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This article examines the three-way relationship between right 
coherency of a monoid S, solutions of equations over S-acts, 
and injectivity properties of S-acts. A monoid S is right 
coherent if every finitely generated subact of every finitely 
presented (right) S-act itself has a finite presentation. Purity 
properties of an S-act A may either be expressed in terms of 
solutions in A of certain consistent sets of equations over A, 
or in terms of injectivity properties. For example, an S-act 
A is absolutely pure (almost pure) if every finite consistent 
set of equations over A (in one variable) has a solution 
in A. Equivalently, A is absolutely pure (almost pure) if it 
is injective with respect to inclusions of finitely generated 
subacts into finitely presented (monogenic finitely presented) 
S-acts.
Our first main result shows that for a right coherent monoid S
the classes of almost pure and absolutely pure S-acts coincide. 
Our second main result is that a monoid S is right coherent if 
and only if the classes of mfp-pure and absolutely pure S-acts 
coincide: an S-act is mfp-pure if it is injective with respect to 
inclusions of finitely presented subacts into monogenic finitely 
presented S-acts. We give specific examples of monoids S that 
are not right coherent yet are such that the classes of almost 
pure and absolutely pure S-acts coincide. Finally we give a 
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condition on a monoid S for all almost pure S-acts to be 
absolutely pure in terms of finitely presented S-acts, their 
finitely generated subacts, and certain canonical extensions.

© 2023 The Authors. Published by Elsevier Inc. This is an 
open access article under the CC BY license (http://

creativecommons .org /licenses /by /4 .0/).

1. Introduction and preliminaries

This article is a contribution to the study of coherency for monoids. Specifically, it 
concerns the relationship between coherency of a monoid and purity properties of its 
acts. Let S be a monoid with identity 1. Coherency of S may be defined in terms of its 
S-acts. A right S-act is a set A together with a map A × S → A, where (a, s) �→ as, 
such that for all a ∈ A and s, t ∈ S we have a1 = a and a(st) = (as)t. Left S-acts are 
defined dually; by ‘S-act’ we will mean by default ‘right S-act’, with the corresponding 
convention for R-modules over a ring R. An S-act is a representation of S by mappings 
of a set, analogously to the way in which an R-module is a representation of a ring R by 
homomorphisms of an abelian group. The theory of S-acts both intertwines with that of 
R-modules, and pulls apart from it, a phenomenon emphasised by this article.

A monoid S is right coherent if every finitely generated subact of every finitely pre-
sented S-act is finitely presented. This definition is analogous to that for a ring R, where 
the notion of S-act is replaced by that of R-module. For both monoids and rings, right 
coherency is an important finitary condition, that is, one certainly satisfied by all finite 
monoids or rings, and is strictly weaker than that of being right noetherian [18,19]. In 
fact, a ring R is right coherent if and only if every finitely generated right ideal of R
has a finite presentation [3]. The corresponding statement is not true for S-acts, the free 
inverse monoid providing a counter-example [11]. Essentially this split in the theories is 
due to the fact that for S-acts, congruences are not determined by subacts. Moreover, 
right coherency of R is equivalent to the property that products of flat left R-modules 
are flat [3]. Again, we do not have that tool to use for S-acts, although some partial 
results are known [8]. Here [2,20] are also relevant, since they consider closure properties 
of the classes of flat left S-acts, and use this to define a related notion of coherency.

Although a very natural property, it transpires that right coherency for monoids is 
difficult to pin down. Even with the aid of a Chase-type condition as in Theorem 2.5, it 
can be hard to ascertain whether or not a given monoid is right coherent. Nevertheless, 
right coherency (or not) of monoids in a number of important classes has been determined 
[8,10,11]. The interaction between coherency and standard algebraic properties is subtle 
[5].

Coherency for both monoids and rings is related to the model theory of their acts 
and modules. In 1976 Wheeler [22] defined a coherent theory for a first order language. 
A theory of S-acts or R-modules is coherent in Wheeler’s sense if and only if S or R is 
right coherent in our sense, and this is equivalent to their classes of existentially closed 
S-acts or R-modules being first order axiomatisable [7,22]. Existential closure refers to 
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the existence of solutions of finite consistent sets of equations and inequations. In this 
article we will be examining the relationship between right coherency and equations, the 
latter providing one approach to the properties we refer to as purity properties.

Given an S-act A an equation over A has one of the following three forms: xs =
xt, xs = yt or xs = a where x, y are variables, s, t ∈ S and a ∈ A is a constant. We will 
set up our notation for equations over A more formally in Section 3. A set Σ of equations 
over A is consistent if Σ has a solution in some S-act B containing A. We are concerned 
with the question of when a consistent set Σ of equations over A, of a particular form, 
has a solution in A. This leads us to so-called purity notions for an S-act. We now outline 
the main ones of our concern.

An S-act A is absolutely pure if every finite consistent set of equations with constants 
from A has a solution in A. An S-act A is almost pure if every finite consistent set of 
equations in one variable with constants from A has a solution in A. These and other 
notions of purity may equivalently be phrased in terms of completion of diagrams, as 
weak versions of injectivity, whence the terminology arises.

We recall that an S-act A is injective if any diagram of S-acts and S-morphisms of 
the form on the left

C B

A

θ

C B

A

θ
θ

may be completed via an S-morphism θ as on the right. It is known that an S-act A is 
absolutely pure (almost pure) if and only if any diagram on the left, where C is finitely 
presented (and monogenic) and B is finitely generated, can be completed as on the right 
(see [6, Proposition 3.8] and [9, Proposition 3.2]1). By imposing the condition that B and
C are finitely presented and C is monogenic we obtain the notion we call mfp-purity. 
We explain in Section 3 how mfp-purity may be correspondingly phrased in terms of 
equations. Analogous notions and similar observations are true for R-modules (see, for 
example, [21,17], and also [16]).

We denote by Afp
S (1), AS(1) and by AS(ℵ0) the classes of mfp-pure, almost pure and 

absolutely pure S-acts, respectively. Clearly, any absolutely pure S-act is almost pure 
and any almost pure S-act is mfp-pure, that is,

AS(ℵ0) ⊆ AS(1) ⊆ Afp
S (1).

The question of the converse inclusions motivates much of this paper; we demonstrate 
that the answers are intimately related to the notion of right coherency.

1 In the latter, empty acts were not allowed, hence the slightly different wording.



4 Y. Dandan, V. Gould / Advances in Mathematics 429 (2023) 109182
Question 1.1. For which monoids S is:

(1) AS(ℵ0) = AS(1)?
(2) AS(1) = Afp

S (1)?
(3) AS(ℵ0) = Afp

S (1)?

It is pertinent to pose Question 1.1, for the following reasons. Concerning (1), we know 
that if all S-acts are almost pure, then all S-acts are absolutely pure [9]. Second, an 
S-act A is injective if and only if all consistent sets of equations over A have a solution in 
A [6, Proposition 3.10] and by the Skornjakov-Baer Criterion [13], this is equivalent to all 
consistent sets of equations in one variable over A having a solution in A. However, the 
proof of the Skornjakov-Baer Criterion uses arguments that do not work in our case of 
finite sets of equations. From the proof of [17, Theorem 4], for a right coherent ring any 
almost pure module is absolutely pure. However, the full solution to the corresponding 
question to (1) is still open for R-modules, as well as for S-acts. It is worth noting that for 
some other classes of algebras, with very different signatures, (1) has a positive answer. 
In particular, if a group G has the property that any finite consistent set of equations 
in one variable with constants from G has a solution in G, then it has the property that 
any finite consistent set of equations in any (finite) number of variables with constants 
from G has a solution in G; the same is true for semigroups [14,15]. These results for 
semigroups and groups use a property of extensions that does not hold for S-acts in 
general.

Concerning (2) and (3), by very definition, a right coherent monoid is such that 
AS(1) = Afp

S (1). The situation for rings gives us some pointers to the conjecture that 
only right coherent monoids will give this equality. The article [16] demonstrates that 
all IFP-injective R-modules are absolutely pure if and only if R is right coherent. Here 
the property of being IFP-injective is closely analogous to mfp-purity. We note that 
the classical work for rings, as may be found in [21,17,16], and other articles, use ring 
theoretic techniques and results, including the correspondence with flatness properties, 
that are not valid for monoids.

We do not fully answer Question 1.1(1) but we are able to show the class of monoids 
S such that AS(ℵ0) = AS(1) properly contains the class of right coherent monoids. It 
follows that the property of a monoid that AS(ℵ0) = AS(1) is a finitary property, that 
is, one satisfied by all finite monoids. On the other hand we fully answer Question 1.1(2) 
and (3), with the classes in question being precisely that of right coherent monoids. To 
prove our results, we establish and utilise two pieces of machinery. One enables us to 
pass smoothly between the equational approach to purity and weak injectivity properties. 
The other involves constructing, for any S-act A and a given purity property, a canonical 
extension of A having that property.

We proceed as follows. In Section 2 we set up our notation and give preliminary 
results that will be used throughout. In Section 3 we introduce the notion of a frame
F of a set of equations, of a frame set F , and of F -purity. This allows us to build the 
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aforementioned machinery to fully delineate the passage between purity properties of an 
S-act, and weak injectivity. The results above for almost and absolutely pure S-acts are 
special cases.

Section 4 contains our first main result, motivated by Question 1.1(1).

Result 1.2. (cf. Theorem 4.1). Let S be a right coherent monoid. Then AS(ℵ0) = AS(1).

To answer Question 1.1(2) in Section 5 we build, for a frame set F and an S-act A, 
an F -pure extension A(F ) of A that is canonical in the sense A is F -pure if and only if 
A is a retract of A(F ). This is our second promised piece of machinery. In Section 6 it 
is utilised to prove our second main result, which completely answers Questions 1.1(2) 
and (3).

Result 1.3. (cf. Theorem 6.1). A monoid S is right coherent if and only if AS(1) = Afp
S (1)

if and only if AS(ℵ0) = Afp
S (1).

An immediate question is whether or not right coherency is a necessary condition for 
AS(ℵ0) = AS(1)? The answer is no. It is easy to see that if S has the property that every 
finitely generated S-act embeds into a monogenic act, then again AS(ℵ0) = AS(1). Such 
monoids are somewhat special; in particular, they cannot have zeros. Our next result, 
in Section 7, hangs on delicate analysis of a particular monoid, named the Fountain 
monoid.

Result 1.4. (cf. Theorem 7.5) There exists a monoid S that is not right coherent, is such 
that not every finitely generated S-act embeds into a monogenic act, but AS(ℵ0) =
AS(1).

We believe our example is one of a broader class, and we pose the corresponding 
problem at the end of Section 7.

Finally, in Section 8, we use the machinery developed in Section 5 to give a condition 
on S for AS(ℵ0) = AS(1) in terms of finitely presented S-acts, their finitely generated S-
subacts, and their canonical extensions. The question of whether or not AS(ℵ0) = AS(1)
for all monoids S is still open, as it is for R-modules, although we conjecture the answer 
will be negative.

We attempt to keep this paper as self-contained as possible. For further details we 
refer the reader to [12] for background in semigroup theory, and to [13] for information 
on monoid acts.

2. Preliminaries

The aim of this section is to set up notation and then proceed to preliminary results, 
which will be used throughout the article.
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2.1. The category of S-acts

Let S be a monoid with identity 1. We recall that a right S-act is a set A together 
with a map

A× S → A, (a, s) �→ as

such that for all a ∈ A and s, t ∈ S we have a1 = a and a(st) = (as)t. Naturally, we may 
define left S-acts in a dual manner, but in this article all S-acts will be right S-acts, and 
for convenience we will refer to them simply as S-acts. Note that we allow A = ∅. If A
is an S-act, then there is a monoid morphism from S to the full transformation monoid 
TA on A, taking s to ρs, where aρs = as. Conversely, any morphism ϕ from S to the 
full transformation monoid TB on a set B makes B into an S-act by setting bs := b(sϕ). 
The study of S-acts is, therefore, that of representations of the monoid S by mappings of 
sets. Not surprisingly, in view of the natural way in which they arise, S-acts come under 
a plethora of names (S-sets, S-polygons, S-systems, to name a few). We note that any 
unary algebra may be regarded as an act, for example, over the free monogenic monoid.

For any monoid S the class of all S-acts forms a variety of universal algebras, where the 
basic operations are the unary operations {ρs : s ∈ S}. We refer to an algebra morphism 
in this variety as an S-morphism. It follows that a function φ : A → B, where A and 
B are S-acts, is an S-morphism if (as)φ = (aφ)s for all a ∈ A, s ∈ S. In the standard 
way we have a category, the objects of which are S-acts and the morphisms of which are 
S-morphisms. A subset B of an S-act A is a subact if bs ∈ B for all b ∈ B, s ∈ S. An 
S-morphism ϕ : A → B, where B is a subact of A, is a retraction if ϕ|B is the identity 
map 1B of B; the subact B is then called a retract of A. The set of subacts of A is well 
behaved in the sense it is closed under unions and intersections. In fact, a disjoint union 
of any S-acts is again an S-act in an obvious way. Any right ideal of S is a right S-act 
so S itself is a right S-act. That S is the free monogenic (i.e. single generated, or cyclic) 
S-act follows from the below.

