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1. Introduction

1.1. Independence relations in model theory

Ternary independence relations are very widely used across model-theory, both in pure model theory, 
where they arise for instance from Shelah’s key notions of splitting and forking, and in applications, where 
they often capture useful algebraic information. The basic examples include disjointness of subsets, linear 
independence in vector spaces, and algebraic independence in fields. These are all strongly minimal examples, 
but independence relations are also important higher up in the stability hierarchy.

Kim and Pillay [15] proved that if a complete first-order theory T admits an independence relation |�
satisfying a certain list of properties then T lies in the stability class known as simple theories. Furthermore, 
|� is the unique independence relation satisfying those properties and is given by non-forking. There is a 

similar theorem with a slightly stronger list of properties characterizing stable theories, and more recently 
[13] an analogous theorem for NSOP1-theories.

There have been various generalisations of these Kim–Pillay-style theorems beyond the first-order context, 
for example to positive logic in [4,6], to some Abstract Elementary Classes (AECs) in [5,10,9], and to an 
even more general and abstract context of Abstract Elementary Categories by the third author in [11,12]. 
There is also other recent work on abstract independence relations in a category-theoretic context in the 
stable case in [19].

1.2. The main theorems

In this paper we illustrate the theory of independence relations with four examples in exponential fields. 
None of our examples fit the setting of a complete first-order theory, but they all fit into the context of 
AECs.

Definition 1.1. An exponential field, or E-field for short, is a field F of characteristic zero together with a 
group homomorphism exp : 〈F ; +〉 → 〈F×; ×〉, from the additive group to the multiplicative group of F . 
We will also write ex instead of exp(x), or write expF (x) if we need to specify F .

We call an E-field F an EA-field if the underlying field is algebraically closed. If, in addition, every 
nonzero element has a logarithm (that is, for every b ∈ F× there is a ∈ F such that ea = b) then we say F
is an ELA-field.

The obvious examples of exponential fields are the real and complex fields with exponentiation given by 
the usual power series, but one can also construct exponential maps algebraically. See [17] for a detailed 
account of such constructions.

The four independence relations in this paper are: EA-independence, ELA-independence, strong indepen-
dence, and the independence relation associated with the exponential algebraic closure pregeometry, and its 
dimension notion called exponential transcendence degree. We denote these respectively by |�

EA, |�
ELA, 

|�
�, and |�

etd. We next explain our main results, deferring the definitions to later.
EA-independence was introduced in [8], where it was shown to satisfy certain properties with respect to 

the category of existentially closed exponential fields, and those properties were shown to be sufficient that 
the associated theory in positive logic is NSOP1, that is, no formula has SOP1.

Subsequently, [12] gave a slightly stronger list of properties for an NSOP1-like independence relation, 
sufficient to rule out the existence of a distinct simple or stable independence relation, which is summarised in 
Fact 2.16. In particular, this implies canonicity for simple and stable independence relations. Those stronger 
properties have been verified in existing literature [8,6]. We make the addition that a further property fails, 
meaning that EA-independence cannot be simple, and so there cannot be a simple independence relation.
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Theorem 1.2. The independence relation |�
EA is an NSOP1-like, non-simple independence relation on the 

category EAF of EA-fields.

The ELA-independence relation is introduced in this paper, as particularly relevant where we consider 
extensions of exponential fields where the kernel of the exponential map does not extend. We prove:

Theorem 1.3. For any kernel type K, the independence relation |�
ELA is NSOP1-like and non-simple on 

the category ELAFK,kp of ELA-fields with kernel type K and kernel-preserving embeddings.

Strong embeddings of exponential fields are those which preserve the transcendence properties given by 
the Ax-Schanuel theorem, and they are particularly important for analytic exponential fields such as Rexp
and Cexp, and also for exponential fields of power series. Zilber’s exponential field Bexp is constructed by 
amalgamating strong extensions. The PhD thesis of the third author [7] introduced strong independence 
and proved that it satisfied the properties of a stable independence relation given by Hyttinen and Kesälä 
[9]. Here we publish these results for the first time, updated for the list of properties from [11].

Theorem 1.4. The strong independence relation |�
� is the canonical independence relation on the category 

ELAFvfk,� of ELA-fields with very full kernel and strong embeddings, and it is stable.

We would like to remove the restriction in this theorem to exponential fields with very full kernel. This 
is a partial saturation condition, and in particular it implies that the kernel of the exponential map has 
size at least continuum. The most interesting exponential fields (at least in this context where the fields are 
algebraically closed, not ordered) have cyclic kernel as in the complex case, so certainly countable kernel. 
We expect them to sit in stable categories as well.

Conjecture 1.5. Theorem 1.4 holds for the category ELAF�, without the assumption of very full kernel.

