
This is a repository copy of Laser cladding of rail; the effects of depositing material on 
lower rail grades.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/200496/

Version: Accepted Version

Proceedings Paper:
Lu, P., Lewis, S.R., Fretwell-Smith, S. et al. (2 more authors) (2018) Laser cladding of rail; 
the effects of depositing material on lower rail grades. In: Li, Z. and Nunex, A., (eds.) 
Proceedings of the 11th International Conference on Contact Mechanics and Wear of 
Rail/Wheel Systems (CM 2018). 11th International Conference on Contact Mechanics and 
Wear of Rail/Wheel Systems (CM2018), 24-27 Sep 2018, Delft, The Netherlands. CM2018
, pp. 610-617. ISBN 9789461869630 

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



LASER CLADDING OF RAIL; THE EFFECTS OF DEPOSITING MATERIAL 

ON LOWER RAIL GRADES 
P Lu 1, S R Lewis 2, S Fretwell-Smith 2, DI Fletcher 1, R Lewis 1,* 

1 Department of Mechanical Engineering, University of Sheffield, Mappin Street, Sheffield, S1 3JD, UK 
2 British Steel, Brigg Road, Scunthorpe, Lincolnshire, DN16 1XA, UK 

* E-mail: roger.lewis@sheffield.ac.uk

Abstract: This paper presents a study comparing the 

wear performance of laser clad rails. A grade of 

martensitic stainless steel (MSS) was deposited on two 

substrate materials: The Europe standard rail steel R260, 

and a lower grade rail steel R200. A twin-disc method 

has been used to simulate the contact of wheel and rail 

under closely controlled conditions. Although cladding 

on a lesser grade of rail does have an effect on the 

hardness and wear performance of the clad layer, the 

resulting wear performance of the clad layer assessed 

using this approach is still vastly improved over R260 

material alone. 

Keywords: laser cladding, wheel/rail contact, wear, 

microstructure, twin-disc testing. 

1. Introduction and Background

A major proportion of a train network operational cost is 

the rail maintenance. The cost of replacement of the 

worn rail or improvement of the rail’s tribological 

properties, corrosion properties and contact fatigue 

resistance, is significant. Meanwhile network downtime 

caused by rail maintenance also has a great impact on 

the disruption to commuters and cargo shipping.  

Railway rail is rolled from a single grade of steel yet 

different parts of the rail section require their own 

operating properties. For example, the rail head requires 

strong tribological properties while the web and foot are 

required to be structurally robust. There are two main 

factors that affect the durability of rail track: wear and 

rolling contact fatigue (RCF) [1, 2]. Wear and RCF 

resistant materials are available [3], however, it would 

be either difficult or costly to manufacture entire rail 

sections from them. One solution is to use premium 

grade rail steels which have good wear and RCF 

resistance. These premium rails are usually heat treated. 

This procedure is an additional step during the rail 

manufacturing process and hence has increased cost. 

Another common method to alleviate  RCF, is to 

periodically grind the rail head which reduces crack 

development [4]. Other solutions such as surface 

treatments by peening, case hardening or surface coating 

can also enhance the wear and RCF performance of 

many engineering materials. However, rails are usually 

rolled in lengths of over 100 metres so incorporating 

these processes into rail manufacture would be 

impractical and costly. The maximum shear stress, 

which is a primary driver of RCF, occurs below the 

surface of the material in most cases. Therefore, 

traditional surface coatings are not sufficiently thick to 

prevent damage caused by this sub-surface shear stress. 

In recent research [5-8], laser cladding technology was 

shown to be an alternative way to improve the durability 

of rail both in terms of wear and RCF [7, 8]. Laser 

cladding technology can deposit a wide range of 

beneficial materials onto a certain area or an entire 

existing rail surface. Instead of rolling the entire rail 

section with costly premium material, laser cladding 

allows the deposition of the premium material onto the 

surface of a standard or cheaper structural base steel. 