An S-act F is free on a set X if there is a map ι : X → F such that for any S-act A
and map f : X → A there is a unique S-morphism ϕ : F → A such that ιϕ = f . Since 
S-acts form a variety the free S-act on X exists. It has a transparent structure, which 
we now describe. Put

FS(X) = X × S :=
⋃

x∈X

xs

where we make the (convenient) identifications (x, s) := xs and (x, 1) := x. Define an 
action of S on FS(X) by (xs)t = x(st). It is easily seen that FS(X) is the free S-act on 
X where xι = x. Note that for any s, t ∈ S and x, y ∈ X, we have that xs = yt if and 
only if x = y and s = t.

Morphic images of S-acts are obtained by factoring out by the appropriate notion of 
congruence. Let A be an S-act. A congruence ρ on A is an equivalence relation such that 
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for any a, b ∈ A with a ρ b and any s ∈ S we have as ρ bs. We refer to a congruence on 
S regarded as an S-act as a right congruence on S. Denoting the equivalence class of 
a ∈ A by [a] we have

A/ρ = {[a] : a ∈ A}

is an S-act under the action [a]s = [as]. It is called the quotient of A by ρ. The map 
ν : A → A/ρ is then the natural S-morphism with kernel ρ. For H ⊆ A × A the 
congruence generated by H, denoted by 〈H〉, is the least congruence on A containing H. 
Without further remark we assume that H is always symmetric. An explicit formula for 
〈H〉 is obtained as follows.

Lemma 2.1. [12] Let A be an S-act and let H ⊆ A × A. Then for any a, b ∈ A we have 
a 〈H〉 b if and only if a = b or there exists a sequence

a = c1t1, d1t1 = c2t2, · · · , dntn = b

where ti ∈ S and (ci, di) ∈ H for all 1 ≤ i ≤ n.

A sequence as above will be referred to as an H-sequence of length n. We interpret 
a = b as belonging to an H-sequence of length 0.

The next definitions are merely the translations of general algebraic notions to our 
context.

Definition 2.2. An S-act A is finitely generated if A is isomorphic to FS(X)/ρ for some 
finite set X and congruence ρ on FS(X).

It is clear that a non-empty act A is finitely generated if and only if for some n ∈ N

and ai ∈ A, 1 ≤ i ≤ n, we have A = a1S ∪ · · · ∪ anS. Similarly, A is monogenic if and 
only if A = aS for some a ∈ S.

Definition 2.3. An S-act A is finitely presented if A is isomorphic to FS(X)/ρ for some 
finite set X and finitely generated congruence ρ on FS(X).

We remark that being finitely presented is not dependent on the chosen set of gener-
ators.

2.2. Right coherency

The notion of coherency is a central one to this article. We recall from Section 1:

Definition 2.4. A monoid S is right coherent if every finitely generated subact of any 
finitely presented S-act is itself finitely presented.
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To test whether a specific monoid is right coherent we usually make use of the follow-
ing, which is reminiscent of the result of Chase for rings [3].

Theorem 2.5. [8] The following are equivalent for a monoid S:
(i) S is right coherent;
(ii) any finitely generated subact of S/ρ, where ρ is a finitely generated right congru-

ence on S, is finitely presented;
(iii) for any finitely generated right congruence ρ on S and any s, t ∈ S:

(1) the subact (sρ)S ∩ (tρ)S of the right S-act S/ρ is finitely generated;
(2) the annihilator

r(sρ) = {(u, v) ∈ S × S : su ρ sv}

is a finitely generated right congruence on S;
(iv) for any finite set X and finitely generated right congruence ρ on FS(X) and any 

a, b ∈ FS(X):
(1) the subact (aρ)S ∩ (bρ)S of FS(X)/ρ is finitely generated;
(2) the annihilator

r(aρ) = {(u, v) ∈ S × S : au ρ av}

is a finitely generated right congruence on S.

It is known that groups, monoid semilattices (regarded as commutative monoids of 
idempotents), Clifford monoids (monoid semilattices of groups), free commutative and 
free monoids are all (right) coherent [8,10]. Regular monoids for which every right ideal is 
finitely generated are right coherent [10], where a monoid S is regular if for all a ∈ S there 
exists x ∈ S such that a = axa. A monoid is inverse if it is regular and its idempotents 
commute. Groups, semilattices, and Clifford monoids are all inverse, but not all inverse 
monoids are right coherent; for example, the free inverse monoid on a set with more than 
one generator is not right coherent [11].

3. Equations over S-acts

As promised in Section 1, we now formally set up our notation for equations. We 
then build machinery that will allow us to pass between solutions of consistent sets of 
equations and weak injectivity properties of an act. In order that our techniques have 
the widest application, we take care over the exact forms of equations, introducing the 
notions of equation form, frame, and frame set.

In what follows X is a non-empty set, but we do not always mention X explicitly. The 
reason is that elements of X will ultimately correspond to variables, the exact labelling 
of which is usually unimportant.



Y. Dandan, V. Gould / Advances in Mathematics 429 (2023) 109182 9
Definition 3.1. An equation form (with variables from X) is an element f = fS(X) of
(
FS(X) × FS(X)

)
∪ FS(X).

If f ∈ FS(X) ×FS(X) then we say f has type 2; if f ∈ FS(X) then we say f has type 1.

Definition 3.2. Let A be an S-act and let f = fS(X) be an equation form. An equation 
over A with equation form f (and variables from X) is an expression

xs = yt if f is (xs, yt)
xs = a where a ∈ A if f is xs.

Notice that an equation form of type 2 corresponds to a single equation, whereas a 
form of type 1 corresponds to different equations, which depend on a choice of an S-act 
A and a ∈ A. It is also worth emphasising that equations over A essentially come in 
three types:

xs = yt, xs = xt or xs = a

where x = y ∈ X, s ∈ S and a ∈ A. In expressions of this kind the roles of x, y, s, t, a etc. 
will be implicit. Note that at one and the same time we may regard x ∈ X as an element 
of the free S-act FS(X) and as a variable to be substituted by an element of an S-act.

If Σ = Σ(X) is a set of equations over an S-act A then we do not insist that every 
element of X appears in at least one equation, but this does not affect whether or not 
the set has a solution. We denote by c(Σ) the subset of X consisting of the variables 
appearing in equations in Σ.

Definition 3.3. Let Σ = Σ(X) be a set of equations over an S-act A. A solution (bx)x∈X

of Σ(X) in B consists of a subset {bx : x ∈ X} of B, where A is a subact of B, such that 
bxs = byt for all xs = yt ∈ Σ and bxs = a for all xs = a ∈ Σ.

In the above, if X = {x1, . . . , xn} then we may denote (bxi
= bi)1≤i≤n by (b1, . . . , bn), 

and say (b1, . . . , bn) is a solution of Σ or Σ(b1, . . . , bn) holds. Since we are only interested 
in when equations have solutions, we freely identify xs = yt with yt = xs and xs = a

with a = xs.
The following is essentially a result of universal algebra, but it is convenient to make 

it explicit. The proof is routine.

Lemma 3.4. Let Σ = Σ(X) be a set of equations over an S-act A and let

κΣ = {(xs, yt), (zu, a) : xs = yt, zu = a ∈ Σ}.

A solution (bx)x∈X of Σ in A corresponds exactly to a retraction ϕ : A ∪̇FS(X) → A

such that κΣ ⊆ kerϕ and bx = xϕ for each x ∈ X.
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Let Σ = Σ(X) be a set of equations over an S-act A. If A is a subact of B then we 
may regard Σ as a set of equations over B. As a consequence of Lemma 3.4 we have the 
following.

Lemma 3.5. Let Σ be a set of equations over A, where A is a retract of an S-act B. If Σ
has a solution in B, then Σ has a solution in A.

We now formally define consistency for a set of equations.

Definition 3.6. A set of equations Σ over an S-act A is consistent if it has a solution in 
some S-act B containing A.

We return to the form of equations, to establish the notions of purity we are concerned 
with in this article.

Definition 3.7. A frame (with variables from X) is a non-empty set F = FS(X) of 
equation forms. For a frame F we let

F2 = F2
S(X) = FS(X) ∩ (FS(X) × FS(X)

)
and F1 = F1

S(X) = FS(X) ∩ FS(X).

A frame set (with variables from X) is a set of frames F = FS(X).

In Definition 3.8 we use the notion of a multimap. If U and V are sets, then by a 
multimap φ : U → V we mean a subset φ of U × V , such that the projection onto the 
first co-ordinate is onto. This notion is chosen for convenience: if U = ∅, then φ = ∅, but 
if U = ∅, then uφ := {v : (u, v) ∈ φ} = ∅.

Definition 3.8. Let F be a frame, let A be an S-act and let φ : F1 → A be a multimap. 
Then

Σ = Σ(F , φ) = {xs = yt, zu = (zu)φ : (xs, yt) ∈ F2, zu ∈ F1}

is the set of equations over A with frame F and assignment φ.

Notice that a frame F with F1 = ∅ can give rise to different sets of equations, 
depending on the choice of A and φ.

Definition 3.9. Let Σ be a set of equations over an S-act A. Then the frame F(Σ) of Σ
is defined by

F(Σ) = {(xs, yt), zu : xs = yt, zu = a ∈ Σ, a ∈ A}.

The multimap φ = φ(Σ) where φ : F1 → A is defined by

(zu)φ = a, where zu = a ∈ Σ.
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If Σ is a set of equations over an S-act A and F = F(Σ) and φ = φ(Σ) are defined as 
above, then Σ = Σ(F , φ). If Σ = Σ(F , φ) is consistent, then it can contain at most one 
equation with equation form xs for any xs ∈ FS(X); this corresponds to φ being a map 
(with possibly empty domain). Since we are almost always concerned with consistent 
sets of equations, almost always our multimaps will be maps.

Definition 3.10. Let F be a frame set. An S-act is F -pure if every consistent set of 
equations Σ over A with F(Σ) ∈ F has a solution in A.

There are some important special kinds of frame sets F , resulting in important special 
kinds of F -purity; we give the examples we need in this article in Definition 3.16 below.

Proposition 3.11. Let A be an S-act. Suppose that A is a retract of an F -pure S-act. 
Then A is F -pure.

Proof. Let B be F -pure and let ϕ : B → A be a retraction. Let Σ = Σ(X) be a 
consistent set of equations over A with F(Σ) ∈ F . Given that unions of S-acts are 
S-acts, it is easy to see that Σ may be regarded as a consistent set of equations over B, 
so has a solution (bx)x∈X in B. Since A is a retract of B, (bxϕ)x∈X is a solution of Σ in 
A. Hence A is F -pure. �

Much of what we do is to build towards a converse of Proposition 3.11 - for this we 
need to construct specific extensions of A of which A is a retract. We are interested in 
conditions on A such that a given set Σ of equations has a solution in A. We remark 
that it is irrelevant how the variables of such a Σ are labelled; for example, (b1, . . . , bn)
is a solution of Σ(x1, . . . , xn) if and only if it is a solution of Σ(y1, . . . , yn). To prevent 
complete explosion of notational complexity, we may change the labelling of the variables 
in a set Σ without comment.

One reason why equations over S-acts are amenable to study is that we have a criterion 
for consistency of a set of equations: this is such that, if S is finite, then it is decidable 
whether a set of equations is consistent. We now outline the relevant ideas, which will 
be useful throughout this article.

To any frame F = FS(X) we let

H(F) = F2, ρF = 〈H(F)〉, C(F) = FS(X)/ρF and B(F) = ∪xs∈F1 [xs]S.

If F1 = ∅ then B(F) = ∅. Correspondingly, if Σ = Σ(X) = Σ(F , φ) is a set of equations 
over A we let

H(Σ) = H(F), ρΣ = ρF , C(Σ) = C(F) and B(Σ) = B(F).

In addition, we define
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K(Σ) = {(xs, a) : xs = a ∈ Σ},

so that the congruence κΣ on A ∪̇FS(X) may be defined by

κΣ = 〈H(Σ) ∪K(Σ)〉.

Continuing, we define

A(Σ) = (A ∪̇FS(X))/κΣ

and let

τΣ : A ∪̇FS(X) → A(Σ)

be the natural map, with restriction denoted by

νΣ = τΣ|A : A → A(Σ)

so that aτΣ = aνΣ = [a]. The set of equations which we obtain from Σ by replacing each 
equation of the form xs = a by xs = [a] has a solution in A(Σ). Finally, we let

θΣ : B(Σ) → A

be defined by

([xs]u)θΣ = au, where a = (xs)φ, that is, xs = a ∈ Σ.

Notice that at this stage we are not claiming that θΣ is well defined.
The following three propositions, which we use frequently in our arguments, are im-

plicit in [7, Lemma 2.3], although not always stated there in full. For completeness we 
state the results in the form required here and provide outline proofs.

Proposition 3.12. Let Σ(X) be a consistent set of equations over an S-act A with solution 
(by)y∈X . Then for all ys, zt ∈ FS(X) we have

ys ρΣ zt ⇒ bys = bzt.

Proof. Suppose that ys ρΣ zt. There exists an H(Σ)-sequence

ys = c1t1, d1t1 = c2t2, · · · , dntn = zt

where n ∈ N0, ti ∈ S and (ci, di) ∈ H(Σ) for all 1 ≤ i ≤ n. Notice that the equalities 
are in the free S-act FS(X). If n = 0 then ys = zt so that y = z, s = t and bys = bzt. 



