State-space dynamics The (centralized) state space
model for the complete power system is

ẋ = Acx+Bcu+ Ecw, y = Ccx (2)

where

x :=
[

P tie f Pm P v P dr
]⊤

∈ R
n,

u :=
[

um udr
]⊤

∈ R
m, y := f ∈ R

p,
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and where a variable without subscripts denotes the vector
of variables corresponding to each node; for example, f :=
[fi]i∈N . Finally, the power system is subject to inequality
constraints on the generation, demand response and line
flows which can be expressed as the following state and
input polyhedral constraints:

u ∈ U ⊆ R
m, x ∈ X ⊆ R

n. (3)

2.1 Load-Frequency Control and Economic Dispatch

Let a constant but unknown disturbance wi, ∀i ∈ N occur
in real-time, say due to variation in renewable generation
or unpredicted load changes. Then by means of LFC, the
generators and controllable loads are made to adjust their
power generation Pm

i , ∀i ∈ N and consumption P dr
i ,

∀i ∈ N respectively in order to restore the grid frequency
in the most economically efficient manner. To improve the
economic performance of conventional tie-line bias control,
the non-interaction constraint will be relaxed allowing for
the coordination of control resources across the power
network in steady-state. This is achieved by regulating the
frequency deviation, f rather than the area control error,
ACE to zero. Towards this goal, we define the following
multi-area ED problem for the LFC,

min
Pm,Pdr

−Φ(Pm, P dr) =
∑

i∈N

Ci(P
m
i )−

∑

i∈N

Ui(P
dr
i )

s.t. Pm
i − P dr

i − P tie
i − wi = 0, ∀i ∈ N

(4)

where Ci(P
m
i ) = 1

2
qi(P

m
i )2 + riP

m
i + si is the generator

cost function and Ui(P
dr
i ) = 1

2
q̃i(P

dr
i )2 + r̃iP

dr
i + s̃i the

utility function for controllable loads in node i. The cost
function Φ(Pm, P dr) is the social welfare of the power
network defined as Φ(Pm, P dr) = Ui(P

dr
i ) − Ci(P

m
i ). We

make the following assumption about problem (4).

Assumption 2. Each Ci(P
m
i ) is a strictly convex function

in Pm
i and each Ui(P

m
i ) is a strictly concave function in

P dr
i .

Remark 3. Assumption 2 is not restrictive as generator
cost and demand utility can be fitted to quadratic func-
tions that meet the assumption.

3. PROBLEM FORMULATION

In order to apply MPC to the LFC problem, a discrete-
time model of the power system is required. We discretize
the continuous-time model (2) using standard techniques
to obtain the discrete time model,

xk+1 = Axk +Buk + Ewk; yk = Cxk (5)

where A,B,E and C are the discrete-time equivalents of
the continuous-time state-space matrices Ac, Bc, Ec and
Cc respectively. Given the power system dynamics (5)
and a step disturbance wk = w̄, a forced steady-state
equilibrium is given by,

Ax̄+Bū+ Ew̄ = x̄; ȳ = Cx̄. (6)

with the steady-state input–output map

ȳ = Guū+Gww̄ (7)

where Gu := C(In −A)−1B and Gw := C(In −A)−1E are
the DC gains of the discrete-time system power system
network (5) and the quantities with an over-bar represent
steady-state values. We make the following assumptions
about the discrete-time dynamics (5).

Assumption 4. (Basic assumptions).

(1) the state xk is measurable at every sampling instant.
(2) the number of outputs, p is less than or equal to the

number of inputs, m.