The exponential-algebraic closure operator was proved to be a pregeometry on any exponential field in 
[16]. (It was known in the real case earlier.) It is the quasiminimal pregeometry on Zilber’s exponential 
field Bexp, and on the quasiminimal excellent class (a type of AEC) used to construct it. It follows that 
the associated independence relation |�

etd is a stable independence relation on that AEC. In this paper we 

show that |�
etd is closely related to |�

� on any exponential field:

Theorem 1.6. Let F be an exponential field and A, B, C ⊆ F . Then we have

A
etd,F
|�
C

B ⇐⇒ A
�,F

|�
eclF (C)

B.

We have categories of exponential fields which are stable and which are NSOP1, non-simple. A natural 
question which we have not managed to answer is:

Question 1.7. Is there a category of exponential fields which is simple, unstable?

1.3. Overview of the paper

In section 2 we give the background on independence relations, and the Kim–Pillay style theorems 
in our context of AECs. Section 3 introduces the four types of embeddings of exponential fields we use: 
general embeddings, those which preserve the kernel, strong, and closed embeddings. We show that the 
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various categories produced are AECs with the important properties of amalgamation, joint embedding, 
and intersections.

The independence relations |�
EA and |�

ELA are defined and compared in sections 4 and 5, and Theo-
rems 1.2 and 1.3 are proved there.

In section 6, we define strong independence and prove Theorem 1.4. Finally, Theorem 1.6 is proved in 
section 7.

1.4. Categories versus monster models

Both in the classical setting of complete first-order theories, and when working with AECs, model theorists 
often use the “Monster model convention”, that all models considered are submodels of a suitably large 
saturated “monster” model. We do not do that, but take the more algebraic approach of instead working 
directly with categories of exponential fields. Given that our categories have amalgamation, this change is 
really one of emphasis rather than being substantial, but it makes several things more convenient.

We take care to separate the properties of an independence relation which apply to an individual structure 
(in this paper an exponential field), those properties which relate to embeddings of structures (Invariance), 
and the properties which relate to a category of structures (or in the classical setting, to the common 
complete theory of the structures). An exponential field may lie in different categories with different inde-
pendence relations and incompatible monster models, but our approach allows us to make sense of all four 
independence relations on any exponential field, and so to compare them.

Another idea we try to stress is the close relationship between independence relations and amalgamation, 
and particularly free amalgamation. This idea is somewhat hidden by the monster model convention.

Thirdly, characterising a monster model of a theory (or of an AEC) involves classifying (and perhaps 
axiomatising) the existentially closed models. Although we can do this for our AECs, we realised that exis-
tential closedness plays no role here, so the models in our categories are not existentially closed, although 
they usually satisfy some much weaker closure condition related to amalgamation. This highlights an alge-
braic side to the idea of independence relations, and indeed we make sense of these categories being stable, 
simple, or NSOP1-like, with no reference to the existentially closed models or to any theory axiomatising 
them.

Acknowledgements. We thank the anonymous referee whose suggestions improved the presentation of this 
paper.

2. Independence relations and the stability hierarchy

In this section we set out our model-theoretic conventions, notation, and terminology for independence 
relations in a category of structures.

2.1. Independence relations on a structure

Definition 2.1. Let M be any structure. An independence relation on M is a ternary relation |� on subsets 
of M , which satisfies the six basic properties listed below. If (A, B, C) is in the relation we say that A is 
independent from B over C in M and write

A
M

|�
C

B or just A |�
C

B if M is clear from the context.

In the properties below, and throughout the paper, we use the standard model-theoretic convention that 
juxtaposition of sets or tuples means union or concatenation. For example, BC means B ∪ C.
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Basic properties For all A, B, C, D ⊆ M we have:

Normality: If A |�C
B then A |�C

BC.
Existence: A |�C

C.
Monotonicity: If A |�C

B and D ⊆ B then A |�C
D.

Transitivity: If A |�C
D and A |�D

B with C ⊆ D then A |�C
B.

Symmetry: If A |�C
B then B |�C

A.
Finite Character: If for all finite D ⊆ A we have D |�C

B then A |�C
B.

Definition 2.2. One additional property which will often hold is

Base-Monotonicity: If A |�C
B and C ⊆ D ⊆ B then A |�D

B.

Examples 2.3. If cl is any pregeometry on M , with associated dimension function dim, then it is well-known 
(and easy to verify) that defining

A
dim
|�
C

B if and only if for every finite D ⊆ A ,dim(D/BC) = dim(D/C)

gives an independence relation on M satisfying Base-Monotonicity.
In particular, on a Q-vector space M we have A |�

Q-lin
C

B if the following equivalent conditions hold:

(i) for every finite D ⊆ A we have ldimQ(D/BC) = ldimQ(D/C);
(ii) span(AC) ∩ span(BC) = span(C).

Here and throughout the paper, span(A) will always mean the Q-linear span of A, in some ambient Q-vector 
space (often a field) which will be clear from context.

On any field F , we have field-theoretic algebraic independence A |�
td
C
B where the dimension notion is 

transcendence degree, td, and the pregeometry is (field-theoretic) relative algebraic closure.

In any exponential field, there is an exponential algebraic closure pregeometry, with dimension no-
tion called exponential transcendence degree. Unlike field-theoretic algebraic closure, the definition is not 
quantifier-free and cannot be reduced to one variable at a time, but comes from an algebraic version of the 
implicit function theorem.