Tests performed in [7, 8] show significantly enhanced 

performance and durability of rail which had been laser 

clad. In addition, rail not only consists of straight track, 

but is also made up of other rail constructed components 

such as switches and crossings (S&C), insulated block 

joints (IBJs), check rails and tight radius curves. The 

related maintenance costs of these components are much 

greater than that of straight track [9, 10]. The laser 

cladding process offers the possibility to locally treat 

those components where they are more prone to 

damage, leading to new enhanced components with 

potentially reduced overall lifetime costs. Laser cladding 

offers the opportunity of altering certain surfaces of 

components and constructions to meet each individual 

requirement.  

As mentioned above, resistance to wear and RCF play 

two vital roles in the maintenance of a rail network. 

Anti-wear characteristics are related to the hardness and 

microstructure of the material, which can be improved 

with laser cladding technology. For example, Guo et al. 

[11] investigated the microstructure and tribological

properties of a Ni-based coating after laser cladding

with Tungsten carbide Nickel (WC–Ni) particles, and

they found that the hardness of the conventional alloy

coatings is greatly improved due to the formation of a

new hard WC phase. Guo et al. [12] proved that the

wear rate was dramatically reduced after investigating

the microstructure of the laser cladding layer (Co-based

alloy) on the rail-wheel or rail surface. Wang et al. [13]

investigated the effect of the amount of lanthanum oxide

(Fe-based alloy), in a laser cladding deposit and they

achieved a more refined microstructure, which had a

greater RCF resistance without sacrificing the surface

hardness. Research on laser cladding has not only been

performed at a scaled model test. Lewis et al. [14]

conducted a series of full-scale tests on a rail that had

been laser clad with a layer of high performance

material. In these tests it was shown that the clad rails
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not only had decreased wear rates, but also improved 

fatigue resistance over standard rail. 

It can be seen that wear and RCF resistance of laser clad 

coatings is becoming an important research issue and 

the current state of the art focuses on characterising the 

wear and RCF resistance over a wide range of laser clad 

materials, such as in [11-13, 15-18].  

In contrast to the previous laser cladding research, there 

is little work in investigating the contribution of the 

substrate material. When the head of a rail is clad with 

premium material the requirements of the substrate 

become purely structural and it becomes shielded from 

damage at the rail surface. Moreover, the migration of 

peak sub-surface shear stress towards the rail surface 

under high rail-wheel traction conditions places this 

particularly damaging stress into the harder clad layer, 

rather than the more vulnerable bulk material. This is 

especially beneficial as cyclic shear stress combined 

with compressive wheel load is responsible for rail 

plastic damage accumulation and crack initiation by the 

ratchetting mechanism. As such, the work described in 

this paper was intended to investigate the usage of 

different substrate materials, namely R200 and R260, 

using the same cladding material. This also provides an 

insight into how the substrate affects the properties of 

the cladding layer, dilution zone and overall rail 

durability.  

2. Method and Materials

2.1. Experimental apparatus

The wear experiments were carried out using the 

Sheffield University ROlling Sliding (SUROS) twin-

disc test machine [19]. Fig. 1 shows a schematic of the 

SUROS rig and typical discs used. This machine uses a 

line contact between twin-disc specimens to simulate the 

normal load and rolling-sliding behaviour at the 

wheel/rail interface. Two discs with diameters of 47 ±

0.2 mm serve as a rail disc (upper specimen) and a 

wheel disc (lower specimen). These discs are powered 

and controlled by an AC motor and a Colchester lathe. 

The difference of speed of wheel and rail discs is used to 

control the creep. The slip ratio is defined in Eq. 1, 

where ߱ and ݎ are the rotational speed and rolling radius 

of the discs, respectively. The load is applied to the 

wheel disc by a hydraulic piston and load cell. ݈ܵ݅݌ =
ఠೢ೓೐೐೗ή௥ೢ೓೐೐೗ିఠೝೌ೔೗ή௥ೝೌ೔೗ఠೢ೓೐೐೗ή௥ೢ೓೐೐೗ାఠೝೌ೔೗ή௥ೝೌ೔೗           (1) 

Figure 1 SUROS machine and samples. 