For the multi-area ED problem (4), the constraint is the
power flow balance for all nodes and is satisfied at any
steady-state equilibrium of the power system network. The
cost function in (4) can also be expressed compactly as,

−Φ(ū) =
1

2
ū⊤Qū+R⊤ū+ s (8)

where,
Q = Γ⊤

mQmΓm − Γ⊤

drQdrΓdr, R = Γ⊤
mRm − Γ⊤

drRdr, s =
1
⊤

Nsm − 1
⊤

Nsdr, Γm = blkdiag(αm
1 , . . . αm

N ), Γdr =
blkdiag(αdr

1 , . . . αdr
N ), sm = [si]∀i∈N sdr = [s̃i]∀i∈N ,

Rm = [ri]∀i∈N , Rdr = [r̃i]∀i∈N , Qm = blkdiag(q1, . . . qN ),
and Qdr = blkdiag(q̃1, . . . q̃N ).
In order to design the LFC algorithms for the power system
models presented above, we begin by defining the following
optimal load-frequency control (OLFC)problem.

Problem 5. (The OLFC Problem). Design for the linear
time-invariant power system (2), a state feedback load-
frequency control law

uk = κ(xk, uk−1) (9)

such that for any unknown step change in w̄ with w̄
constrained to some bounded set W:

a) the frequency deviation, fi is regulated to zero and
the tie-line flow deviation, P tie

i is driven to economi-
cally optimal values for all i ∈ N ,

b) the steady-state values of Pm and P dr maximizes the
social welfare Φ(Pm, P dr) in real time,

c) the feedback policy κ(·, ·) minimizes a transient per-
formance criterion and (3) are satisfied ∀k ≥ 0.

Parts (a) and (b) of the OLFC problem are solved via the
static optimization formulation,

min
ū

−Φ(ū) s.t. ȳ −Guū−Gww̄ = 0. (10)

If Assumption 2 is satisfied, then problem (10) is con-
vex and feasible, and a unique minimizer ū∗ exists for
every disturbance w̄. The third control goal is achieved
by designing a model predictive load-frequency control
algorithm to track the optimal solution of problem (10)
while rejecting the unknown step disturbance w̄.

3.1 Karush-Kuhn-Tucker (KKT) Optimality Conditions

To design the model predictive load frequency controller
that solves the optimization problem (10) in feedback,
we first examine the necessary conditions for optimality
of the problem. Problem (10) is a convex optimization
problem and strong duality holds (Boyd et al., 2004).
Therefore, the Karush–Kuhn–Tucker (KKT) conditions
are necessary and sufficient for optimality. We obtain the
KKT conditions for (10) by forming the corresponding
Lagrangian,

L(ū, λ) = −Φ(ū) + λ⊤(ȳ −Guū−Gww̄) (11)

where λ is a multiplier of appropriate dimension. The
corresponding KKT optimality conditions are

∇L(ū, λ) =

[

−∇Φ(ū)−G⊤

u λ
ȳ −Guū−Gww̄

]

= 0m+p. (12)
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The optimum ū∗ of problem (10) must satisfy the KKT
system of equations in (12). Solving (12) however requires
a knowledge of w̄ which is assumed unknown a priori. To
circumvent this, we express (12) in the following subspace
form (Bertsekas, 1997):

∇L(ū, λ) = 0m+p ⇐⇒

[

∇Φ(ū) ∈ range(Gu)
⊤

ȳ −Guū−Gww̄ = 0p

]

(13)

By a fundamental theorem of linear algebra, range(Gu)
⊤ =

null(Gu)
⊥, and therefore

∇Φ(ū) ∈ range(Gu)
⊤

⇐⇒ ∇Φ(ū) ∈ null(Gu)
⊥. (14)

Therefore, let G̃ be any full-rank matrix such that,

G̃G⊤
u = 0 or range(G̃)⊤ = null(Gu). (15)

Remark 6. For the model (5) with the steady-state input-
output map (7) (i.e., the case of non-singular (In−A), the
matrix

G̃ = (G⊤
u )

† (16)

satisfies (15) where (G⊤
u )

† is the pseudo-inverse of G⊤
u .

Remark 7. For the power system (5), (G⊤
u )

† depends on
the connection topology of the nodes/control areas in the
power network which is encapsulated in the Laplacian
matrix (LG ) of the power network graph G.