Definition 2.4. Let F be any exponential field.
We say a1 ∈ F is exponentially algebraic over a subset B ⊆ F iff for some n ∈ N there are: ā =

(a1, . . . , an) ∈ Fn, polynomials p1, . . . , pn ∈ Z[X̄, eX̄ , Ȳ ], and a tuple b̄ from B such that setting fi(ā) =
pi(ā, eā, ̄b) we have

• fi(ā) = 0 for each i = 1, . . . , n, and

•

∣∣∣∣∣∣∣

∂f1
∂X1

· · · ∂f1
∂Xn

...
. . .

...
∂fn
∂X1

· · · ∂fn
∂Xn

∣∣∣∣∣∣∣
(ā) �= 0,

where ∂
∂Xi

denotes the formal partial differentiation of exponential polynomials.
Otherwise, a1 is exponentially transcendental over B in F .
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We write eclF (B) for the exponential-algebraic closure of B in F . It is always an exponential subfield, 
(field-theoretically) relatively algebraically closed in F , and closed under any logarithms which exist in F .

By [16, Theorem 1.1], exponential-algebraic closure is a pregeometry on any exponential field. The as-
sociated dimension notion is known as exponential transcendence degree, and we denote the associated 
independence relation by A |�

etd
C

B.

2.2. Independence relations on categories of structures

In model theory, we usually define independence relations not just on one model, but on all models of a 
complete theory, and require them to be compatible under taking elementary extensions. In this paper we 
will generalise this approach by

(1) working with models of a theory which may not be complete, and which may not be defined in any 
particular logic, and

(2) by specifying which extensions we consider, not just elementary extensions.

We consider concrete categories of structures, meaning categories in which every object has an underlying 
set, and every arrow has an underlying function which determines the arrow. In this paper, the objects 
will always be exponential fields, with the arrows being embeddings of exponential fields, sometimes with 
additional restrictions.

Definition 2.5. Let C be a concrete category of structures. An independence relation on C consists of an 
independence relation |�

M for each object M ∈ C, which together satisfy:

Invariance: For any f : M → N in C and any subsets A, B, C ⊆ M we have

A
M

|�
C

B iff f(A)
N

|�
f(C)

f(B).

The categories of structures and extensions we consider will all have amalgamation and unions of chains, 
so we can construct monster models in them in any of the usual ways. Our definition of Invariance is then 
equivalent to the common definition of invariance under automorphisms of the monster model.

2.3. Abstract elementary classes

In [11,12], independence relations were developed in the very general setting of Abstract Elementary 
Categories (AECats), a class of accessible categories which are not required to be concrete. They are a 
generalisation of Shelah’s notion of Abstract Elementary Class (AEC), which itself generalises categories of 
models of theories in a wide range of logics. All the examples we will consider in this paper are AECs, so 
we define those (albeit in more category-theoretic language than Shelah’s original definition).

Definition 2.6. An abstract elementary class (AEC) is a category C such that for some first-order vocabulary 
L, every object is an L-structure (which we call a model in C) and every arrow is an L-embedding, satisfying 
the following properties:

(1) C is closed under isomorphisms: if A ∈ C and f : A ∼= B is an L-isomorphism then B and f are in C.
(2) Coherence: If A ⊆ B ⊆ C are objects in C with the inclusions A ↪→ C and B ↪→ C both in C, then also 

the inclusion A ↪→ B is in C.
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(3) C is closed under unions of chains: for any ordinal λ, if (Ai)i<λ are in C such that for all i < j < λ we 
have Ai ⊆ Aj with the inclusion functions in C, then A :=

⋃
i<λ Ai ∈ C and all inclusions Ai ↪→ A are 

in C. Furthermore, if all Ai ⊆ B with inclusion maps in C then the inclusion A ↪→ B is also in C. (It is 
a standard consequence that C is then also closed under unions of directed systems [1, Corollary 1.7].)

(4) The Downwards Löwenheim–Skolem property: There is an infinite cardinal κ (the smallest such being 
called the LS-cardinal of C), such that for every A ∈ C and every subset S ⊆ A, there is a subobject 
B ↪→ A such that S ⊆ B and |B| � |S| + κ.

We will be considering AECs which have amalgamation and intersections in the sense below, in most 
cases by choosing the objects to be exactly the amalgamation bases from a larger category.

Definition 2.7. An object A in a category C is said to be an amalgamation base if for every pair of arrows 
B ← A → C there are arrows B → D ← C making the relevant square commute.

A category C is said to have the amalgamation property (AP), or be a category with amalgamation, if 
every object is an amalgamation base.

A category C has the Joint Embedding Property (JEP) if for every two objects A, B, there is an object D
and arrows A → D ← B. In the presence of AP, having such a common extension is an equivalence relation 
on the objects in the category. We call the equivalence classes of this relation JEP-classes.

We say that an AEC C has intersections if for any object A, and any set (Si)i∈I of subobjects of A, the 
intersection 

⋂
i∈I Si is also a subobject of A.