2.2. Specimens 

2.2.1. Sample materials 

All the wheel and the rail discs’ materials were 

manufactured from actual wheel and rail. The wheel 

discs were made from R8 wheel steel, with the 

properties shown in Table 1. 

Table 1 R8 Steel grades specified by EN.

Region Specification 
Steel 

grade 

Carbon 

content 
Hardness 

(% by mass) (HB) 

Europe EN 13262 ER 8  ൑ 0.56 258-296 

For the rail substrates, two materials were chosen for 

comparison, R260 and R200, with the properties shown 

in Table. 2. 

Table 2 R200 and R260 Steel grades specified by EN.

Region Specification 
Steel 

grade 

Carbon 

content 
Hardness 

(% by mass) (HB) 

Europe EN 13674-1 
R 200 0.4-0.6 200-240 

R 260 0.62-0.8 260-300 

The R260 grade material, as the current standard rail 

material widely used in UK and some other countries in 

Europe, was chosen to provide representative results for 

comparison. While the other lower grade steel substrate 

R200 is still widely used throughout Europe. R200 has 

some properties which potentially make it an ideal 

substrate candidate for laser cladding, for instance: 

lower carbon content than R260 (0.4-0.6%

compared to 0.62-0.8%) and hence a lower bulk

hardness of 200 HB minimum as compared to

roughly 260 HB minimum for R260 grade.

easier machinability, better weld-ability, and

lower rates of foot failure [20].

Both rail substrates (R200 and R260) were machined to 

cylinders with a diameter of 46 ± 0.2 mm, clad and 

then machined into discs. 

2.2.2. Laser cladding 

In this study, one-step laser cladding by powder 

injection was employed to clad the rail cylinder 

specimens. A grade of martensitic stainless steel (MSS), 

which was found to be less susceptible to ratchetting due 

to its high hardness and shear yield strength in previous 

tribological tests [16], was deposited onto the two 

different grades of rail material. Fig. 2(a) shows a 

schematic of this cladding process, where the high 

energy laser beam is focused on and scanned across the 

curved surface of the rail substrate. As the MSS powder 

passes through the laser it is melted and fuses with the 

melt pool on the surface of the substrate material. The 

shaft rotates under the laser to allow a single track of 

clad to be deposited on the surface. Individual tracks are 

then overlapped side-by-side to cover the shaft surface. 

As the laser passes the substrate will start to cool at a 

rapid rate. This high rate of cooling is due to the greater 
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volume of substrate which is at a lower temperature than 

the freshly laid deposit. This heating and rapid cooling 

of the substrate causes changes in its microstructure 

throughout a certain depth of the bulk, which is called 

the heat affected zone (HAZ).  

Fig. 2 (b) gives an example of the shafts covered by 

cladding tracks. It should be noted that all the machining 

parameters including the MSS powder feeding rate, the 

laser power and the rotating speed of the shaft were all 

optimized to achieve a poreless clad layer with 

outstanding mechanical properties, as well as a 

satisfactory bonding between the substrate and deposit.  

(a) 

(b) 

Figure 2 Laser cladding (a) laser cladding scheme (b) laser clad 

cylinders prior to finish grinding. 

Once cooled the clad layer was ground back to give a 

smooth surface finish which was suitable for testing. 

The single layer of MSS material had a mean post-

grinding thickness of 1.10 mm. The ground cylinders 

were then sectioned and machined into SUROS rail 

specimens with dimensions as shown in Fig. 3. The 

wheel discs were not clad as the focus of this work was 

the cladding of rails only.  

Figure 3 Cladded rail disc parameters. 