With this, the KKT optimality condition (12) becomes

∇L(ū, λ) =

[

G̃∇Φ(ū)
ȳ −Guū−Gww̄

]

= 02p (17)

It follows that ū is optimal with respect to problem (10) if,
and only if, it satisfies (17). This establishes the following
result, which—similar to Lawrence et al. (2018)—allows
the steady-state equilibrium optimization problem to be
posed as a stabilization problem.

Proposition 8. Parts (a) and (b) of the OLFC problem is
solved if, from any initial state x0 and any disturbance w̄,
the control law

uk = κ(xk, uk−1) (18)

is such that uk:

(1) is regulated to a steady-state equilibrium, and,

(2) satisfies limk→∞ G̃∇Φ(uk) = 0p.

Proof. Condition (1) is satisfied if and only if ȳ −Guū−

Gww̄ = 0, which is necessary and sufficient for equilib-
rium. Condition (2) implies, and is implied by, the KKT
conditions (17) being met in the limit, which is necessary
and sufficient for optimality.

4. FEEDBACK OPTIMIZING MODEL PREDICTIVE
LOAD FREQUENCY CONTROL (MPLFC)

In this section, based on the results of Proposition 8, we
construct an MPC controller to regulate the tracking error,
G̃∇Φ(uk) to zero, and consequently solve Problem 5 with-
out knowledge of ū∗ or w̄. Using the velocity model form of
the linear quadratic optimal control problem (Pannocchia
and Rawlings, 2001), we develop an MPC formulation
that steers the power system network asymptotically and
admissibly to the economically optimal steady-state equi-
librium, without knowledge of this equilibrium and while
minimizing a linear-quadratic (LQ) transient performance
criterion. We call this controller the feedback optimizing

model predictive load-frequency control (MPLFC) algo-
rithm.

Instead of defining and regulating the tracking error as
the difference between uk and the unknown optimum ū∗,
we define the tracking error as the residual of the KKT
optimality condition (17). For the cost function Φ(ū),
under inactive steady-state inequality constraints and non-
singular (In −A), the tracking error G̃∇Φ(uk) is an affine
function of the measured input and is given by,

ek := G̃∇Φ(uk) = Λuuk + r (19)

where Λu = (G⊤
u )

†Q and r = (G⊤
u )

†R. The tracking error,
(19), is related to the marginal cost differences between
neighbouring control areas and is computed directly from
the input uk, provided the steady-state cost, Φ and the
input–output DC gain matrix Gu are known. This choice
therefore eliminates the need for knowledge of the optimal
equilibrium ū∗ and the disturbance w̄.

In order to achieve economic dispatch and frequency
regulation simultaneously, the power system frequency
dynamics (2) is regulated to steady-state equilibria such
that e = 0 and ȳ = 0. To achieve this, we adopt the
following velocity form of (5),

ϵk+1 = Aϵϵk +Bϵδuk (20a)

ẽk = Cϵϵk +Dϵδuk (20b)

where

ϵk :=

[

δxk

ẽk−1

]

with
δxk := xk − xk−1, δuk := uk − uk−1,

ẽk := ek +Πyk
(21)

and

Aϵ =

[

A 0n×p

ΠC Ip

]

, Bϵ =

[

B
Λu

]

, (22a)

Cϵ =
[

ΠC Ip
]

, Dϵ = Λu. (22b)

The constant Π is a penalty on the output y, and ẽ
is a weighted sum of e and y. We make the following
assumption about the system (5) and cost Φ(ū).

Assumption 9. The matrix

S :=

[

A− In B
ΠC Λu

]

(23)

has full row rank, i.e., rank(S) = p+m.

The following proposition can be easily proved.

Proposition 10. (Reachability). The pair (Aϵ, Bϵ) is reach-
able if and only if (A,B) is reachable and Assumption 9 is
satisfied.