Y. Dandan, V. Gould / Advances in Mathematics 429 (2023) 109182 13
If n ≥ 1 then we have (c1, d1) = (yh, wk) ∈ H(Σ) so that yh = wk is an equation in Σ. 
Then as s = ht1 we have bys = byht1 = bwkt1 and

w(kt1) = c2t2, · · · , dntn = zt

is an H(Σ)-sequence of length n − 1 joining w(kt1) to zt. Induction now yields the 
result. �
Proposition 3.13. Let Σ = Σ(X) be a set of equations over A. Then the following condi-
tions are equivalent:

(1) Σ is consistent;
(2) for all xs = a, yt = b ∈ Σ and v, w ∈ S,

xsv ρΣ ytw ⇒ av = bw;

(3) θΣ : B(Σ) → A is well-defined (and is an S-morphism);
(4) νΣ is an embedding of A into A(Σ).

If any of these conditions hold, then ([x])x∈X is a solution of Σ in A(Σ).

Proof. Suppose that (1) holds and (bx)x∈X is a solution of Σ. If xs = a, yt = b ∈ Σ with 
xsv ρΣ ytw, then from Proposition 3.12 we have

av = bxsv = bytw = bw,

giving that (2) holds.
Suppose that (2) holds and [a] = [b] for a, b ∈ A: we show that a = b. We either have 

this immediately, or else there exists an H(Σ) ∪K(Σ)-sequence

a = α1t1, β1t1 = α2t2, · · · , βntn = b

where ti ∈ S and (αi, βi) ∈ H(Σ) ∪K(Σ) for all 1 ≤ i ≤ n. Here we must have α1, βn ∈ A

and so (α1, β1) = (c, xs) and (αn, βn) = (yt, d) where c = xs, yt = d ∈ Σ. Assume that 
(αi, βi) ∈ H(Σ) for all 2 ≤ i ≤ n − 1. We then have that β1t1 = xst1 and αntn = yttn. 
By (2) we have that ct1 = dtn and so a = ct1 = dtn = b. Induction allows us to conclude 
that (4) holds.

If (4) holds then, given an earlier remark, identifying AκΣ with A yields (1). Finally, 
(2) and (3) are essentially reformulations of each other. �

Notice that, in the above, if B = ∅, which corresponds to there being no equations 
with constants, or equivalently F1 = ∅, then any such set of equations is consistent. 
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Indeed, any such set has a solution o in A ∪̇ {o} where {o} is a trivial (one-element) 
S-act.

If Σ is consistent, then in general, as above, it is convenient to identify A with AνΣ.

Proposition 3.14. Let Σ = Σ(X) be a consistent set of equations over A. Then the fol-
lowing conditions are equivalent:

(1) Σ has a solution in A;
(2) A is a retract of A(Σ);
(3) the S-morphism θΣ : B(Σ) → A lifts to an S-morphism θΣ : C(Σ) → A.

Proof. If Σ has a solution in A, then by Lemma 3.4 there is a retraction ϕ : A ∪̇FS(X) →
A such that κΣ ⊆ kerϕ. We may now define an S-morphism ϕ : A(Σ) → A by [t]ϕ = tϕ

which, since Σ is consistent, is a retraction by Proposition 3.13.
Conversely, if A is a retract of A(Σ) then as Σ(X) has a solution in A(X) it must 

have a solution in A. Therefore, (1) and (2) are equivalent.
To show (1) implies (3), we define a map θ′Σ : FS(X) → A by yθ′Σ = by where (by)y∈X

is a solution of Σ in A. Clearly, H(Σ) ⊆ ker θ′Σ, and so θΣ : C(Σ) → A defined by 
[t]θΣ = tθ′Σ is a well-defined morphism. Further, it is easy to check that θΣ|B(Σ) = θΣ. 
Conversely, suppose that (3) holds. Then ([y]θΣ)y∈X is a solution of Σ in A. Therefore, 
(1) and (3) are equivalent. �

We now give the promised connections between F -purity and weak injectivity prop-
erties.

Theorem 3.15. Let F be a frame set and let A be an S-act. Then A is F -pure if and 
only if every diagram of the form on the left, where F ∈ F and θ is an S-morphism,

C(F) B(F)

A

θ

C(F) B(F)

A

θ

θ

can be completed as in the diagram on the right, where θ is an S-morphism.

Proof. Suppose first that A is F -pure and F ∈ F is such that θ exists as given. For 
xs ∈ F1 we have [xs] ∈ B(F); put axs = [xs]θ and (xs)φ = [xs]θ. Now let Σ = Σ(F , φ). 
Then θ = θΣ is certainly well-defined, so by Proposition 3.13 we have that Σ is consistent. 
By assumption, Σ has a solution (bx)x∈X in A. By the proof of Proposition 3.14, θ =
θΣ : C(F) → A given by [xs]θ = bxs is a well-defined S-morphism extending θ.
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Conversely, suppose that any diagram of the given form can be completed. Let Σ =
Σ(F , φ) be a consistent set of equations over A with F ∈ F and let θ = θΣ : B(F) → A. 
By Proposition 3.13, θ is a well-defined S-morphism. By assumption, θ : B(Σ) → A lifts 
to an S-morphism θ : C(Σ) → A. The result now follows from Proposition 3.14. �

In the above, where B(F) = ∅, that is, F1 = ∅, completion of the diagram is inter-
preted as meaning the existence of a morphism C(F) → A.

We now define the various special frames and frame sets in which we will be interested.

Definition 3.16.

(1) A frame F = FS(X) is an fp-frame if F is finite and B(F) has a finite presentation. 
If F is the frame set of all fp-frames, then we refer to an F -pure act as being fp-pure.

(2) A frame F = FS(X) is an mfp-frame if |X| = 1 and it is an fp-frame. If F is the 
frame set of all mfp-frames, then we refer to an F -pure act as being mfp-pure.

(3) A frame F = FS(X) is an n-frame if F is finite and |X| ≤ n. If F is the frame set 
of all n-frames, then we refer to an F -pure act as being n-absolutely pure.

(4) If F is the frame set of all 1-frames over X, then we refer to an F -pure act as being 
almost pure.

(5) If F is the frame set of all finite frames over X, then we refer to an F -pure act as 
being absolutely pure.

Applying Theorem 3.15 to the frame sets in Definition 3.16 we have the following, 
which was known in the case of (4) and (5) [6, Proposition 3.8].

Corollary 3.17. Let A be an S-act. Then

(1) A is fp-pure if and only if it is injective with respect to inclusions of finitely presented 
subacts of finitely presented S-acts;

(2) A is mfp-pure if and only if it is injective with respect to inclusions of finitely pre-
sented subacts of finitely presented monogenic S-acts;

(3) A is n-absolutely pure if and only if it is injective with respect to inclusions of finitely 
generated subacts of finitely presented S-acts having no more than n generators;

(4) A is almost pure if and only if it is injective with respect to inclusions of finitely 
generated subacts of finitely presented monogenic S-acts;

(5) A is absolutely pure if and only if it is injective with respect to inclusions of finitely 
generated subacts of finitely presented S-acts.

Considering the frame set of all frames we immediately have:

Corollary 3.18. [6, Proposition 3.10] Let A be an S-act. Then A is injective if and only 
if every consistent set of equations over A has a solution in A.
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Definition 3.19. We denote by Afp
S (1), AS(1) and AS(ℵ0) the classes of mfp-pure, almost 

pure and absolutely pure S-acts, respectively.

Our terminology, referring to purity, comes from the completion of diagrams. Alter-
native terminology, focusing on the equations, is n-algebraically closed (for n-absolutely 
pure) and algebraically closed (for absolutely pure).

Sets of equations without any constants are rather special. In this regard we need the 
following definition.

Definition 3.20. Let A be an S-act. Then A has local zeros if for any finite set T ⊆ S

there is a a = aT ∈ A such that a = at for each t ∈ T .

Clearly, if A has local zeros, then any finite set of equations without constants is 
consistent over A and indeed has a solution in A. For a converse we have the following, 
which can be extracted from earlier works, for example [9], but which for convenience 
we prove explicitly.

Proposition 3.21. Let A be an F -pure S-act where F contains all finite frames in one 
variable contained in FS(X) × FS(X). Then A has local zeros.

Proof. Let T ⊆ S be finite and consider the set of equations Σ(x) = {x = xt : t ∈ T}. 
As remarked earlier, Σ(x) has a solution in A ∪̇ {o}. Since A is F -pure and F(Σ) ∈ F , 
we have that Σ(x) has a solution, say a ∈ A. Clearly a = at for each t ∈ T . �
4. Purity of S-acts over right coherent monoids

The aim of this section is to show that for any right coherent monoid S all almost 
pure S-acts must be absolutely pure, that is, AS(ℵ0) = AS(1). The very fact that S is 
right coherent, then yields that for such S it follows that AS(ℵ0) = AS(1) = Afp

S (1). As 
finite monoids are right coherent, we deduce that the condition that AS(1) = AS(ℵ0) is 
a finitary property for monoids.

Theorem 4.1. Let S be a right coherent monoid. Then an S-act A is almost pure if and 
only if it is absolutely pure.

Proof. Let Σ = Σ(X) be a finite consistent set of equations over A. If |X| = 1, then, 
as A is almost pure, Σ has a solution in A. Proceeding by induction, we suppose that 
|X| = n ≥ 2 and every finite consistent set of equations over A in at most n −1 variables 
has a solution in A.

From Proposition 3.21 A has local zeros. Thus, if Σ contains no equations with con-
stants, we can construct a solution to Σ in A, as commented before that proposition.

Suppose therefore that Σ contains at least one equation with a constant; suppose that 
the variable for that equation is x. Let (by)y∈X be a solution for Σ and for ease let bx = b.
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Let FS(X) be the free S-act on X and let ρΣ be defined as in Section 3.
We use Theorem 2.5 to build a new consistent set of equations Π(x) in the single 

variable x.
Step (a) For each xs ∈ FS(X), consider

r([xs]) = {(u, v) ∈ S × S : xsu ρΣ xsv}.

Since S is right coherent, Theorem 2.5 gives that r([xs]) is a finitely generated right 
congruence on S. We use H(xs) to denote a fixed finite generating set of r([xs]). Notice 
that for all (u, v) ∈ H(xs), or more generally, (u, v) ∈ r([xs]), we have xsu ρΣ xsv and 
so, by Proposition 3.12, bsu = bsv.

Step (b) For each pair of equations xs = yt, zu = d ∈ Σ(X) with y = x such that 
[xs]S ∩ [zu]S = ∅, then, again as S is right coherent, Theorem 2.5 yields [xs]S ∩ [zu]S is 
finitely generated as a subact of FS(X)/ρΣ. Let K = K(xs = yt, zu = d) denote a fixed 
finite subset of S such that

[xs]S ∩ [zu]S = ∪
k∈K

[x]kS.

For each k ∈ K, we use kxs and kzu to denote some fixed elements in S such that [xk] =
[xskxs] = [zukzu]. Then we have xk ρΣ xskxs ρΣ zukzu, so that bk = bskxs = bzukzu by 
Proposition 3.12. Notice that bzu = d ∈ A, so that certainly bzukzu ∈ A.

Step (c) For each pair of equations xs = yt, xu = zv ∈ Σ(X) with y, z = x such that 
[xs]S ∩ [xu]S = ∅, let L = L(xs = yt, xu = zv) be a fixed finite subset of S such that

[xs]S ∩ [xu]S = ∪
l∈L

[x]lS.

For each l ∈ L, let lxs, lxu ∈ S be fixed elements in S such that [xl] = [xslxs] = [xulxu]. 
Then xl ρΣ xslxs ρΣ xulxu and so bl = bslxs = bulxu by Proposition 3.12.

Let Σ(x) be the set of all equations of Σ(X) in which the only variable that occurs is 
x. Define

Π(x) = Σ(x) ∪ Σ1(x) ∪ Σ2(x) ∪ Σ3(x),

where

Σ1(x) = {xsu = xsv : xs = yt ∈ Σ(X), (u, v) ∈ H(xs), y = x},
Σ2(x) = {xskxs = bzukzu : xs = yt, zu = d ∈ Σ(X), [xs]S ∩ [zu]S = ∅,

y, z = x, k ∈ K(xs = yt, zu = d)},
Σ3(x) = {xslxs = xulxu : xs = yt, xu = zv ∈ Σ(X), [xs]S ∩ [xu]S = ∅,

y, z = x, l ∈ L(xs = yt, xu = zv)}.

It follows from the above Steps (a), (b) and (c) that Π(x) is a finite consistent set 
of equations with a solution b. As A is almost pure, Π(x) has a solution c in A. Notice 
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that for xs = yt ∈ Σ(X) with x = y and (u, v) ∈ H(xs), we have csu = csv by the 
construction of Σ1(x). Let (g, h) ∈ r([xs]). Then g = h, so that csg = csh, or there exists 
an H(xs)-sequence

g = u1t1, v1t1 = u2t2, · · · , vmtm = h

where (ui, vi) ∈ H(xs) and ti ∈ S for all 1 ≤ i ≤ m. In this latter case, csui = csvi for 
all 1 ≤ i ≤ m, giving

csg = csu1t1 = csv1t1 = csu2t2 = · · · = csvmtm = csh.

Now let Σ′(x) be the set of all equations of Σ(X) in which x appears, so that

Σ′(x) = Σ(x) ∪ {xs = yt : xs = yt ∈ Σ(X), x = y}.

Let Y = X \ {x}. Define

Σ = Σ(Y ) =
(
Σ(X) \ Σ′(x)

)
∪ {cs = yt : xs = yt ∈ Σ(X), y = x}.

We claim that Σ is consistent. To this end, let FS(Y ) be the free S-act on Y . Then

ρΣ = 〈(yt, zu) : yt = zu ∈ Σ(Y )〉 ⊆ ρΣ.