2.2.3. Micro-hardness & Microstructure analysis  

For the microhardness mapping and microstructure 

analysis, the discs were sectioned, mounted in 

conductive Bakelite base and polished down to a 1݉ߤ 

Ra finish for the micro-hardness and microstructural 

analysis. Pre-test micro-hardness measurements were 

taken with un-tested discs. These results were generated 

after cladding, but prior to any load application, so did 

not capture any strain hardening under load. Vickers 

micro-hardness measurements were taken using a load 

of 1.00 kg and dwell time of 10 seconds. The 

indentation process started from the cladding edge 

towards the centre of the specimen, and the edge was 

defined as the zero position, see Fig.4.  

Figure 4 Hardness mapping direction and location. 

Fig. 5 shows results of microhardness case 

measurements for the R200 and R260 rail material clad 

with a single layer of MSS material. As shown in Fig. 5, 

the hardness of the MSS clad layer ranges from 530ܸܪ 

to 630ܸܪ. It can also be seen that the increase of the 

hardness of the substrate material leads to a 

corresponding increase in the hardness of the MSS 

deposit. This will be caused by mixing of the deposit 

material with the softer or harder substrate during the 

fusion stage of the cladding process. However, prior to 

the measurements it was not expected that this mixing 

effect would extend into the entirety of the clad layer or 

have such a marked effect.  

The material in the “dilution” zone, where the clad 

material mixed with the base material, has a hardness 

value between that of the cladded layer and the base 

material. While in the HAZ, where the base material’s 

microstructure is changed during the heating and 

cooling process, the hardness reduced gradually towards 

the boundary with the base material.  

Figure 5 Hardness mapping for untested samples. 

The microstructure images are shown in Fig. 6 and Fig. 

7. These heat affect zones were classified according to

the term system of Farichild [21].  The overview images

were taken using an optical microscope (CARLZEISS

axio imager a2m, Zeiss Göttingen, Germany), and the

backscattered electron (BSE) SEM analyse on the HAZ

was conducted by using a SEM (Hitachi TM-3030

Tabletop Scanning Electron Microscope, Tokyo, Japan).

All the polished specimens for microscope and SEM

analysis were etched with 2% Nital solution to expose

the grain boundaries.
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Dilution Coarse-grain 

Fine-grain Inter-critical HAZ 

Sub-critical HAZ Bulk material 

Figure 6 Microstructure of HAZ in untested MSS on R260 (2% Nital 

etched): (a1), (a2) are for the Dilution zone. (b1), (b2) are for the 
Coarse-grain. (c1), (c2) are for the Fine-grain zone. (d1), (d2) are for 

the Inter-critical zone. (e1), (e2) are for the Sub-critical zone. (f1), (f2) 

are for the Base material. 

Dilution Coarse-grain 

Fine-grain Inter-critical HAZ 

Sub-critical HAZ Bulk material 

Figure 7 Microstructure of HAZ in untested MSS on R200 (2% Nital 
etched): (a1), (a2) are for the Dilution zone. (b1), (b2) are for the 

Coarse-grain. (c1), (c2) are for the Fine-grain zone. (d1), (d2) are for 

the Inter-critical zone. (e1), (e2) are for the Sub-critical zone. (f1), (f2) 

are for the Base material. 

a1 b1 

a2 b2 

c1 

c2 

d1 

d2 

e1 f1 

e2 f2 

a1 b1 

a2 b2 

c1 

c2 

d1 

d2 

e1 f1 

e2 f2 
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While for the cladded layers, the 2% Nital acid solution 

could not expose any grain boundaries, therefore a more 

corrosive solution, 4.76% Nitric, 47.62% hydrochloric 

and 47.62% water, was used to reveal their 

microstructure, and the results are shown in Fig. 8 and 

Fig. 9 for MSS on R260 and MSS on R200, 

respectively. It should be note that these tiny pores were 

caused by the strong etchant, as none of them can be 

observed from the 2% Nital etched samples shown in 

Fig. 6 and Fig. 7.   

Clad edge Dilution 

Figure 8 Microstructure of clad zone in untested MSS on R260 
(4.76% Nitric, 47.62% hydrochloric and 47.62% water etched): (a1), 

(a2) are for the clad edge. (b1), (b2) are for the dilution zone. 