Given the tracking error and velocity dynamics, the feed-
back optimizing model predictive load frequency control
(MPLFC) problem is defined, for a state ϵk, as

min
δuk

VN (ϵk, δuk) = Vf (ϵk+N ) +
1

2

N−1
∑

i=0

l(ẽk+i, δuk+i)

s.t. ϵk+i+1 = Aϵϵk+i +Bϵδuk+i ∀i ∈ I[0,N−1],

ẽk+i = Cϵϵk+i +Dϵδuk+i ∀i ∈ I[0,N−1],

(δuk, ϵk) ∈ G, ϵk+N ∈ Ef .

(24)

In this problem, I[0,N−1] is the set of positive integers from
0 to N − 1, and the decision variable is the sequence of
control increments over the N-step prediction horizon:
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δuk := {δuk, δuk+1 . . . , δuk+N−1}, (25)

and ϵk is the associated sequence of state predictions:

ϵk := {ϵk, ϵk+1 . . . , ϵk+N−1}. (26)

These sequences are chosen to minimize the objective
VN (ϵk, δuk), which consists of a stage cost

l(ẽk, δuk) := ẽ⊤k Qeẽk + δu⊤

k Rδuk (27)

and a terminal cost

Vf (ϵk+N ) := (1/2)ϵ⊤k+NPϵϵk+N . (28)

It is simple to verify that the following assumption ensures
positive definiteness of this cost.

Assumption 11. The matrices R, Qe and Pϵ satisfy R ≻ 0,
Pϵ ⪰ 0 and

Qe −QeDϵ(R+D⊤

ϵ QeDϵ)
−1D⊤

ϵ Q
⊤

e ⪰ 0 (29)

The terminal cost is employed, in the usual way (Rawlings
and Mayne, 2009), towards guaranteeing stability.

Assumption 12. The matrix Pϵ ⪰ 0 satisfies the Lyapunov
equation

(Aϵ +BϵKϵ)
⊤Pϵ(Aϵ +BϵKϵ)− Pϵ = −[C⊤

ϵ QeCϵ+

2C⊤

ϵ QeDϵKϵ +K⊤

ϵ RϵKϵ]
(30)

where Kϵ is such that Aϵ +BϵKϵ is Schur.

Finally, the constraint set G enforces the constraints (3):

G :=


(δuk, ϵk)|(uk+i, xk+i) ∈ U× X, i = 0, . . . , N − 1


.

and the set Ef is a terminal set constructed such that

ϵk+N ∈ Ef =⇒ (ϵk+N ,Kϵϵk+N ) ∈ X× U and

(Aϵ +BϵKϵ)ϵk+N ∈ Ef
(31)

The main challenge is reformulating the constraints on
u and x in terms of the optimization variables δu and
ϵ. Inspired by Betti et al. (2013), we write the relation
between these variables as the dynamic system



ϵk+i+1

r



= A



ϵk+i

r



+ Bδuk+i (32)



xk+i

uk+i−1



= C



ϵk+i

r



+Dw̄. (33)

where

A :=



Aϵ 0(n+p)×p

0p×(n+p) Ip



, B :=



Bϵ

0p×m



,

and

C :=



A B
0m×n Im



S−1



In 0n×p 0n×p

0p×n Ip −Ip



,

D :=



E
0m×n



−



A B
0m×n Im



S−1



E
0p×n



.

Imposition of constraints G is then realized by imposing

C



ϵk+i

r



∈ (X× U)⊖DW, ∀i ∈ [0, . . . , N − 1]. (34)

The terminal set Ef is defined as the (projection of the)
maximal constraint admissible set O∞ (Rawlings and
Mayne, 2009) for the system (32) under the terminal
control law δuk+i = Kϵϵk+i, i ≥ N :

Ef :=



ϵ :



ϵ
r



∈ O∞



.

Solution of this optimal control problem, followed by the
application of the first control in the optimized sequence,
yields the MPLFC control law,

δuk = κ(ϵk, uk−1).