Definition 2.8. Let C be an AEC with amalgamation, and let M1 and M2 be models in C. Possibly infinite 
tuples a1 ∈ M1 and a2 ∈ M2 are said to have the same Galois type if there is a model N and embeddings 
gi : Mi ↪→ N , in C such that g1(a1) = g2(a2). Using amalgamation it is easy to see that this gives an 
equivalence relation on pairs (a; M). We write gtp(a; M) for the Galois type (the equivalence class).

We can also define Galois types over sets of parameters as a special case. Suppose that ai = bic for 
i = 1, 2, where c is a tuple from M1 and M2. Then we write gtp(b1/c; M1) = gtp(b2/c; M2) to mean 
gtp(b1c; M1) = gtp(b2c; M2).

If C is the common subset of M1 and M2 enumerated by c, we also write this as gtp(b1/C; M1) =
gtp(b2/C; M2).

Note that if M ↪→ N is an extension of models in C and a ∈ M then we always have gtp(a; N) = gtp(a; M), 
so where no confusion is likely to occur we will drop the M from the notation and just write gtp(a).

There is a simple characterisation of Galois types in AECs with amalgamation and intersections.

Lemma 2.9. Suppose that C is an AEC with amalgamation and intersections. Let f1 : C ↪→ A and f2 : C ↪→ B

be embeddings in C, and let a ∈ A and b ∈ B be tuples. Let [Ca] be the intersection of all the subobjects of 
A containing C ∪ a, and likewise [Cb]. Then gtp(a/C) = gtp(b/C) if and only if there is an isomorphism 
[Ca] ∼= [Cb] fixing C pointwise and taking a to b.

Proof. Straightforward from the definitions. �
Remark 2.10. Note that if C is an AEC with amalgamation and |� is an independence relation on C, then 

the invariance property is equivalent to saying that if A |�
M

C
B and we have A′, B′, C ′ ⊆ M ′ such that 

(for any choice of enumerations of A, B, C, A′, B′, and C ′ as tuples) gtp(ABC; M) = gtp(A′B′C ′; M ′)
then A′ | M ′

′ B′.
�C
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2.4. The independence relation hierarchy

To give the hierarchy of stable, simple, and NSOP1-like independence relations, we consider additional 
properties for an independence relation on an AEC with amalgamation. We first recall the definition of a 
club set in a suitable part of a powerset.

Definition 2.11. Let λ be a regular cardinal and X any set. We write [X]<λ = {Y ⊆ X : |Y | < λ}. We call 
a family of subsets B ⊆ [X]<λ:

• unbounded if for every Z ∈ [X]<λ there is Y ∈ B with Z ⊆ Y .
• closed if for every chain (Yi)i<γ in B (i.e. i � j < γ implies Yi ⊆ Yj) with γ < λ we have that 

⋃
i<γ Yi ∈ B.

• a clubset if B is closed and unbounded.

Definition 2.12 (Additional properties for an independence relation). The tuples below are allowed to be 
infinite.

Club Local Character: There is a cardinal λ such that for any model M in C, any finite subset A ⊆ M

and any subset B ⊆ M there is a clubset B ⊆ [B]<λ such that A |�
M

B0
B for all B0 ∈ B.

Extension: If a |�
M

C
B and B ⊆ B′ ⊆ M then there is an extension M ↪→ N in C and a′ ∈ N such that 

a′ |�
N

C
B′ and gtp(a′/BC; N) = gtp(a/BC; M).

3-amalgamation: Suppose we are given a commuting diagram in C consisting of the solid arrows below

M13 N

M1 M12

M3 M23

M M2

Suppose furthermore that M1 |�
M12
M

M2, M2 |�
M23
M

M3 and M3 |�
M13
M

M1. Then we can find N together 
with the dashed arrows, making the diagram commute and such that M1 |�

N

M
M23.

Stationarity: Let M ⊆ N be models in C. If we have a1 |�
N

M
B, a2 |�

N

M
B and gtp(a1/M ; N) =

gtp(a2/M ; N) then gtp(a1/MB; N) = gtp(a2/MB; N).

Definition 2.13. Suppose that |� is an independence relation on an AEC with amalgamation C. We say 
that |� is:

• an NSOP1-like independence relation if it also satisfies Club Local Character, Extension and
3-amalgamation;

• a simple independence relation if in addition it satisfies Base-Monotonicity;
• a stable independence relation if in addition it satisfies Stationarity.

In particular we have for an independence relation that being stable implies being simple implies being 
NSOP1-like.
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Remarks 2.14.

(1) The usual formulation of Local Character requires some cardinal λ such that for all A, B ⊆ M

where A is finite there is some B0 ⊆ B with |B0| < λ such that A |�
M

B0
B. In the presence of Base-

Monotonicity this implies Club Local Character, by considering the clubset

{B1 ⊆ B : |B1| < λ,B0 ⊆ B1}.

In NSOP1-like independence relations the property Base-Monotonicity may not hold, but one insight 
of [14] is that Club Local Character captures what is necessary for applications.