Clad edge Dilution 

Figure 9 Microstructure of clad zone in untested MSS on R200 
(4.76% Nitric, 47.62% hydrochloric and 47.62% water etched): (a1), 

(a2) are for the clad edge. (b1), (b2) are for the dilution zone. 

2.3. Tribological testing 

Testing was conducted using the SUROS twin-disc 

testing machine shown in Fig. 1, taking the 47mm 

diameter wheel and rail discs and loading them to 

produce a small-scale contact capturing the key 

elements of combined rolling-sliding behaviour 

characteristic of a rail-wheel contact. With a line contact 

length in the lateral dimension of wheel/rail rollers of 10 

mm, contact load of 7.14 kN which gives a maximum 

Hertzian contact pressure of 1500 MPa was used with a 

rail disc rotational speed of 400 rpm and creep of 1% 

representing a driving wheel condition. Wear tests were 

conducted under dry conditions. During the wear testing 

the tests were stopped every 5,000 cycles so that the 

evolution of the wear rate could be measured. These are 

standard wear settings for SUROS testing [19].  

Material loss was measured in the tests with 

microstructural analysis. Microhardness measurements 

of the specimens was carried out before and after testing 

to investigate what effect the substrate grade had on the 

performance of the clad MSS deposit. Comparisons 

were also made to baseline measurements for R200 and 

R260. 

3. Results and discussion

3.1. Wear results

Figure. 10 shows the evolution of the wear rates of the 

rail and wheel discs. All tests depicted in this section 

were conducted under dry contact condition with a 

maximum Hertzian contact pressure of 1500 MPa and 

1% creep. These results were also compared with tests 

done under identical conditions in [8]. 

Tests were conducted with the MSS R260 and MSS 

R200 samples with compressed air jet spraying on 

samples for temperature control. The results have been 

compared with the results from Lewis et al. [8], in 

which tests were done with cooling air. With the cooling 

air, the contact temperature between discs were kept at 

37 ± ͳԨ during the whole test.  

(a) 

 (b) 

Figure 10 Wear rate evolution of (a) the rail discs and (b) with the 
number of test cycles for the R200 clad with MSS and R260 clad with 

MSS. The chart includes data from [8] with various material deposited 

onto R260 material. All tests were performed under identical 
conditions. 1L indicates 1 layer and 2L indicates a 2-layer sample. All 

samples tested in the work reported in this paper were made with 1 

layer. 

From Fig. 10 (a), it can be seen that the MSS on R200 

and MSS on R260 rail discs wore at similar rates and 

had similar performance to an R260 disc clad with 

a1 b1 

a2 b2 

a1 b1 

a2 b2 
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Stellite 12 tested in [8]. As Stellite 12 was seen to be the 

second best performer of all the deposit materials tested 

in [8]. It is encouraging that an MSS clad layer on a 

lower grade of rail steel is still giving a good 

improvement in wear resistance over the R260 baseline. 

Even though, as Figure 5 demonstrates, its hardness post 

cladding, but before load application, was affected. 

Mechanisms for this will only be revealed, however, 

once the tested samples are sectioned and case hardness 

measurements performed. Interestingly the post-test 

surface hardness of the MSS 1L tested in [8] was 

766HV compared to 630 HV for the MSS clad on R260 

sample tested here (see Figure 5). This indicates that it 

could be inferred that a significant degree of work 

hardening may have occurred during the tests performed 

in this research. It must also be noted though that the 1 

layer samples tested in this work wore more severely 

than the 1 layer MSS sample tested in [8]. There are a 

few potential explanations for this: a) that the powder 

and hence the eventual deposited MSS was from a 

different batch for the tests reporting in this paper as 

compared to the samples in [8]. Also in this work whole 

cylinders of R200 and R260 material were clad and then 

manufactured into SUROS samples. In [8] the SUROS 

samples were first machined and then individually clad. 

This latter approach caused issues with heat dissipation 

during the cladding process and very high cooling rates 

of the clad were observed.  