4.1 Stability and Performance Guarantees

For the following analysis, we assume that the disturbance
w̄ stays constant (otherwise steady-state operation is not
well defined). The following result summarizes the stability
and recursive feasibility of the MPLFC algorithm, and fol-
lows directly from well established results on conventional
linear MPC (Rawlings and Mayne, 2009).

Theorem 13. (Stability and feasibility). The control law
uk = uk−1 + κ(ϵk, uk−1) solves the MPLFC problem (5).

5. NUMERICAL SIMULATION

To illustrate the performance of the MPLFC algorithm,
we perform numerical simulations of the controller on the
two-area power system (See Fig. 1) from Example 12.4
in (Saadat, 1999) with parameters: Hi = {4, 3}, Di =

Fig. 1. two-area power system network

{0.6, 0.9}, τv,i = {0.2, 0.3}, τt,i = {0.5, 0.6}, τdri =
{1, 1}, αdr

i = {0.5, 0.5}, αm
i = {0.5, 0.5}, qi =

{1, 0.5}, ri = {0.5, 0.8}, si = s̃i = 0, q̃i = {0.1, 0.5}, r̃i =
{0.1, 0.1}, T12 = T21 = 2, where i ∈ {1, 2}. The system is
stabilizable and observable, and subject to the following
inequality constraints on the input, output and distur-
bances:

U :=


− 5I2 ≤ u ≤ 5I2


,Y :=


− 2I2 ≤ y ≤ 2I2


,

and W :=


− 2I2 ≤ w ≤ 2I2


The disturbance, w(t), is unknown but slowly-varying as

w(t) =





















0.4 0
⊤

5 ≤ t < 55


0 0.9
⊤

55 ≤ t < 105


1.5 0.1
⊤

t ≥ 105

(35)

The objective function for the steady-state ED problem
is derived from the cost parameters and a penalty of
Π = 400I2 on each output of the power system. To design
the MPLFC, the system is discretized using zero-order
hold with a sampling time of 0.1 seconds. The transient
performance criterion is chosen with Qe = 0.1 × I2 and
Rδ = 500I2. The MPLFC control law is then designed
with the prediction horizon, N = 5. We compare the
performance of MPLFC to a conventional MPC algorithm,
and a centralized version of the distributed averaging PI
(DAPI) controller from (Molzahn et al., 2017). Figure 2
show the performance of the proposed MPLFC algorithm
in comparison to DAPI and a standard MPC algorithm
in the second control area. From the figures, the proposed
MPLFC shows much improved transient performance com-
pared to DAPI with less oscillations, a faster convergence
to the economic dispatch setpoints and guaranteed con-
straint satisfaction. Also, the conventional tracking MPC-
based LFC can be seen to regulate the frequency and tie-
line deviations to zero for both control areas. However,
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Fig. 2. LFC Performance in Area/Node 2

it fails to achieve this using inputs that are economically
dispatching. This is evident as the inputs can be seen to
not track the economic dispatch values shown in dashed
lines.

6. CONCLUSION

An MPC-based approach to the combined ED and LFC
in a multi-area power system has been presented. The
approach uses a form of MPC that combines steady-state
optimization and tracking to provide a LFC law that drives
the power system to the ED equilibria, without explic-
itly computing this and using it as an explicit setpoint.
Recursive feasibility and stability of the closed-loop were
established under mild conditions on the system, cost,
and constraints. Simulation results on a two-area network
have demonstrated the capability of the approach for
frequency restoration while tracking a changing economic
equilibrium. Comparisons with standard approaches in the
literature have also been made. Results show that the
MPLFC algorithm developed shows superior performance
to the other two controllers (DAPI and tracking MPC).
Also, because MPLFC uses the same assumptions as a
standard tracking MPC, it is easier to implement on real
systems, and as shown in (Mc Namara and Milano, 2018)
is applicable to systems with high renewable generation
and low inertia. Future work will consider decentralized
and distributed solutions, more detailed implementation
using more realistic models, data communication issues
such as delays, and also the more realistic setting of output
measurements with state estimation.
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