(2) It is well known for classical first-order logic that the 3-amalgamation property follows from the rest 
of the properties of a stable independence relation. For a proof covering the generality of AECs, see [11, 
Proposition 6.16].

(3) Our formulation of 3-amalgamation is at first sight slightly different from that in [11,12]: there M1, M2
and M3 would not necessarily be models and M would not necessarily factor through them. However, 
modulo the basic properties in Definition 2.1 together with a repeated application of Extension the 
two versions are easily seen to be equivalent.

(4) For a complete first-order theory T , if there is a simple or stable independence relation such that 
the cardinal λ for local character is ℵ0 then the theory is supersimple or superstable respectively. We 
will show in Proposition 6.5 that our notion of strong independence has local character with cardinal 
ℵ0. However these notions of superstability and supersimplicity are not so well-developed beyond the 
first-order setting so we do not immediately get any further conclusions.

(5) The hierarchy of NSOP1-like — simple — stable can be extended by adding stable and coming from 
a pregeometry (such as the quasiminimal case, or the uncountably categorical case) but that does not 
seem to correspond to axioms on the independence relation in the same style.

Examples 2.15. The |�
Q-lin relation defined earlier satisfies invariance for embeddings of Q-vector spaces, 

and is well-known to give a stable independence relation on the category of Q-vector spaces and their 
embeddings.

More generally, if T is a strongly minimal theory then the independence relation coming from its prege-
ometry is a stable (indeed superstable) independence relation.

The independence relation |�
td on a field satisfies invariance for field embeddings and gives a stable 

independence relation on the category of fields and field embeddings. This is almost a strongly minimal 
example; the additional content is that there is no need to mention algebraically closed fields, or to fix the 
characteristic.

The following fact tells us that there can be at most one nice enough independence relation on an AECat.

Fact 2.16 (Canonicity of independence, [12, Theorem 1.3]). Let C be an AEC with the amalgamation 
property and suppose that |� is a stable or a simple independence relation on C. Suppose furthermore that 
|�

∗ is an NSOP1-like independence relation on C. Then |� = |�
∗ over models. That is for M ↪→ N in C

and A, B ⊆ N we have A |�
N

M
B iff A |�

∗,N
M

B.

This statement does not allow for comparing two NSOP1-like independence relations. This is intentional, 
because in order to do so with current knowledge, an extra assumption called the “existence axiom for 
forking” is required. The current statement avoids this, because having a simple independence relation 
implies the existence axiom for forking. We also only get the result over models, rather than arbitrary sets 
because we only require 3-amalgamation rather than the full property called “independence theorem” in 
[12]. However, the current statement is enough for our purposes.
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3. Categories of exponential fields

3.1. Categories with all exponential field embeddings

We write ExpF for the category of exponential fields, with embeddings as arrows. We write EAF and 
ELAF for the full subcategories of EA-fields and ELA-fields.

Proposition 3.1. The categories ExpF, EAF, and ELAF are AECs, both EAF and ELAF have the 
Amalgamation Property, and ExpF and EAF have intersections.

Proof. We treat exponential fields as structures in the language 〈+, ·, −, 0, 1, exp〉 of exponential rings, with 
exp as a unary function symbol. As we are considering all embeddings in this language, coherence and the 
downward Löwenheim–Skolem property are immediate. Each category has an ∀∃-axiomatisation in classical 
first-order logic, so it is closed under isomorphisms and unions of chains.

By Theorem 4.3 of [8] (see also the proof of Proposition 3.12 below), the amalgamation bases of ExpF
are precisely the EA-fields. As every exponential field extends to an EA-field and to an ELA-field, it follows 
that both EAF and ELAF have the Amalgamation Property.

It is straightforward to see that ExpF and EAF have intersections. �
Definition 3.2. For an EA-field F and a subset A ⊆ F we write 〈A〉EA

F for the smallest EA-subfield of F
containing A. Note that if F1 ⊆ F2 are both EA-fields and A ⊆ F1 then 〈A〉EA

F1
= 〈A〉EA

F2
, so we will usually 

drop the subscript and write just 〈A〉EA.

Note that the AEC EAF does not have JEP, but F1 and F2 lie in the same JEP-class if and only if 
〈0〉EA

F1
∼= 〈0〉EA

F2
.

In constructions of exponential fields it is often useful to consider the notion of a partial E-field: a field 
F equipped with a Q-linear subspace D(F ) of its additive group and a homomorphism expF : 〈D(F ); +〉 →
〈F×; ×〉. We consider partial E-fields as structures in the language of rings together with a binary predicate 
for the graph of the exponential map.

Definition 3.3. For a partial E-field F and a subset A ⊆ D(F ) we write 〈A〉F for the smallest partial E-
subfield of F containing A. That is, 〈A〉F is the field generated by span(A) ∪ exp(span(A)) and D(〈A〉F ) =
span(A). If F1 ⊆ F2 are both partial E-fields and A ⊆ D(F1) then 〈A〉F1

= 〈A〉F2
, so we may drop the 

subscript and write just 〈A〉.