Let yt = a, zu = d ∈ Σ(Y ) with ytg ρΣ zuh for some g, h ∈ S. We must show that 
ag = dh. We consider the following three cases.

Case (i) yt = a, zu = d ∈ Σ(X) with y, z = x. Then ag = dh by the consistency of 
Σ(X).

Case (ii) yt = xs, zu = d ∈ Σ(X) with y, z = x, a = cs. We have

xsg ρΣ ytg ρΣ zuh

so that bsg = bytg = bzuh and also [xs]S ∩ [zu]S = ∅. Then for all k ∈ K we have 
xskxs = bzukzu ∈ Σ2(x) and so

cskxs = bzukzu.

Further, since

[zuh] ∈ [xs]S ∩ [zu]S = ∪
k∈K

[xk]S = ∪
k∈K

[xskxs]S = ∪
k∈K

[zukzu]S

there exists k ∈ K and p ∈ S such that
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zuh ρΣ xkp ρΣ xskxsp ρΣ zukzup,

giving xsg ρΣ xskxsp, and so (g, kxsp) ∈ r([xs]). Now we have

ag = csg = cskxsp = bzukzup = bzuh = dh.

Case (iii) xs = yt, xv = zu ∈ Σ(X) with y, z = x, a = cs, d = cv. We have

xsg ρΣ ytg ρΣ zuh ρΣ xvh

giving [xs]S ∩ [xv]S = ∅. Then for all l ∈ L we have xslxs = xvlxv ∈ Σ3(x), and so

cslxs = cvlxv.

Further, since

[xsg] ∈ [xs]S ∩ [xv]S = ∪
l∈L

[x]lS = ∪
l∈L

[xslxs]S = ∪
l∈L

[xvlxv]S

there exists l ∈ L and q ∈ S such that

xvh ρΣ xsg ρΣ xlq ρΣ xslxsq ρΣ xvlxvq.

Notice that (h, lxvq) ∈ r([(xv)] and (g, lxsq) ∈ r([(xs)], so we have

ag = csg = cslxsq = cvlxvq = cvh = dh.

Therefore we have that Σ(Y ) is a finite consistent set of equations in |Y | = n − 1
variables over A, so by our inductive hypothesis, Σ(Y ) has a solution (cy)y∈Y in A. 
Putting cx = c it is easy to see that (cy)y∈X is a solution to Σ(X). This completes the 
proof. �

As shown in Theorem 7.5, the converse of Theorem 4.1 is not true, in general.
The next corollary confirms that AS(1) = AS(ℵ0) is indeed a finitary property for 

monoids. It follows from the fact that right coherency is a finitary property, and Theo-
rem 4.1.

Corollary 4.2. Let S be a finite monoid. Then every almost pure S-act is absolutely pure.

5. Canonical constructions

It is clear from Theorem 4.1 and its proof that right coherency of S is strongly related 
to the property that AS(1) = AS(ℵ0). The main results of the remaining sections, 
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Theorem 6.1 and Theorem 8.2, add to this evidence. The purpose of the current section 
is to provide the machinery to prove these theorems. Building on techniques established 
in Section 3, for any frame set F , we construct a canonical F -pure extension A(F ) of 
an arbitrary S-act A. Where F is the set of all mfp-frames (1-frames, finite frames) then 
we denote A(F ) by A(1)fp (A(1), A(ℵ0)), so that these are canonical mfp-pure (almost 
pure, absolutely pure) extensions of A. In Section 6 we use A(1)fp to prove Theorem 6.1, 
which states that all mfp-pure acts are almost pure, that is, Afp

S (1) = AS(1), if and 
only if S is right coherent. In Section 8 we explicitly use A(1) and A(ℵ0) to establish 
Theorem 8.2, which gives conditions for all almost pure S-acts to be absolutely pure, 
that is, AS(1) = AS(ℵ0), in terms of finitely presented S-acts, their finitely generated 
S-subacts and their canonical extensions.

The S-acts that we build are constructed from infinite towers of extensions of A: 
strictly speaking we cannot merely take their union as we do not have a universal S-
act of which they are all subacts. Rather, we are taking a direct limit where we are 
suppressing explicit notation for the embedding of one subact into another.

In what follows, it is convenient to say that Σ is a set of F -equations if F(Σ) ∈ F .

Definition 5.1. Let A be a subact of an S-act B. We say B is F -built from A = A0 if for 
some ordinal ξ we have

B =
⋃

0≤i≤ξ

Ai

where:
(i) for each 0 ≤ i < ξ, the subact Ai+1 = Ai(Σi) for some consistent set Σi of 

F -equations over Ai;
(ii) if ζ is a limit ordinal, then Aζ =

⋃
0≤i<ζ Ai.

For our next result we require a pair of technical lemmas.

Lemma 5.2. Let A be a subact of an S-act B. Suppose that θ : B → A is an S-morphism. 
Let Σ = Σ(X) be a consistent set of F -equations over B. Then Σθ, where Σθ is obtained 
from Σ by replacing each constant c by cθ, is consistent over A and is a set of F -
equations. Further, θ̄ : B(Σ) → A(Σθ) given by

[x]θ̄ = [x] and bθ̄ = bθ,

for x ∈ X and b ∈ B (with appropriate interpretation of equivalence classes) is an 
S-morphism extending θ.

Proof. By Proposition 3.13 the set Σθ is consistent; it follows from the definition that if 
Σ has frame in F , then so does Σθ. Again from their definitions, with an application of 
the first isomorphism theorem, it is easy to see that there is an S-morphism θ̄ : B(Σ) →
A(Σθ) with the required properties. �



Y. Dandan, V. Gould / Advances in Mathematics 429 (2023) 109182 21
Lemma 5.3. Let A be a subact of an S-act B. Suppose that θ : B → A is an S-morphism. 
Let Σ = Σ(X) be a consistent set of F -equations over B. Then if A is F -pure there is 
an S-morphism from B(Σ) to A extending θ which is a retraction if θ is a retraction.

Proof. Following the notation and conclusion of Lemma 5.2 we have an S-morphism 
θ̄ : B(Σ) → A(Σθ) such that [x]θ̄ = [x] and bθ̄ = bθ. Since A is F -pure, Proposition 3.14
says there is a retraction ψ : A(Σθ) → A, so that certainly θ̄ψ : B(Σ) → A is an 
S-morphism extending θ. The final statement is then clear. �
Proposition 5.4. Let A be an F -pure S-act, and let B be F -built from A. Then A is a 
retract of B.

Proof. We show by transfinite induction that for each 0 ≤ i ≤ ξ there is a retraction 
ϕi : Ai → A, such that for i < j we have ϕj |Ai

= ϕi. This is clearly true for i = 0.
Suppose that ϕj has been defined with the required property for all 0 ≤ j < μ. If 

μ is a limit ordinal we simply define bϕμ = bϕi where b ∈ Ai and 0 < i < μ. On the 
other hand, if μ = i + 1 then we have that Ai+1 = Ai(Σi) for some consistent set Σi of 
F -equations over Ai. We apply Lemma 5.3 to construct the required ϕi+1.

It is immediate that ϕ : B → A given by bϕ = bϕi, where b ∈ Ai, is a retraction. �
We now proceed to build the promised canonical constructions. They are essentially 

based on the standard way to build an algebraically or existentially closed structure 
extending a given one, in any class closed under unions of chains. However, to use our 
constructions to extract results, a little care is required.

For any set of equations Σ = Σ(X), and any set YX = {yx : x ∈ X} of new symbols, 
we have another set of equations Σ(YX), with precisely the same consistency properties 
as the original. Our convention in what follows is that for any consistent set of equations 
Σ we choose and fix a set of variables, such that for any two different sets of equations, we 
choose different variables. The result of this is that if {Σi : i ∈ I} is a set of consistent sets 
of equations over A, then 

⋃
i∈I A(Σi) is an S-act, and for i = j we have A(Σi) ∩A(Σj) =

A; in other words, we can amalgamate {A(Σi) : i ∈ I} over A. Here, as elsewhere, we 
freely identify the image of A in A(Σ) with A.

Let A be an S-act and let F be a set of frames. Define

Θ(A,F ) = {Σ : F(Σ) ∈ F , Σ is consistent over A}

and then put

Ω(A,F ) =
⋃

Σ∈Θ(A,F)

c(Σ).

Now let

AF
1 = (A ∪̇FS(Ω(A,F ))/κ(A,F )
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A = AF
0

AF
1

AF
2

... AF
n

... A(F)

Fig. 1. Building A(F).

where

κ(A,F ) = 〈H(Σ) ∪K(Σ) : Σ ∈ Θ(A,F )〉.

The next result relies on a remark above, namely that, due to our labelling of variables, 
for distinct Σ, Σ′ ∈ Θ(A, F ) we have A(Σ) ∩A(Σ′) = A.

Lemma 5.5. Let A be an S-act and let F and G be frame sets with F ⊆ G . Then

(1) The S-act AF
1 is the amalgamation of the S-acts A(Σ) where Σ ∈ Θ(A, F ) over A, 

in particular, A is embedded in AF
1 ;

(2) AF
1 ⊆ AG

1 ;
(3) every consistent set of F -equations over A has a solution in AF

1 and hence in AG
1 ;

(4) A is F -pure if and only if it is a retract of AF
1 .

Proof. (1)-(3) are clear, given our careful labelling of variables in sets of equations; (4) 
follows from Proposition 3.14. �

We cannot say, for example, that if F is the frame set of all finite frames, then AF
1 is 

absolutely pure, since we have not considered consistent sets of equations with constants 
in AF

1 \A. We need to iterate our construction to achieve the desired canonical extensions 
of A. Fig. 1 gives an illustration.

Again, let F be a frame set and put A = AF
0 . Suppose that for 1 ≤ i we have 

constructed the S-acts AF
i−1. We now let AF

i = (Ai−1)F
1 , where at each stage, in each 

set of equations, we always choose distinct variables. This gives us a sequence

AF
0 ⊆ AF

1 ⊆ AF
2 ⊆ . . . .

We let

A(F ) =
⋃

AF
i .
i∈N0
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Given the way we have labelled our variables, and our conventions on identification, 
we also have that, for any frame sets F and G with F ⊆ G , and any i, j ∈ N0 with 
i ≤ j,

AF
i ⊆ AG

j

and consequently,

A(F ) ⊆ A(G ).

To avoid technical considerations of cardinality, we restrict our attention in Theorem 5.6
to finite frames. Indeed, for ease of application, we have in some sense been over generous 
with the nature of our extensions, so that what we have constructed for the set of all 
frames is not the injective hull [1].

Theorem 5.6. Let A be an S-act and let F be a set of finite frames. Then A(F ) is 
F -pure. Further, A is F -pure if and only if A is a retract of A(F ).

Proof. The first statement follows from the usual finiteness arguments: any finite con-
sistent set of equations over A(F ) must be consistent over AF

m for some m and hence 
have a solution in AF

m+1 ⊆ A(F ).
If A is a retract of A(F ), then Lemma 3.5 gives that A is F -pure. For the converse, 

we apply Proposition 5.4. �
6. A new characterisation of coherency

The aim of this section is to provide a so-called homological characterisation of co-
herency. That is, we characterise coherency of a monoid S in terms of two classes of 
S-acts (each defined using completion of diagrams) coinciding.

Before stating our result we set up some notation. Let F be the frame set of all mfp-
frames and let A be an S-act. We say an element ε of A(F ) has level L(ε) = n, where 
n ∈ N0, if ε ∈ AF

n \AF
n−1 and AF

−1 in interpreted as ∅.
We now state the main result of this section, and devote the remainder of the section 

to its proof.

Theorem 6.1. The following are equivalent for monoid S:

(1) S is right coherent;
(2) every mfp-pure S-act is almost pure;
(3) every mfp-pure S-act is absolutely pure.

Proof. If S is right coherent, then every mfp-pure act is almost pure, since the right 
coherency of S gives us by definition that every finitely generated subact of every finitely 
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presented monogenic S-act has a finite presentation. Thus (1) implies (2) and clearly, 
(3) implies (2). We show that (2) implies (1). The result that (2) implies (3) then follows 
from Theorem 4.1.

Assume that (2) holds. Let D be a finitely generated subact of a finitely presented and 
monogenic S-act C. By definition, we have that C = S/ρ where ρ is a finitely generated 
right congruence on S, so that ρ = 〈H〉 where H ⊆ S × S is finite. We aim to show that 
D has a finite presentation and then call upon Theorem 2.5 to deduce that S is right 
coherent.

Without loss of generality we may assume that D = ∅, so that

D =
⋃

b∈I

[b]S ⊆ S/ρ = C,

where I = ∅ is finite and [u] denotes the ρ-class of u ∈ S. Let Z = {zb : b ∈ I} be a set 
of symbols in bijective correspondence with I and consider ψ : FS(Z) → D given by

zbψ = [b].

To show that D is finitely presented, we must show that the congruence kerψ on FS(Z)
is finitely generated.

As in Section 5 we build the mfp-pure extension Dfp(1) of D. Since D is embedded 
in both C and Bfp(1), and by assumption Dfp(1) is almost pure, the inclusion map 
ι : D → Dfp(1) extends to an S-morphism ι : C → Dfp(1).

Lemma 6.2. Let γ ∈ Dfp(1) have level n. Then γ lies in a subact of Dfp(1) built from
finitely many F -extensions, starting with D as the base S-act.