Table. 3 summarises the wear rate of all the rail 

specimens shown in Figure 10 averaged over the whole 

30,000 cycle test period. The average for the MSS clad 

on 200 is distorted by the wear rate at 25,000 cycles. 

Otherwise it is only slightly above MSS on R260. In 

Table. 3 any wear rate which was in excess of either the 

Reference (R260 Grade) wheel or rail, i.e. 100% or 

greater, has been highlighted red. Any wear rate which 

is less than the reference is highlighted green indicating 

good wear performance. Wear rates which are less than 

50% of the reference case are highlighted light green 

indicating superior wear performance.  

It should be noted that the wear rates of the tests in [8] 

were slightly higher (both wheel and rail around 20%) 

than the current tests, when comparing the results of 

reference R260 tests. It can be seen from Table. 3 that 

all of the clad rail discs tested are in the good/ superior 

wear category. The MSS on R260 rail discs have shown 

superior wear resistance, which gave a 65%-73% wear 

rate reduction. Even the MSS on R200 rail discs have 

presented a 40% wear rate reduction compared to the 

standard R260 samples. At the same time, the wear rate 

of corresponding wheel discs also fell within the good 

wear category.  

Table 3 Averaged wear rates of rail specimens over the entire 30,000 

cycles (Data from similar tests performed in [8] included for 
comparison). 

Wear Rate Wear Rate ࢋ࢒ࢉ࢟ࢉ/ࢍࣆ 
Percentage of Ref 

R260 

Clad W R W R 

Ref R260 10.88 7.84 100% 100% 

Ref R260 [8] 13.14 9.64 121% 123% 

MSS R200 5.97 4.62 55% 59% 

MSS R260 9.49 2.11 87% 27% 

MSS_1L R260 [8] 8.96 1.04 82% 13% 

MSS_2L R260 [8] 12.65 2.63 116% 34% 

Stellite12_1L R260 [8] 7.72 4 71% 51% 

3.2. Traction 

Table 4 shows average traction results for each of the 

different claddings compared to an unclad reference 

R260 grade rail disc.  

Table 4 Traction coefficient comparison with results from [8].

Ref 

R260  

Ref 
R260 

[8] 

MSS 

R200  

MSS 

R260  

MSS_

1L 

R260 
[8] 

MSS_

2L 

R260 
[8] 

Stellite

12_1L 

R260 
[8] 

0.37 0.39 0.36 0.38 0.395 0.385 0.405 

It can be observed that the cladded samples had a 

similar traction coefficient with the ref R260 samples, 

which suggests the cladded layer does not influence the 

traction properties of rail.  

3.3. Topography measurements 

All surfaces were examined using the optical (non-

contact) Alicona Infinite-Focus SL profilometer 

(Alicona Imagine GmbH, Raaba, Austria) after 30000 

cycles, producing high-resolution images and 3D 

surface profiles measurements with a vertical resolution 

of up to 10 nm.  

Table 5 Traction coefficient comparison with results from [8]. 

Ref 260 without 

cladding  

MSS cladding on 

R260 

MSS cladding on 

R200 

ܴ𝑎𝑎: 6.0614݉ߤ71.4973 :ݖܴ ݉ߤ18.6459 :ݍܴ ݉ߤ 

ܴ𝑎𝑎: 0.6450݉ߤ3.4856 :ݖܴ ݉ߤ0.8080 :ݍܴ ݉ߤ 

ܴ𝑎𝑎: 0.7464݉ߤ4.1182 :ݖܴ ݉ߤ0.9542 :ݍܴ ݉ߤ 

As can be seen from Table. 5, both MSS on R260 and 

MSS on R200 specimens have shown a smooth surface 

finish after tests, with a surface roughness ܴ௔ <

 This indicates that only mild wear occurred .݉ߤ0.75

during tests, and these smooth surfaces show no sign of 

flake formation characteristic of a significant depth of 

material reaching the ductility exhaustion strain at which 

large flakes would form. In contract, on the reference 

R260 rail disc it can be observed that the top layer of 

material was peeling up from the surfaces, and the 

surface roughness was 10 times higher than that of the 

cladded specimens. This suggests that strain in the 

surface has accumulated (i.e. by a ratchetting 

mechanism) to the point of ductility exhaustion at which 
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it loses integrity and breaks away from the main body of 

the steel. 