Construction 3.4 (See [17, Constructions 2.7,2.9]). Let F be a partial E-field. Then there is a free EA-
field extension FEA of F , which is obtained from F by taking a point a ∈ F alg \ D(F ) and adjoining an 
exponential ea to F , transcendental over F , and iterating. One can also get a free (total) E-field extension 
FE of F the same way, by taking only points a ∈ F \D(F ) at each stage. These extensions FEA and FE

can easily be seen to be unique up to isomorphism as extensions of F .
The extensions FEA and FE of F are free on no generators. One can also get free extensions of F on 

generators (xi)i∈I by taking F1 = F (xi)i∈I , the field of rational functions over F , with D(F1) = D(F ) and 
expF1

= expF , and then forming the extensions FEA
1 and FE

1 .

Here and in Construction 3.7 we use the term “free” because this matches the intuition that no unnec-
essary algebraic or exponential relations are introduced. However, these constructions are not free in the 
traditional category-theoretic sense. See [17, p948] for a further discussion.
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3.2. Kernel-preserving embeddings

Definition 3.5. By the kernel of an exponential field F , written kerF , we mean the kernel of the exponential 
map expF .

We say that F has standard kernel if kerF = τZ, an infinite cyclic group generated by τ which is 
transcendental, as in Cexp where τ = 2πi.

An embedding f : F1 ↪→ F2 of exponential fields is kernel-preserving if every element of the kerF2 is in 
the image of F1. (So the kernel is fixed set-wise, but not necessarily pointwise).

We say that an exponential field F has full kernel if it can be embedded in a kernel-preserving way into 
an ELA-field. (Equivalently, by Proposition 2.12 and Construction 2.13 of [17], F contains all roots of unity, 
and they are in the image of expF .)

Much as in Construction 3.4, we can extend a partial E-field with full kernel to an ELA-field in a free 
way. We give more detail for this construction as we will use it later.

Definition 3.6. Let F be a partial E-field with full kernel. A kernel-preserving partial E-field extension F ′ is 
said to be a one-step free extension of F if we have ldimQ(D(F ′)/D(F )) = 1, and, for some (equivalently 
all) a ∈ D(F ′) \D(F ) we have either:

• a is algebraic over F and ea is transcendental over F ; or
• a is transcendental over F and ea is algebraic over F .

Construction 3.7. [17, Construction 2.13] Let F be a partial E-field with full kernel, and M an ELA-field 
extension of F with the same kernel. We say that M is a free ELA-extension of F if there is an ordinal-
indexed continuous chain of partial E-fields

F = F0 ↪→ F1 ↪→ · · · ↪→ Fα ↪→ · · · ↪→ Fλ = M

such that each successor step is a one-step free extension.
It is easy to see that free ELA-extensions exist. We denote any such free ELA-extension of F by FELA.

Unlike in the case of FEA, it is not obvious or even always true that FELA is unique up to isomorphism. 
For example, take F = Qalg(2πi) with D(F ) = 2πiQ, and exp(2πi/m) a primitive mth root of 1. Then if we 
adjoin a transcendental over F such that exp(a) = 2 then the sequence (exp(a/m))m∈N+ must be chosen to 
be one of the continuum-many sequences ( m

√
2)m∈N+ from Qalg, and even allowing the translation a �→ a +μ

for a kernel element μ only allows countably many of the sequences to be realised in a kernel-preserving 
extension of F . We can avoid this if the kernel is sufficiently saturated in the following sense.

As an abelian group, a full kernel is always a model of Th(Z; +). Such groups M are isomorphic to a 
direct sum Mr ⊕Md where Md ⊆ M is the subgroup of divisible elements, and Mr = M/Md is the reduced 
part of M . This reduced part is always an elementary submodel of the profinite completion Ẑ of Z, see [20, 
Chapter 15].

Definition 3.8. A partial E-field has very full kernel if the reduced part of its kernel is all of Ẑ.

Theorem 3.9 (Uniqueness of free extensions). Let F be a partial E-field with very full kernel which is 
generated as a field by D(F ) ∪ exp(D(F )). Then FELA is unique up to isomorphism as an extension of F .

Proof. This is [18, Proposition 3.13]. �
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Remark 3.10. It follows from [17, Theorem 2.18] that the conclusion of Theorem 3.9 also holds when F has 
full kernel and one of the following holds:

(1) D(F ) is finite dimensional, or
(2) D(F ) is finite dimensional over some countable ELA-subfield (or even just LA-subfield).

We discuss these cases further in section 6.1.

Definition 3.11. We write ExpFkp for the category of exponential fields with full kernel, and kernel-
preserving embeddings, and ELAFkp for the full subcategory of ELA-fields with kernel-preserving em-
beddings.

Proposition 3.12. The amalgamation bases for ExpFkp are precisely the ELA-fields.