Proof. We proceed by induction. If γ ∈ D the result is clear. Suppose now that γ ∈
Dfp(1)n\Dfp(1)n−1. Then γ = (xs) where (xs) denotes the equivalence class of xs in 
(Dfp(1)n−1 ∪ xS)/ρΣ for some finite consistent set of equations Σ = Σ(F , φ) in one 
variable. Since Σ is finite, it certainly includes only finitely many equations with the 
form xt = tφ. Since the level of each tφ is strictly less than n, induction gives that the 
elements tφ each lie in subacts of Dfp(1) built from finitely many F -extensions of D. 
The union of all those subacts gives a subact A such that γ lies in the extension of A(Σ)
of A. The result follows by induction. �
Corollary 6.3. The element [1]ι lies in D, where D is a subact of Dfp(1) built from
finitely many F -extensions of D.

Let S denote the finite set of finite consistent sets of equations Σ used in building D
from D. We note that each Σ has a single variable, and all the variables are distinct. As 
much as possible, we suppress mention of the variable. In fact, we may in many cases 
omit it altogether in the sense that, for a set of equations Σ = Σ(x) in one variable 
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we may identify the congruence ρΣ on FS(x) with a right congruence ρ on S. For each 
Σ ∈ S we have by definition of D that B(Σ) is finitely presented. Since B(Σ) is a subact 
of C(Σ) = xS/ρΣ, we may drop mention of x and consider B(Σ) to be a subact of 
C = S/ρΣ.

For Σ ∈ S choose and fix a set of symbols {zΣ
t : t ∈ F1} and let

ψΣ :
⋃

t∈F1

zΣ
t →

⋃

t∈F1

(t),

where (u) is the ρΣ-class of u ∈ S, be given by

ztψΣ = (t).

Now let

kerψΣ = 〈J(Σ)〉

where J(Σ) is finite by virtue of B(Σ) being finitely presented.

Lemma 6.4. Let C be an S-act and let Σ = Σ(F , φ) be a finite consistent set of equations 
in one variable over C. For an element (xu) of

C(Σ) = (C ∪xS)/κΣ,

where (xu) denotes the κΣ-class of xu, we have that (xu) = (c) for some c ∈ C if and 
only if xu ρΣ xv� for some xv ∈ F1 and � ∈ S.

Proof. Let c ∈ C. We have that (xu) = (c) if and only if xu κΣ c. Since xu = c that 
would necessitate an H(Σ) ∪K(Σ)-sequence

xu = α1t1, β1t1 = α2t2, · · · , βntn = c

for some n ∈ N, (αi, βi) ∈ H(Σ) ∪K(Σ) and ti ∈ S, for 1 ≤ i ≤ n. Clearly (αn, βn) ∈
K(Σ); let k be the least such that (αk, βk) ∈ K(Σ). Then (αk, βk) = (xv, vφ) for some 
xv ∈ F1, and xu ρΣ xvtk, completing the argument. �

We now suppress the mention of the variables in our sets of equations. A widget is a 
pair (γ, h) where γ ∈ D and h ∈ S; the level of a widget L = L(γ, h) is the level L(γ) of 
its first co-ordinate. If (γ, h) is a level n widget, where n ∈ N0, then γh has level m for 
some 0 ≤ m ≤ n. We say that a widget (γ, h) is stable if γ has the same level as γh. If 
(γ, h) is not stable, then from Lemma 6.4 we must have that γ = (c), where (c) is the 
ρΣ-class of some Σ = Σ(F , φ) ∈ S, and ch ρΣ vk for some v ∈ F1 and k ∈ S. Putting 
δ = vφ we note that (δ, k) is itself a widget and in D we have γh = δk. We say that the 
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widget (γ, h) descends to the widget (δ, k) and write (γ, h) → (δ, k). A widget descent is 
a finite sequence of descents

(γ1, h1) → (γ2, h2) → · · · → (γ�, h�)

where (γ�, h�) is stable. Notice that each widget has a widget descent. We choose and fix 
a widget descent for each widget. Starting from level 0 widgets, we may do this in such 
a way that if

(γ1, h1) → (γ2, h2) → · · · → (γ�, h�)

is the fixed widget descent for (γ1, h1), then for any 2 ≤ i ≤ � we have that

(γi, hi) → (γi+1, hi+1) → · · · → (γ�, h�)

is the fixed widget descent for (γi, hi).
We now define a finite set of widgets W which will be used to construct a set of 

generators of kerψ. We do this by adding finitely many elements, in finitely many stages, 
to W, starting with the empty set.

Let σ = [1]ι. For each (u, v) ∈ H and b ∈ I we put

(σ, u), (σ, v), (σ, b) into W.

For each Σ = Σ(F , φ) ∈ S and each (zΣ
t h, z

Σ
u k) ∈ J(Σ) we let

(tφ, h), (uφ, k) ∈ W.

For each of the widgets (γ, h) we have added to W, we now add to W all the widgets in 
the fixed, chosen, widget descent of (γ, h). This yields a finite set of widgets W. Let W0
be the set of level 0 widgets in W. For γ ∈ D we let

γ = [s(γ)qγ ],

where s(γ) ∈ I and qγ ∈ S.
Let

V1 = {
(
zs(γ)qγh, zs(δ)qδk

)
: (γ, h), (δ, k) ∈ W0, γh = δk}.

For any b ∈ I we have the fixed widget descent starting from (σ, b). Since

σb = [1]ιb = [b]ι = [b]ι = [b] ∈ D,

the widget (σ, b) has a widget descent terminating in a stable widget (γ(b), p(b)). In 
particular, [b] = σb = γ(b)p(b). We now let
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V2 = {(zb, zs(γ(b))qγ(b)p(b)) : b ∈ I}

and let

V = V1 ∪ V2.

Lemma 6.5. We have that V ⊆ kerψ.

Proof. Let (zs(γ)qγh, zs(δ)qδk
)
∈ V1 be such that (γ, h), (δ, k) ∈ W0 and γh = δk. Then

(zs(γ)qγh)ψ = (zs(γ)qγ)ψh = [s(γ)qγ ]h = γh

and similarly,

(zs(δ)qδk
)
ψ = (zs(δ)qδ

)
ψk = [s(δ)qδ]k = δk

As γh = δk, we have (zs(γ)qγh, zs(δ)qδk
)
∈ kerψ, so that V1 ⊆ kerψ.

To show V2 ⊆ kerψ, we let (zb, zs(γ(b))qγ(b)p(b)) ∈ V2 with b ∈ I. Then

(zs(γ(b))qγ(b)p(b))ψ = [s(γ(b))qγ(b)]p(b) = γ(b)p(b) = [b] = (zb)ψ

implying (zb, zs(γ(b))qγ(b)p(b)) ∈ kerψ, so that V2 ⊆ kerψ. Therefore, V ⊆ kerψ, as 
required. �

Our aim now is to show the converse to Lemma 6.5, namely that kerψ ⊆ 〈V〉. To this 
end we need some further terminology.

Definition 6.6. Let n ∈ N0. A W-widget sequence connecting

(δ0, k0s0) to (γn+1, hn+1sn+1)

is a sequence

(δ0, k0s0) = (γ1, h1s1), (δ1, k1s1) = (γ2, h2s2), · · · , (δn, knsn) = (γn+1, hn+1sn+1)

where:

(δi, ki) are widgets in W, 0 ≤ i ≤ n

(γj , hj) are widgets in W, 1 ≤ j ≤ n + 1
δ0k0, γn+1hn+1 are elements of D
γihi = δiki 1 ≤ i ≤ n.

The level L of a W-widget sequence is the level of the greatest δi (where 0 ≤ i ≤ n) and 
the value of a W-widget sequence is (L, �), where L is the level, and � is the number 
indices i ∈ {0, · · · , n} such that δi has level L.
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Fig. 2. Reducing the value of a widget sequence.

In what follows, values of W-widget sequences are ordered lexicographically.

Lemma 6.7. Let (δ0, k0s0) and (γn+1, hn+1sn+1) be connected via a W-widget sequence as 
in Definition 6.6. Suppose that the level of this sequence is strictly greater than 0. Then 
there is a W-widget sequence of lower value connecting (δ′0, k′0s0) and (γ′

n+1, h
′
n+1sn+1), 

where (δ′0, k′0) is in the fixed descent of the widget (δ0, k0) and (γ′
n+1, h

′
n+1) is in the fixed 

descent of the widget (γn+1, hn+1) (including the possibility they are unchanged).

We begin by outlining the strategy of the proof. Let us abbreviate our W-widget 
sequence as

w0, w1, · · · , wn

where

wi = (δi, kisi) = (γi+1, hi+1si+1),

for 1 ≤ i ≤ n. We pick an i ≤ j such that wi, wi+1, · · · , wj have highest level, and either 
wi−1 has lower level, or i = 0, and either wj+1 has lower level, or j = n. We then ‘pull 
down’ the subsequence wi, · · · , wj to a sequence of widgets w′

i = v�, v�+1, · · · , vm = w′
j

such that we have a new W-widget sequence

w0, w1, · · · , wi−1, w
′
i = v�, v�+1, · · · , vm = w′

j , wj+1, · · · , wn

with lower value. This is illustrated in Fig. 2.

Proof. Let L be the greatest level of δl occurring in the W-widget sequence: by assump-
tion, L > 0. Let i, where 0 ≤ i ≤ n, be the smallest such that the level of δi is L. We will 
construct a new W-widget sequence where, in particular, (δi, ki) is replaced by a new 
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widget in its fixed descent, and where we involve no new elements of D of level higher 
than L − 1.

Consider γi+1hi+1. Since δi = γi+1, we have L(γi+1) = L so that L(γi+1hi+1) =
L(δi+1ki+1) ≤ L. If L(γi+1hi+1) = L, then we are forced to have L(δi+1) = L(γi+2) = L. 
Continuing in this manner, since L(γn+1hn+1) = 0, we arrive at j where i + 1 ≤ j ≤ n +1
such that

L = L(γl) = L(γlhl) = L(δl) = L(δlkl)

for i + 1 ≤ l < j but

L(γjhj) < L = L(γj).

We remark that in the degenerate case where n = 0 and so (δ0, k0s0) = (γ1, h1s1), then 
as L(δ0) = L(γ1) = L > 0, and L(δ0k0) = L(γ1h1) = 0, in this case, i = 0 and j = 1.

From above, we have that γi+1, together with

γi+1, δi+1 = γi+2, · · · , δj−1 = γj

and if i + 1 < j

γi+1hi+1 = δi+1ki+1, · · · , γj−1hj−1 = δj−1kj−1,

all have level L. Given the equalities, and the construction of Dfp(1), this can only 
happen if

γa = (ca), i + 1 ≤ a ≤ j

and

δb = (db), i + 1 ≤ b ≤ j − 1,

where (u) denotes the ρΣ-class of u ∈ S for some Σ = Σ(F , φ) ∈ S. It follows that

caha ρΣ daka, i + 1 ≤ a ≤ j − 1

and then, using the definition of a W-widget sequence,

ci+1hi+1si+1 ρΣ di+1ki+1si+1 ρΣ ci+2hi+2si+2 ρΣ dj−1kj−1sj−1.

If i > 0 then we notice that L(δi−1) = L(γi) < L and so L(δiki) = L(γihi) < L. Clearly 
0 = L(δiki) < L is immediately true if i = 0, by our assumptions on the end points of 
the W-sequence. Now from the fact L(δiki) < L(δi) = L and L(γjhj) < L = L(γj), we 
have widget descents, as the first steps in our fixed, chosen, widget descents
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(δi, ki) → (δ′i, k′i) and (γj , hj) → (γ′
j , h

′
j).

The construction of W tells us that (δ′i, k′i), (γ′
j , h

′
j) ∈ W. By choice of our descent 

sequences, (δ′i, k′i) and (γ′
j , h

′
j) are obtained from

diki ρΣ vk′i and cjhj ρΣ wh′
j

where vφ = δ′i and wφ = γ′
j for some v, w ∈ F1. This now gives us, together with earlier 

statements, that

vk′isi ρΣ dikisi ρΣ ci+1hi+1si+1 ρΣ dj−1kj−1sj−1 ρΣ cjhjsj ρΣ wh′
jsj .

A consequence of this is that

(zΣ
v k

′
isi)ψΣ = (zΣ

wh
′
jsj)ψΣ

and so there is a J(Σ)-sequence

zΣ
v k

′
isi = U1t1, V1t1 = U2t2, · · · , Vmtm = zΣ

wh
′
jsj ,

where m ∈ N0, (Ui, Vi) = (zΣ
u(i)ui, zΣ

v(i)vi) ∈ J(Σ) and ti ∈ S for 1 ≤ i ≤ m. Notice that 
from our choice of W, we have that (u(i)φ, ui), (v(i)φ, vi) ∈ W for 1 ≤ i ≤ m, and these 
widgets all have level strictly less than L. If m = 0 we immediately have that v = w and 
k′isi = h′

jsj . If m ≥ 0 we have the following sequences of equalities:

v = u(1), v(1) = u(2), · · · , v(m) = w

and

k′isi = u1t1, v1t1 = u2t2, · · · , vmtm = h′
jsj .

Finally, since (Ui, Vi) ∈ J(Σ) we have

u(i)ui ρΣ v(i)vi

so that Proposition 3.12 gives us that

u(i)φui = v(i)φ vi

for 1 ≤ i ≤ m.
We observe that if m = 0, then δ′i = vφ = wφ = γ′

j , and otherwise, δ′i = vφ = u(1)φ
and v(m)φ = wφ = γ′

j . We can now write down our new W-widget sequence:

(δ0, k0s0) = (γ1, h1s1), (δ1, k1s1) = (γ2, h2s2), · · · , (δi−1, ki−1si−1) = (γi, hisi),
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(δ′i, k′isi) = (u(1)φ, u1t1), (v(1)φ, v1t1) = (u(2)φ, u2t2), · · · , (v(m)φ, vmtm) = (γ′
j , h

′
jsj),

(δj , kjsj) = (γj+1, hj+1sj+1), · · · , (δn, knsn) = (γn+1, hn+1sn+1).