3.4. Sub-surfaces inspection 

After the surface topography measurements, tested rail 

specimens were then sectioned and examined for: micro 

hardness and micro- structural changes. Fig. 11 gives a 

comparison of the hardness pier and after the test. It 

should be noted that these hardness values were 

gathered from different specimens, but all were taken 

from the same parent material. 

As can be seen from Fig. 11 (a), the outside layer of 

material has worked hardened after testing, and a 

hardness of around 480 HV was achieved near the top 

surface of the tested specimen. While for the cladded 

rail specimens, the work-hardened effects were not as 

marked as for the reference R260 sample as shown in 

Fig. 11 (b) and Fig. 11 (c).  

(a) 

(b) 

(c) 

 Figure 11 Microhardness case depth measurements for the (a) tested 

reference R260 sample (b) MSS clad on R260 and (c) MSS clad on 
R200 with the straight line representing the mean microhardness of 

standard un-clad, un-tested rail material. All measurements were 

performed with a load of 1kg. 

The sub-section of samples was also examined under 

SEM to check the plastic deformation depth caused by 

testing. According to measurements judged by visually 

observation, see Fig. 12 (a), the R260 samples had a 

plastic deformation depth of approximately 400 ݉ߤ 

while the clad rail samples only had 10 െ  As .݉ߤ 20

shown in Fig. 12 (b), only a very thin layer of the MSS 

clad layer shows material flow, and no cracks could be 

observed within this deformation layer, i.e. the material 

had not reached its ratchetting strain ductility exhaustion 

strain. The rest of the clad layer had the same structure 

as the untested samples shown in Fig.7 and Fig. 8. The 

low amount of plastic deformation in the clad rail 

specimens also explains why no cracks were seen in all 

of the clad rail specimens. 

(a) (b) 

(c) (d) 

Figure 12 (a) plastic deformation depth comparison and clad edge’s 

microstructure deformation of tested samples: (b) is the Reference 

R260 sample without cladding. (c) and (d) are the clad edge of MSS 
on R260 and MSS on R200 samples, respectively. All samples were 

tested under 1500 MPa contact pressure, and 1% slip ratio with 

cooling air.

4. Conclusions

Twin-disc tests have been performed on both R200 and 

R260 rail after being laser clad with a single layer of 

MSS material. It has been shown that: 

 MSS can be successfully deposited on a R200 

grade of rail material which is softer than 

previously the used R260. 

 A sample with the softer R200 substrate material 

also showed a corresponding reduction in the 

hardness of the clad layer relative to the R260 

substrate. Additional tests are needed to isolate 

the cause, which may be due to mixing of the 

softer/harder substrate material with the clad 

layer, but could also be influenced by the 

different thermal route taken in preparing the 

samples.  

 The hardness differential between the clad R200 

and R260 is reflected in the wear rates between 

the two samples with the R200 clad sample 

giving a higher wear rate. 

 Despite differences between clads on R200 and 

R260 both samples wore below 5݈݁ܿݕܿ/݃ߤ. This 

represents a wear rate of 50% or less relative to 

the reference R260 sample without cladding.  
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Although cladding on a lesser grade of rail does have an 

effect on the hardness and wear performance of the clad 

layer, the resulting wear performance of the clad layer 

assessed using the twin disc approach is still improved, 

with the wear rate reduced to 0.59 times of the R260 

material alone. R260 material alone. In addition, the 

minimum plastic deformation depth and the smooth 

surface finish after tests indicates the clad rail specimen 

are also beneficial for wear rate reduction of the 

untreated wheel. 
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