Proof. Let F be an ELA-field and let f1 : F → F1 and f2 : F → F2 be two kernel-preserving extensions. We 
can amalgamate F1 and F2 freely as fields over F and then expF1

∪ expF2
extends uniquely by additivity to 

the Q-linear space F1 + F2. It is easy to check that this does not introduce any new kernel elements. It is 
then easy to extend this partial E-field to an ELA-field without adding new kernel elements, for example 
freely as in Construction 3.7. So ELA-fields are amalgamation bases in ExpFkp, and indeed ELAFkp has 
amalgamation.

Conversely, suppose that F is an exponential field with full kernel which is not an ELA-field. First 
suppose that F is not algebraically closed, and take a ∈ F alg \ F . Using Construction 3.7, we can form the 
free ELA-extension FELA of F in which the exponentials of a and its conjugates are all transcendental over 
F , and the kernel does not extend.

We can also form a partial E-field extension F1 of F by choosing a coherent system of roots (am)m∈N+

of a in F alg, that is, we have a1 = a and for all m, r ∈ N+ we have armr = am, and then defining 
exp(la/m + b) = alm · expF (b) for all l ∈ Z, all m ∈ N+, and all b ∈ F .

This is a kernel-preserving extension, because if exp(la/m + b) = 1 with l �= 0 then alm = expF (−b), so 
there is a root of unity ξ such that expF (−mb/l) = aξ. Since F has full kernel, ξ ∈ F , and this contradicts 
the fact that a /∈ F .

Now we form the free ELA-extension FELA
1 of F1. We have two kernel-preserving extensions FELA and 

FELA
1 of F . In FELA

1 we have exp(a) = a so exp(a) ∈ F alg, but if a′ is any conjugate of a in FELA then 
exp(a′) is transcendental over F . Hence these extensions cannot be amalgamated over F (even if we allow 
the kernel to extend).

Now suppose that F is an EA-field, but the exponential map of F is not surjective, say b ∈ F× has no 
logarithm in F .

Let F1 be a partial E-field extension of F generated by an element a such that exp(a) = b. Then 
a /∈ F and so a is transcendental over F . Then a2 is not in the domain of expF1

. The image of expF1
is 

the multiplicative span of the image of expF and b, so in particular it does not contain a. Therefore we 
can define a further partial E-field extension F2 of F1 with domain spanned by F , a, and a2, such that 
expF2

(a2) = a. Furthermore, F2 is a kernel-preserving extension of F .
Now consider the two extensions F ↪→ FELA and F ↪→ FELA

2 . If they amalgamate over F without 
extending the kernel, say into an exponential field F ′, then the element a ∈ F2 must map to one of the 
logarithms of b in F ′, say a′. But this must also come from one of the logarithms of b in FELA, which implies 
that a′ and exp((a′)2) are algebraically independent over F , a contradiction.

Hence ELA-fields are the only amalgamation bases in ExpFkp. �
From the proof of Proposition 3.12 we also get directly:
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Corollary 3.13. Any span F1 ← F → F2 in ExpFkp with F an ELA-field can be amalgamated such that 
F1 |�

td
F
F2 in the resulting amalgam. �

Definition 3.14. Let F be an ELA-field, and A ⊆ F a subset. We write 〈A〉ELA
F for the intersection of all 

ELA-subfields B of F containing A ∪ kerF .

Note that we force 〈A〉ELA
F to contain kerF , so it is not just the intersection of all ELA-subfields. Whenever 

F1 ⊆ F2 is a kernel-preserving inclusion of ELA-fields then for any a ∈ F2 with exp(a) ∈ F1 we have a ∈ F1. 
It is then easy to see that 〈A〉ELA

F is an ELA-subfield of F , and hence the category ELAFkp has intersections. 
(The category ELAF actually does not have intersections.)

Furthermore, for any A ⊆ F1 ⊆ F2 with kerF1 = kerF2 we have 〈A〉ELA
F1

= 〈A〉ELA
F2

, so provided we have 

fixed the kernel we will usually drop the subscript and write just 〈A〉ELA.
The JEP-classes of ELAFkp are given by the isomorphism types of 〈0〉ELA

F . We call this the kernel type
of F . We write ELAFK,kp for the full subcategory of ELAFkp consisting of the ELA-fields with kernel 
type K.

Proposition 3.15. Each category ELAFK,kp is an AEC with amalgamation, joint embedding, and intersec-
tions.

Proof. That ELAFK,kp is an AEC follows from the fact that ELAF is an AEC (Proposition 3.1), where 
for the downward Löwenheim-Skolem property we use the same property for ELAF where we make sure 
that K is included in the smaller model. (Thus the LS-cardinal will be |K|, and since this is unbounded, it 
prevents ELAFkp being an AEC.) The amalgamation property follows from Proposition 3.12, JEP is then 
immediate, and we have just observed that it is closed under intersections. �
3.3. Strong embeddings

In any analytic exponential field, in particular Rexp and Cexp, or more generally any exponential field 
where the exponential algebraic closure pregeometry ecl is non-trivial, the Ax-Schanuel theorem is relevant. 
It gives non-negativity of a certain predimension function. The embeddings which preserve this predimension 
function, and in particular preserve its non-negativity, are the strong embeddings. Zilber’s exponential field 
Bexp is constructed by amalgamation of these strong embeddings.