If i = 0 or j = n + 1, then we have changed the end-points in the prescribed way. 
Notice that our new W-widget sequence has value strictly less than the original. �

Induction now yields the following.

Corollary 6.8. Let (δ0, k0s0) and (γn+1, hn+1sn+1) be connected via a W-widget sequence 
as in Definition 6.6. Suppose that the level of this sequence is strictly greater than 0. Then 
there is a W-widget sequence of level 0 connecting (δ′′0 , k′′0 s0) and (γ′′

n+1, h
′′
n+1sn+1), where 

(δ′′0 , k′′0 ) is the final term of the fixed descent of the widget (δ0, k0) and (γ′′
n+1, h

′′
n+1) is 

the final term of the fixed descent of the widget (γn+1, hn+1).

Proof. We begin by removing the widgets of highest level, until they are all removed. 
To lower the value of the sequence further, we must remove the widgets of the next 
highest value. We continue until the level of the W-widget sequence is 0. At that stage 
the endpoints have the required form. �
Lemma 6.9. We have that kerψ = 〈V〉.

Proof. By Lemma 6.5, it only remains to show that kerψ ⊆ 〈V〉. Let (zbr)ψ = (zct)ψ
where b, c ∈ I. Then [br] = [ct], so that br ρ ct and there exists H-sequence

br = u1s1, v1s1 = u2s2, · · · , vnsn = ct

where n ∈ N0, (ui, vi) ∈ H and ti ∈ S for all 1 ≤ i ≤ n. Recall that σ = [1]ι and 
(σ, b), (σ, c), (σ, ui) and (σ, vi) ∈ W for 1 ≤ i ≤ n. Observe that for 1 ≤ i ≤ n we have 
that

σui = [1]ιui = [ui]ι = [vi]ι = [1]ιvi = σvi.

We therefore have the following W-widget sequence

(σ, br) = (σ, u1s1), (σ, v1s1) = (σ, u2s2), · · · , (σ, vnsn) = (σ, ct).

By induction, there exists a W-sequence

(γ(b), p(b)r) = (γ1, h1s1), (δ1, k1s1) = (γ2, h2s2), · · · , (δn, knsn) = (γ(c), p(c)t).

Then

zbr 〈V〉 zs(γ(b))qγ(b)p(b)r = zs(γ1)qγ1h1s1 〈V〉 zs(δ1)qδ1k1s1 = zs(γ2)qγ2h2s2 〈V〉
· · · 〈V〉 zs(δn)qδnknsn = zs(γ(c))qγ(c)p(c)t 〈V〉 zct. �
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We now have completed proof of Theorem 6.1. �
Conjecture 6.10. We conjecture that a further equivalent conditions could be added 
to Theorem 6.1, namely that the classes of fp-pure S-acts and absolutely pure S-acts 
coincide.

7. Monoids S that are not right coherent such that AS(1) = AS(ℵ0)

In light of Theorem 4.1, in particular the construction of its proof, one might wonder 
whether right coherency is necessary for AS(1) = AS(ℵ0). However, this is not the case.

7.1. Monoids with the fem-property

Definition 7.1. A monoid S satisfies the fem-property if every finitely generated S-act 
embeds into a monogenic act.

We begin with an easy observation. Note that the strategy is, in some sense, reminis-
cent of that of [14,15].

Proposition 7.2. Let S satisfy the fem-property. Then AS(1) = AS(ℵ0).

Proof. Let Σ = Σ(X) be a finite consistent set of equations over an almost pure S-act 
A. Let A′ be the subact of A generated by the constants appearing in the equations of Σ. 
Certainly Σ has a solution (bx)x∈X in some S-act B containing A and hence A′. Let B′

be the subact of B generated by A′ and {bx : x ∈ X}. By assumption B′ is a subact of 
a monogenic S-act C = cS. Let bx = csx for each x ∈ X and let Π = Π(w) be the set of 
equations in a single variable w obtained by replacing each xs = yt ∈ Σ by wsxs = wsyt

and each zu = a ∈ Σ by wszu = a. Then c ∈ C is a solution to Π. We may amalgamate 
A and C over A′; call the amalgamation D. So, we can regard Π as a set of equations 
in one variable over A with a solution in D. Since A is almost pure, Π has a solution 
d ∈ A. Clearly (dsx)x∈X is a solution to Σ in A. �

There are examples of right coherent monoids both with and without the fem-property. 
First, we characterise those monoids satisfying the fem-property.

Theorem 7.3. The following are equivalent for a monoid S:

(1) S satisfies the fem-property;
(2) every 2-generated S-act embeds into a monogenic S-act;
(3) FS(X) embeds into a monogenic S-act, where |X| = 2;
(4) FS(X) embeds into S, where |X| = 2;
(5) there exist left cancellable elements s, t ∈ S such that sS ∩ tS = ∅.
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Proof. It is clear that (1) and (2) are equivalent, that (2) implies (3), and that (4) and 
(5) are equivalent.

Suppose that (3) holds. Let X = {x, y} and FS(X) = xS ∪ yS such that there 
is an injective S-morphism θ : FS(X) → cS for some monogenic S-act cS. Consider 
ψ : S → cS, where 1ψ = c. If D = (xS∪yS)θ, then it is easy to see that Dψ−1 = x′S∪y′S, 
where xθ = x′ψ and yθ = y′ψ, is a subact of S isomorphic to FS(X). Thus (4) holds.

Finally, suppose that (5) holds and A = aS ∪ bS is a 2-generated S-act. Let θ :
sS ∪ tS → A be such that sθ = a and tθ = b. Let κ = ker θ ∪ ιS where ιS is the identity 
relation on S. It is clear that κ is a right congruence on S, and A embeds into S/κ. 
Hence (2) holds. �

It is clear from Theorem 7.3, by a simple counting argument, that if S is a finite 
monoid then S does not have the fem-property. Moreover, if S is any monoid for which 
the intersection of two principal right ideals is non-empty, then again S does not have 
the fem-property. Examples of monoids of the latter type are monoids with zero, and 
inverse monoids.

From [5, Corollary 5.6], a monoid is right coherent if and only if the monoid obtained 
by adjoining a zero has the same property. Thus, having a zero, or not, is not significant 
for coherency.

On the other hand, there are examples of monoids that are not right coherent monoid 
such that every finitely generated act embeds into a monogenic one. From [5] we know 
that if S = F3 × F3 where F3 is the free monoid on 3 generators, then S is not right 
coherent. Further, since F3 × F3 is cancellative, any two principal right ideals are iso-
morphic. It is then easy to see that S has property (4) in Theorem 7.3. For, if F3 is 
generated by {a, b}, we have (a, 1)S ∩ (b, 1)S = ∅.

7.2. Almost pure acts over the Fountain monoid

The main result of this section, Theorem 7.5, gives an example of a monoid that is 
not right coherent, does not have the fem-property, yet nevertheless AS(1) = AS(ℵ0). 
In fact, our example is almost as far from the fem-property as possible, in that it is a 
chain of length 5 of principal (right) ideals.

In choosing our example, we did not have a great deal of scope. As commented, 
many well-behaved monoids are known to be right coherent and, for those that are not, 
understanding the congruences on their finitely generated free acts would be hard. As 
mentioned above, it is known from [11] that free inverse monoids on more than one 
generator are not right coherent, but a full description of their right congruences is 
lacking. With this in mind we choose the following specific example, taken from [8] and 
due to Fountain: we present it in a slightly different way.

Example 7.4. [8] Let G be an abelian group which is not finitely generated. Let N =
{1, α, α2, α3, α4 = 0} be a 5-element monogenic monoid (with α having index 4 and 
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period 1). Let P = G × N and define the relation ∼ on P to be the union of equality 
with

{
(
(g, αk), (h, αk)

)
: g, h ∈ G, k ∈ {3, 4}}.

Notice that ∼ is a congruence on P . We let S = P/ ∼. For convenience, we may denote 
(g, αk) by gαk or αkg. We will also use Greek letters to denote elements of S, for example, 
β = α3g = α3. The element α4 is a zero for S and we will usually denote this by 0.

We call the monoid in Example 7.4 the Fountain monoid. As shown in [8], the Fountain 
monoid is not right coherent. However, it is easy to see that its only (right) ideals are:

{0} ⊂ α3S = {0, α3} ⊂ α2S ⊂ αS ⊂ S.

We define two maps

ψ : S\{0, α3} → {0, 1, 2} and φ : S\{0, α3} → G

by

βψ = i and βφ = g, where β = αig ∈ S\{0, α3}.

For each β ∈ S\{0, α3}, we therefore have β = αβψβφ. Effectively, ψ and φ are restric-
tions of the projection maps to the part of S consisting of singleton equivalence classes, 
and will behave as morphisms provided products do not fall into the ideal α3S.

Theorem 7.5. Let A be an S-act over the Fountain monoid S. Then A is almost pure if 
and only if it is absolutely pure.

Proof. Let A be an almost pure S-act and let Σ = Σ(X) be a finite consistent set of 
equations over A. We must show that Σ has a solution in A.

We proceed by induction. If |X| = 1, then Σ has a solution in A, since A is almost 
pure. We suppose that |X| = n ≥ 2 and every consistent set of equations over A in at 
most n − 1 variables has a solution in A.

The first part of our strategy is to reduce the question of solubility in A of Σ to that of 
some ‘simpler’ sets of equations obtained from Σ. Suppose that Σ(X) is not connected, 
that is, we can write Σ(X) as Σ(Y ) ∪Σ(Z) where Y, Z are non-empty subsets of X such 
that X = Y ∪̇Z (so that also Σ(Y ) ∩ Σ(Z) = ∅). In this case, we could immediately call 
upon our inductive assumption to obtain a solution in A to Σ(Y ) and Σ(Z) and hence 
to Σ(X). Thus, at any stage, we may assume our sets of equations are connected.

Let (ȳ)y∈X be a solution to Σ(X) in some S-act B containing A. For each x ∈ X, let

K(x̄) = {γ ∈ S : x̄γ ∈ A}.
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Notice that K(x̄) is either empty or an ideal of S. Let L = {x ∈ X : K(x̄) = ∅}. Since 
each ideal of S is principal, for each x ∈ L we may fix some τ(x) ∈ S and a(x) ∈ A such 
that K(x̄) = τ(x)S and x̄τ(x) = a(x). It follows that x̄S ∩A = a(x)S. In the rest of the 
proof, we will always take τ(x) to be a power of α.

Let Σc(X) be the set of all equations of Σ(X) involving constants, and Σnc =
Σ(X)\Σc(X). We put

Σ′(X) = Σnc(X) ∪ {xτ(x) = a(x) : x ∈ L}.

Certainly Σ′(X) is finite and consistent with a solution (ȳ)y∈X in B. We claim that 
any solution to Σ′(X) will be a solution to Σ(X). Suppose that (y∗)y∈X is a solution to 
Σ′(X). Notice first that for each xμ = b ∈ Σ(X), we have x̄μ = b so that K(x̄) = ∅ and 
then x ∈ L. Thus, τ(x) and a(x) exist with x̄τ(x) = a(x) and μ = τ(x)ν for some ν ∈ S. 
As (y∗)y∈X is a solution of Σ′(X) we have x∗τ(x) = a(x) and so

b = x̄μ = x̄τ(x)ν = a(x)ν = x∗τ(x)ν = x∗μ,

as required. We therefore focus on finding a solution for Σ′(X); relabelling Σ′(X) by 
Σ(X).

We proceed to eliminate some forms of Σ(X) that are easy to handle.
Suppose that Σ(X) contains no equations with constants. Since A is almost pure, it 

has local zeros, and so from a comment following Definition 3.20, Σ(X) has a solution 
in A. We suppose therefore that Σ(X) contains at least one equation with a constant.

Suppose that Σ(X) contains an equation of the form xg = a for some g ∈ G. Then 
x̄ = ag−1 ∈ A and K(x̄) = S. Replacing every x in Σ(X) by x̄ gives a finite consistent 
set of equations over A in n − 1 variables with a solution (ȳ)y∈Y , where Y = X\{x}, so, 
by our inductive hypothesis, it has a solution (¯̄y)y∈Y in A. Putting ¯̄x = x̄ = ag−1, we 
have that (¯̄y)y∈X is a solution to Σ(X) in A.

On the other hand, suppose that there exists yg = zγ ∈ Σ(X) for some y, z ∈ X

with y = z, g ∈ G and γ ∈ S. Then ȳ = z̄hg−1; replacing every y in Σ(X) by zhg−1

yields a consistent set of equations over A in n −1 variables with a solution (ȳ)y∈Z where 
Z = X \ {y}. Again, by induction, it has a solution (¯̄y)y∈Z in A. Putting ¯̄y = ¯̄zhg−1, we 
obtain a solution (¯̄y)y∈X to Σ(X) in A.

We assume therefore that Σ(X) contains at least one equation with a constant and 
there are no equations in Σ(X) with form xg = a or xg = yγ for any g ∈ G, γ ∈ S, a ∈ A

and x = y ∈ X. Clearly, with such assumption, K(x̄) = S for each x ∈ X. For use in the 
later parts of the proof, we define three disjoint copies of X as follows:

X0 = {x0 : x ∈ X}, X1 = {x1 : x ∈ X}, X2 = {x2 : x ∈ X}

and put Z = X0 ∪X1 ∪X2.
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Assume that for any x ∈ X with xτ(x) = a(x) ∈ Σ(X), we have a(x)0 = a(x). Let 
xτ(x) = a(x), yτ(y) = a(y) ∈ Σ(X) for some x, y ∈ X. Since Σ(X) is connected, it 
follows that x0 ρΣ y0 so that x̄μ = ȳν. Then

a(x) = a(x)0 = x̄τ(x)0 = x̄0 = ȳ0 = ȳτ(y)0 = a(y)0 = a(y).

Hence all constants appearing in Σ(X) are equal. Let a(x) be one such constant. Since 
a(x)t = a(x) for all t ∈ S, we deduce that (¯̄y)y∈X is a solution to Σ(X) where ¯̄y = a(x)
for all y ∈ X.

Suppose from now on that there exists some yτ(y) = a(y) ∈ Σ(X) where a(y)0 = a(y). 
Let

W = {x ∈ X : K(x̄) = 0, a(x)0 = a(x)}.

Pick x ∈ W such that K(x̄) = τ(x)S is the largest ideal within all ideals K(ȳ) where 
y ∈ W . Notice that τ(x) = 0 for all x ∈ K, for, if it did, then x0 = a(x) would give 
a(x) = a(x), a contradiction. Further, τ(x) = 0 and τ(x) = 1. We therefore consider 
the following three cases determined by the choice of τ(x), which themselves will require 
delicate argument. To simplify notation we let ρ = ρΣ(X).

Case τ(x) = α3. We therefore have xα3 = a(x) ∈ Σ(X) with a(x)0 = a(x). We first 
point out some forbidden patterns.

We cannot have

xα2g ρ yαh, xα3 ρ yα2h or xα3 ρ yαh (7.1)

for any y ∈ X, g, h ∈ G. For, if we did, then we would have

x̄α2g = ȳαh, x̄α3 = ȳα2h or x̄α3 = ȳαh.

But this would give in the first two cases that a(x) = x̄α3 = ȳα2 and in the third that 
a(x) = x̄α3 = ȳα. If a(x) = x̄α3 = ȳα2, then τ(y) = α or α2, and if a(x) = x̄α3 = ȳα

then τ(y) = α. Since K(x̄) ⊂ K(ȳ) we must have a(y)0 = a(y). But, in addition, either 
a(x) = a(y) or a(x) = a(y)α, so that we obtain a(x)0 = a(x), a contradiction.

On the other hand, we cannot have

xαig ρ yαi+jh (7.2)

for y ∈ X, where 0 ≤ i ≤ 3, 1 ≤ j ≤ 4 − i, g, h ∈ G. Otherwise,

xα3 = xαiα3−ig ρ yαi+jhα3−i = y0

and so a(x) = xα3 = y0, implying a(x)0 = a(x), a contraction.
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From the above forbidden patterns, we deduce that the equations in Σ(X) involving 
x must have one of the following forms:

xαg = yαh, xα2g = yα2h, xα3 = yα3, x0 = yγ

xg = xh, xαg = xαh, xα2g = xα2h

where g, h ∈ G, γ ∈ S and x = y ∈ X.

Let Y = X\{x}, and let Σ(x) be the set of all equations in Σ(X) just involving x and 
Σ(Y ) the set of all equations in Σ(X) just involving variables in Y .

Suppose that the equations involving x and y = x ∈ X only have forms xα3 =
yα3, x0 = yγ, where γ ∈ S. As Σ(x) holds, it has a solution ¯̄x in A by assumption. 
Consider

Π(Y ) = Σ(Y ) ∪ {yα3 = ¯̄xα3, yγ = ¯̄x0 : yα3 = xα3, yγ = x0 ∈ Σ(X)}.

For all yα3 = xα3, yγ = x0 ∈ Σ(X),

ȳα3 = x̄α3 = a(x) = ¯̄xα3

and

ȳγ = x̄0 = x̄α30 = a(x)0 = ¯̄xα30 = ¯̄x0.

Thus, (ȳ)y∈Y is a solution to Π(Y ), and so it has a solution (¯̄y)y∈Y in A. It is easy to 
see that (¯̄y)y∈X is a solution of Σ(X) in A.

Suppose therefore that there exist equations in Σ(X) having form xαg = yαh or 
xα2g = yα2h for some g, h ∈ G and y = x ∈ X.

Let FS(Z) be the free S-act over Z, where Z consists of three disjoint copies of X, as 
defined earlier. We proceed by defining three binary relations H1, H2 and H3 on FS(Z)
as follows:

H1 = {(y0u, y0v), (y1u, y1v), (y2u, y2v) : yu = yv ∈ Σ(X), y ∈ X,u, v ∈ G},
H2 = {(y1u, z1v), (y2u, z2v) : yαu = zαv ∈ Σ(X), y, z ∈ X,u, v ∈ G},
H3 = {(y2u, z2v) : yα2u = zα2v ∈ Σ(X), y, z ∈ X,u, v ∈ G}.

Let H = H1 ∪H2 ∪H3 and σ̄ = 〈H〉. Since G is coherent by [8],

r([x1]) = {(u, v) ∈ G×G : x1u σ̄ x1v} = 〈W1〉

and

r([x2]) = {(u, v) ∈ G×G : x2u σ̄ x2v} = 〈W2〉
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where W1, W2 are two finite sets.
We now claim that x̄αu = x̄αv for any (u, v) ∈ W1. For this purpose, we define

θ : Z −→ B

by

y0θ = ȳ, y1θ = ȳα, y2θ = ȳα2, for all y ∈ X.

It is easy to check that H ⊆ ker θ, and so there exists

θ̄ : FS(Z)/σ̄ −→ B

defined by

[y0]θ̄ = ȳ, [y1]θ̄ = ȳα and [y2]θ̄ = ȳα2 for all y ∈ X.

Let (u, v) ∈ W1. Then x1u σ̄ x1v, so that

x̄αu = (x1u)θ̄ = (x1v)θ̄ = x̄αv.

Similarly, we can show x̄α2p = x̄α2q for any (p, q) ∈ W2.
To find a solution to Σ(X) in A, we now construct two finite sets of equations Π(x)

and Π(Y ) as follows. Let

Π(x) = Σ(x) ∪ {xαu = xαv : (u, v) ∈ W1} ∪ {(xα2u = xα2v : (u, v) ∈ W2)}.

Then Π(x̄) holds, so that Π(x) has a solution ¯̄x in A. Let

Π(Y ) = Σ(Y ) ∪ {yγ = ¯̄xδ : yγ = xδ ∈ Σ(X), y = x}.

Let ρ′ = ρΣ(Y ), and so ρ′ = ρΣ(Y ) ⊆ ρΣ(X) = ρ.
We now show that Π(Y ) is consistent by considering the following cases.

Subcase (i) yμ = ¯̄xκ, zν = ¯̄xη ∈ Π(Y ) with yμ = xκ, zν = xη ∈ Σ(X). Suppose that 
yμδ ρ′ zνε for some δ, ε ∈ S. Then xκδ ρ yμδ ρ zνε ρ xηε. We consider the following 
subcases.

Subcase (i)(a) κδ ∈ G. This implies κ ∈ G, a contradiction.
Subcase (i)(b) κδ ∈ αG. By the forbidden patterns (4.1) and (4.2), we deduce ηε ∈ αG. 

Let κδ = αg and ηε = αh for some g, h ∈ G. Then xαg ρ xαh, so that there exists n ∈ N

and an H(Σ)-sequence

xαg = y1u1t1, z1v1t1 = y2u2t2, · · · , znvntn = xαh
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where t1, · · · , tn ∈ S and

y1u1 = z1v1, · · · , ynun = znvn ∈ Σ(X).

Again, by the forbidden patterns 4.1 and 4.2, we have uiti, viti ∈ αG for all 1 ≤ i ≤ n, 
so that ui, vi ∈ G or ui, vi ∈ αG. Notice that ui, vi ∈ G happens only if yi = zi by 
assumption. Therefore, we have (y1

i (ui)φ, z1
i (vi)φ) ∈ H1 ∪H2, implying

(y1
i (ui)φ(ti)φ, z1

i (vi)φ(ti)φ) ∈ σ̄

and so (y1
i (uiti)φ, z1

i (viti)φ) ∈ σ̄.
On the other hand, since the identities involving in the above H(Σ)-sequence holds 

in FS(Z), we have

x1g = y1
1(u1t1)φ, z1

1(v1t1)φ = y1
2(u2t2)φ, · · · , z1

n(vntn)φ = x1h

in FS(Z). Therefore, x1g σ̄ x1h and so (g, h) ∈ r([x1]). Then there exists n ∈ N and a 
W1-sequence such that

g = p1s1, q1s1 = p2s2, · · · , qnsn = h

where s1, · · · , sn ∈ G and (pi, qi) ∈ W1 for all 1 ≤ i ≤ n. By the construction of Π(x), 
we have ¯̄xαpi = ¯̄xαqi for all 1 ≤ i ≤ n, so that

¯̄xαg = ¯̄xαp1s1 = ¯̄xαq1s1 = · · · = ¯̄xαqnsn = ¯̄xαh

and so

¯̄xκδ = ¯̄xαg = ¯̄xαh = ¯̄xηε

as required.
Subcase (i)(c) κδ ∈ α2G. In this case, we must have ηε ∈ α2G. Let κδ = α2g and 

ηε = α2h for some g, h ∈ G. By similar argument to that of Subcase (i)(b), this time 
using the construction of σ2 and the fact that ¯̄xα2u = ¯̄xα2v for all (u, v) ∈ W2, we can 
show that ¯̄xκδ = ¯̄xα2g = ¯̄xα2h = ¯̄xηε.

Subcase (i)(d) κδ = ηε = α3 or κδ = ηε = 0. As κδ = ηε, ¯̄xκδ = ¯̄xηε.
Subcase (ii) zν = c ∈ Σ(Y ) and yμ = ¯̄xκ ∈ Π(Y ) with yμ = xκ ∈ Σ(X). Suppose 

that yμδ ρ′ zνε, and so xκδ ρ yμδ ρ zνε. Then x̄κδ = z̄νε = cε, so that κδ = τ(x)γ for 
some γ ∈ S. Notice that xτ(x) = a(x) ∈ Σ(x), so that x̄τ(x) = a(x) = ¯̄xτ(x), and hence

cε = x̄κδ = x̄τ(x)γ = ¯̄xτ(x)γ = ¯̄xκδ.

Subcase (iii) yμ = b, zν = c ∈ Σ(Y ). Let yμδ ρ′ zνε for some δ, ε ∈ S. Then yμδ ρ zνε, 
and so bδ = cε by Proposition 3.13.
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Therefore, Π(Y ) is consistent, so that it has a solution (¯̄y)y∈Y in A by induction, and 
hence (¯̄y)y∈X is a solution to Σ(X) in A.

Case τ(x) = α2. We therefore have xα2 = a(x) ∈ Σ(X) with a(x)0 = a(x). We first 
point out some forbidden patterns.

We cannot have

xαig ρ xαi+jh (7.3)

for any 0 ≤ i ≤ 2 and any 1 ≤ j. For, if we did, then multiplying by a suitable power of 
α would give

xα2g ρ xα2+jh.

But then it follows that

xα2g ρ xα2+kjh(g−1h)k−1

for any 0 ≤ k. It follows that xα2 ρ x0, giving the contradiction that a(x)0 = a(x). Hence 
any equations of Σ(x) must have one of the following forms

xg = xh, xαg = xαh, xα2g = xα2h, xα3 = x0.

For y = x we cannot have

xαg ρ yα3, xαg ρ y0, xα2g ρ y0 (7.4)

for any g ∈ G, as it would give xα2g ρ y0 and then

a(x) = x̄α2 = x̄α2gg−1 = ȳ0

and so a(x)0 = a(x), a contradiction.
We cannot have any of the following:

xαg ρ yh ρ yαs, xαg ρ yh ρ yα2s or xαg ρ yαh ρ yα2s (7.5)

or

xα2g ρ yh ρ yαs, xα2g ρ yh ρ yα2s or xα2g ρ yαh ρ yα2s (7.6)

for some g, h, s ∈ G, as any of these would give xα2 ρ x0, yielding the contradiction that 
a(x)0 = a(x). However, notice that we are not ruling out xα2g ρ yα3 for some g ∈ G.
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We now define 4 binary relations on FS(Z) as follows:

P1 = {(y0g, y0h), (y1g, y1h), (y2g, y2h) : yg = yh ∈ Σ(X), g, h ∈ G},
P2 = {(y1g, z1h), (y2g, z2h) : yαg = zαh ∈ Σ(X), y, z ∈ X, g, h ∈ G},
P3 = {(y1g, z2h) : yαg = zα2h ∈ Σ(X), y, z ∈ X, g, h ∈ G},
P4 = {(y2g, z2h) : yα2g = zα2g ∈ Σ(X), y, z ∈ X, g, h ∈ G}.

Let P = P1 ∪ P2 ∪ P3 ∪ P4 and ρ̄ = 〈P 〉. Since G is coherent,

r([x1]) = {(u, v) ∈ G×G : x1u ρ̄ x1v} = 〈Q1〉

and

r([x2]) = {(u, v) ∈ G×G : x2u ρ̄ x2v} = 〈Q2〉

where Q1 and Q2 are finite.
We now claim that x̄αu = x̄αv for any (u, v) ∈ Q1 and x̄α2p = x̄α2q for any (p, q) ∈

Q2. Let θ be the map defined in Case τ(x) = α3. It is easy to check that P ⊆ ker θ, and 
so there exists

θ̄ : FS(Z)/ρ̄ −→ B

defined by

[y0]θ̄ = ȳ, [y1]θ̄ = ȳα, [y2]θ̄ = ȳα2, y ∈ X.

Let (u, v) ∈ Q1. Then x1u ρ̄ x1v, so that

x̄αu = (x1u)θ̄ = (x1v)θ̄ = x̄αv.

Similarly, we can show that x̄α2p = x̄α2q for any (p, q) ∈ Q2.

Let Y = X\{x}. Let

Π(x) = Σ(x) ∪ {xαu = xαv : (u, v) ∈ T1} ∪ {xα2u = xα2v : (u, v) ∈ T2}
∪ {xα3 = x0 : if x̄α3 = x̄0}.

Then Π(x̄) holds, so Π(x) has a solution ¯̄x in A. Let

Π(Y ) = Σ(Y ) ∪ {yγ = ¯̄xδ : yγ = xδ ∈ Σ(X)}.

Clearly ρ′ = ρΣ(Y ) ⊆ ρΣ(X) = ρ. We now show that Π(Y ) is consistent.

Subcase (i) yμ = ¯̄xκ, zν = ¯̄xη ∈ Π(Y ), where yμ = xκ, zν = xη ∈ Σ(X). Suppose that 
yμδ ρ′ zνε for some δ, ε ∈ S. Then xκδ ρ yμδ ρ zνε ρ xηε.
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Subcase (i)(a) κδ ∈ G. In this case, we have κ ∈ G and xκ = yμ ∈ Σ(X), contradicting 
the forms of equations in Σ(X).

Subcase (i)(b) κδ = α3. We know that ηε = α3 or 0. If ηε = α3 we are done. If ηε = 0, 
then xα3 ρ x0, so that x̄α3 = x̄0, and hence ¯̄xα3 = ¯̄x0 by the definition of Π(x).

Subcase (i)(c) If κδ = 0. Here ηε must be α3 or 0. Then by a similar argument to that 
of Subcase (i)(b), we have ¯̄xα3 = ¯̄x0.

Subcase (i)(d) κδ ∈ αG. In this case, we have ηε ∈ αG. Let κδ = αg and ηε = αh for 
some g, h ∈ G. Then xκδ ρ xηε, so that either xκδ = xηε, or there exists n ∈ N and an 
H(Σ)-sequence

xαg = y1u1t1, z1v1t1 = y2u2t2, · · · , znvntn = xαh

where t1, · · · , tn ∈ S and

y1u1 = z1v1, · · · ynuu = znvn ∈ Σ(X).

In the first case, clearly κδ = ηε so that ¯̄xκδ = ¯̄xηε. Suppose therefore we have an 
H(Σ)-sequence as given. By the forbidden pattern 4.4, we cannot have xαg ρ wα3 and 
xαg ρ w0 for any w ∈ X, so that uiti, viti ∈ S\{0, α3} for all 1 ≤ i ≤ n. For each 
1 ≤ i ≤ n, consider yiui = zivi ∈ Σ(X). Notice first that xαg ρ yiuiti ρ ziviti. If yi = zi, 
then by forbidden patterns 4.4, 4.5 and 4.6, we know (ui)ψ = (vi)ψ, so that

(y(ui)ψ
i (ui)φ, y(vi)ψ

i (vi)φ) ∈ P.

Also, as uiti, viti ∈ S\{0, α3}, we deduce

(y(uiti)ψ
i (ui)φ, y(viti)ψ

i (vi)φ) ∈ P

so that

(y(uiti)ψ
i (ui)φ(ti)φ, y(viti)ψ

i (vi)φ(ti)φ) ∈ ρ̄

If yi = zi, then neither (ui)ψ or (vi)ψ is 0 by our original assumptions on Σ(X). By 
the above analysis, (ui)ψ, (vi)ψ ∈ {1, 2}. Notice that (ui)ψ and (vi)ψ may not be equal.

It follows from the construction of P that

(y(ui)ψ
i (ui)φ, z(vi)ψ

i (vi)φ) ∈ P.

Also, as uiti, viti ∈ S\{0, α3}, we deduce

(y(uiti)ψ
i (ui)φ, z(viti)ψ

i (vi)φ) ∈ P

so that
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(y(uiti)ψ
i (ui)φ(ti)φ, z(viti)ψ

i (vi)φ(ti)φ) ∈ ρ̄.

On the other hand, as the identities involving in the above H(Σ)-sequence are from 
FS(Z),

z
(viti)ψ
i (vi)φ(ti)φ = y

(ui+1ti+1)ψ
i+1 (ui+1)φ(ti+1)φ

for all 1 ≤ i ≤ n − 1. Hence

x1g = y
(u1t1)ψ
1 (u1)φ(t1)φ ρ̄ z

(v1t1)ψ
1 (v1)φ(t1)φ = y

(u2t2)ψ
2 (u2)φ(t2)φ

ρ̄ · · · ρ̄ z(vntn)ψ
n (vn)φ(tn)φ = x1h

giving (g, h) ∈ r([x1]). Then either g = h or there exists n ∈ N and a Q1-sequence such 
that

g = p1s1, q1s1 = p2s2, · · · , qnsn = h

where s1, · · · , sn ∈ G and (pi, qi) ∈ Q1 for all 1 ≤ i ≤ n. Since ¯̄xαpi = ¯̄xαqi for all 
1 ≤ i ≤ n, we have

¯̄xαg = ¯̄xαp1s1 = ¯̄xαq1s1 = · · · = ¯̄xαqnsn = ¯̄xαh,

so that ¯̄xκδ = ¯̄xηε.
Subcase (i)(e) κδ ∈ α2G. In this case, we must have ηε ∈ α2G. Let κδ = α2g and 

ηε = α2h for some g, h ∈ G. Considering xκδ ρ xηε, if the H(Σ)-sequence connecting 
xκδ to xηε does not involve any wα3 ∈ S for any w ∈ X, then by a similar discussion 
to that of Subcase (i)(d), we can show ¯̄xκδ = ¯̄xηε. If xα2g ρ wα3, then xα2 ρ wα3 and 
x̄α2 = a(x) = w̄α3, and so a(x)s = a(x) for any s ∈ G. Therefore

¯̄xκδ = ¯̄xα2g = a(x)g = a(x) = a(x)h = ¯̄xα2h = ¯̄xηε.

Subcase (ii) yμ = ¯̄xκ ∈ Π(Y ) with yμ = xκ ∈ Σ(X), zν = c ∈ Σ(Y ). Suppose that 
yμδ ρ′ zνε for some δ, ε ∈ S. Then xκδ ρ zνε, giving x̄κδ = cε ∈ A, so that κδ = α2g

for some g ∈ G. Since ¯̄xα2 = a(x) = x̄α2, we have

cε = x̄κδ = x̄α2g = a(x)g = ¯̄xα2g = ¯̄xκδ.

Subcase (iii) yμ = b, zν = c ∈ Σ(Y ). If yμδ ρ′ zνε for some δ, ε ∈ S, then yμδ ρ zνε, 
giving bδ = cε by Proposition 3.13.

Therefore, Π(Y ) is consistent. By induction, Π(Y ) has a solution (¯̄y)y∈Y in A and 
hence (¯̄y)y∈X is a solution to Σ(X) in A.

Case τ(x) = α. We therefore have xα = a(x) ∈ Σ(X), a(x)0 = a(x). Notice that, for 
any xαig ∈ S with g ∈ G and i ≥ 1,
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x̄αig = x̄ααi−1g = a(x)αi−1g ∈ A.

Let Y = X \ {x}. By replacing x by x̄ in all equations of Σ(X) involving x, we obtain a 
finite consistent set of equations Σ(Y ) with a solution (ȳ)y∈Y , and so it has a solution 
(¯̄y)y∈Y in A by our inductive hypothesis. Further, the set of equations Σ(x) of Σ(X)
which involve only the variable x has a solution ¯̄x ∈ A. We claim that (¯̄y)y∈X is a 
solution to Σ(X). To this end we need only check equations of the form xβ = yγ. By 
assumption, β = αδ for some δ ∈ S and then

x̄α = a(x) = ¯̄xα

so that ¯̄yγ = x̄β = ¯̄xβ, as required.

This concludes the proof that every almost pure S-act over the Fountain monoid is 
absolutely pure. �
Question 7.6. Let S be the monoid obtained by replacing the group G in Example 7.4
with any right coherent monoid T such that the universal right congruence ωT on T is 
not finitely generated (for example, any monoid semilattice without a zero [4]). For such 
an S, the same argument as in [8] gives that S is not right coherent. However, can we 
deduce AS(1) = AS(ℵ0)? What if we change the period of α? More speculatively, are 
all monoids such that AS(1) = AS(ℵ0) built in some way from right coherent monoids, 
and monoids satisfying the fem-property?

8. Condition for when almost pure acts are absolutely pure

Let G be a set of finite frames and let F ⊆ G . We first give a generic result that 
tells us when all F -pure acts are G -pure. We then specialise this to Theorem 8.2, which 
gives a condition for all almost pure S-acts to be absolutely pure entirely in terms of 
finitely presented S-acts, their S-subacts, and their canonical extensions. Recall that the 
canonical extensions are obtained via analysis of which sets of equations are consistent, 
which is itself described in terms of congruences on certain free S-acts and a ‘base’ 
S-act.

Theorem 8.1. Let S be a monoid and let F ⊆ G , where G is a set of finite frames. The 
following are equivalent:

(1) every F -pure S-act is G -pure;
(2) every S-act of the form A(F ) is G -pure;
(3) for any S-act A, we have that A(F ) is a retract of A(G ).

Proof. Clearly (1) implies (2). Suppose now that (2) holds. In view of our careful con-
structions, we may regard A(G ) as being built from A(F ). For, having constructed AG

i
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from A(F ), obtaining an amalgam AG
i ∪ A(F ), with AG

i ∩ A(F ) = AF
i , we construct 

AG
i+1 from this amalgam by making only those extensions that add in solutions to fi-

nite consistent sets of G -equations with frames in G \ F , or finite consistent sets of 
G -equations that have constants in AG

i ∩A(F ). The way in which we always choose new 
variables to build our extensions ensures no contradiction arises. Proposition 5.4 now 
gives that (3) holds.

Finally, suppose that (3) holds and A is an F -pure S-act. By Theorem 5.6 we have 
that A is a retract of A(F ), so that by (3), A is a retract of A(G ). A second application 
of Theorem 5.6 yields (1). �

Theorem 8.1 is to a certain extent a universal-type result. The following is saying 
something more, and highlights the connection between finitely generated subacts of 
finitely presented S-acts (hence, coherency), and the question of when every almost pure 
S-act is absolutely pure.

Let G be the set of all finite frames, and let F be the set of all finite 1-frames. For 
an S-act A we let A(ℵ0) := A(G ) and A(1) =: A(F ).

Theorem 8.2. The following are equivalent for a monoid S:

(1) every almost pure S-act is absolutely pure;
(2) every S-act of the form A(1) is absolutely pure;
(3) every S-act of the form A(1) where A is a finitely generated S-subact of a finitely 

presented S-act is absolutely pure;
(4) for any S-act A we have that A(1) is a retract of A(ℵ0);
(5) for any S-act A, where A is a finitely generated S-subact of a finitely presented 

S-act, A(1) is a retract of A(ℵ0).

Proof. The equivalence of (1), (2) and (4) follows from Theorem 8.1. Clearly (2) implies 
(3) and (4) implies (5). Proposition 3.11 and Theorem 5.6 give that (5) implies (3).

Suppose that (3) holds. Let A be an almost pure S-act and let θ : B → A be an 
S-morphism, where B is a finitely generated S-subact of a finitely presented S-act M . 
We follow the proof of Lemma 5.3 to obtain an S-morphism θ1 : B1

1 → A extending θ. 
But then we can iterate this process to obtain an S-morphism ϕ : B(1) → A extending 
θ.

Now, B is embedded in M where M is finitely presented. Suppose that M = FS(X)/ρ
where X is finite and ρ = 〈H〉 where H is finite. Let C be a set of generators for B and 
for each generator c ∈ C pick xcsc ∈ FS(X) so that c = [xcsc] and let

Σ = {xu = yv, xcsc = c : (xu, yv) ∈ H, c ∈ C}.

Clearly, Σ has a solution in M where we substitute [x] for x for each x ∈ X. Regard 
Σ as a set of equations over B(1). Our assumption is that B(1) is absolutely pure, so 
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that there exists a solution (cx)x∈X to Σ in B(1). A standard argument then gives that 
ψ : M → B(1) given by [x]ψ = cx is a well defined S-morphism. Let d ∈ B, so that 
d = cs for some c ∈ C. Then

dψ = (cs)ψ = (cψ)s = [xcsc]ψs = [xc]ψscs = cxc
scs = cs = d.

Now consider ψϕ : M → A. Clearly ψϕ is an S-morphism, and dψϕ = dϕ = dθ, for any 
d ∈ B. It follows from Theorem 3.15 that A is absolutely pure. This completes the proof 
of (3) implies (1). �

Given the results of this article one might ask whether it true that for any monoid S
we have AS(1) = AS(ℵ0)? We conjecture that this is not the case and would hope that 
Theorem 8.2 would help in constructing a counter-example.
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