Definition 3.16.

(1) Let F be a partial E-field. We define the relative predimension over the kernel as follows. For a finite 
tuple a ∈ D(F ) and B ⊆ D(F ) we define:

ΔF (a/B) := td(a, exp(a)/B, exp(B), kerF ) − ldimQ(a/B, kerF ).

We omit B if B is empty, so ΔF (a) = ΔF (a/∅). We may omit the subscript F if the field is clear from 
the context.

(2) An embedding A ↪→ F of partial E-fields is strong if it is kernel-preserving and for all finite tuples 
b ∈ D(F ) we have ΔF (b/A) � 0. We write A � F for a strong embedding.

(3) If F is a partial E-field and A is a subset of D(F ), we say that A is strong in F and write A � F if 
for all finite tuples b from F we have Δ(b/A) � 0. This agrees with the previous definition in the sense 
that A is strong in F if and only if the embedding 〈A ∪ kerF 〉F ↪→ F is strong.

(4) It is easy to check that isomorphisms are strong and the composition of strong embeddings is strong, 
so ELA-fields and strong embeddings form a category which we denote by ELAF�.



14 V. Aslanyan et al. / Annals of Pure and Applied Logic 174 (2023) 103288
Remarks 3.17.

(1) When the kernel K is the standard kernel, the predimension function Δ is for all purposes equivalent 
to the more commonly used predimension function

δ(a/B) := td(a, exp(a)/B, exp(B)) − ldimQ(a/B).

Of course if B contains the kernel then δ and Δ agree anyway.
(2) The paper [18] contains an analysis of embeddings for which the predimension inequality holds, but 

which do not necessarily preserve the kernel, there called semi-strong embeddings. The category ECF
of exponentially closed fields, conjecturally the category of models of the complete first-order theory of 
Bexp and their elementary embeddings, is a further refinement of those ideas, developed in the same 
paper. Such a theory would interpret the theory of arithmetic and thus has SOP1, so no NSOP1-like 
independence relation can exist.

An exponential field may have no proper strong subsets. For example, this is true for exponential fields 
which are existentially closed for all embeddings. However, in exponential fields with some proper strong 
subsets there are many of them and they play an important role as we now explain.

Definition 3.18. Let F be a partial E-field and A ⊆ D(F ). We define the hull of A in F to be

�A�F =
⋂

{B ⊆ D(F ) : B is a Q-linear subspace, A ∪ kerF ⊆ B, and B � F}.

Note that if F1 � F2 and A ⊆ D(F1) then �A�F1 = �A�F2 , so we omit the subscript F from the notation 
unless it is needed.

Lemma 3.19. Let F be a partial E-field and A ⊆ D(F ). Then

(1) �A� is well-defined and is strong in F .
(2) The hull operator has finite character, that is, �A� =

⋃
A0⊆finiteA

�A0�.
(3) Suppose that C � F and a is a finite tuple from D(F ). Then ldimQ(�Ca�/C) is finite.

Proof. (1) We always have D(F ) � F , so the intersection is non-empty and so well-defined. The fact that 
it is strong in F is [2, Lemma 4.5].

(2) This slightly improves the statement of [2, Lemma 4.7], but the proof is identical: from the definition of 
the hull, it is immediate that the union U :=

⋃
A0⊆finiteA

�A0� satisfies A ∪ kerF ⊆ U ⊆ �A�. But from 
finite character of δ and the fact that the union is directed, we get U � F , so the result follows.

(3) Let X = {Δ(ab/C) : b ∈ D(F ) (a finite tuple)}. Since C � F , as b ranges over finite tuples from D(F ), 
the value of Δ(ab/C) is always in N, so we can choose b such that Δ(ab/C) is minimal, and for that 
value of Δ we can choose b such that ldimQ(ab/C) is minimal. Then for any d ∈ D(F ) we have

Δ(d/Cab) = Δ(abd/C) − Δ(ab/C) � 0

by minimality. Hence Cab � F , and by the minimality of the linear dimension its span is �Ca�. �
The proofs in [2] work with the graph Γ of the exponential map rather than the domain D(F ), and 

in fact work in greater generality, but the difference is not relevant for this paper. Older proofs of similar 
statements in [17] work under the assumption that the kernel is strongly embedded, or something similar, 
but this assumption is not needed.
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The free extensions of Constructions 3.4 and 3.7 are always strong. To see this, it is immediate that the 
one-step free extensions are strong, and then one can iterate. Furthermore, intermediate steps on the free 
constructions are also strong.

On the other hand, finitely generated strong extensions are very close to being free extensions, and in 
particular they are classifiable [17,18], which gives rise to a form of stability in the type-counting sense. So 
stability of an independence relation as we show here is to be expected, albeit not automatic as the setting 
is not first-order and indeed we only prove it in the case of very full kernel.

Theorem 3.20. Suppose F is an ELA-field, and A � F is a strong partial E-subfield of F . Then the ELA-
closure 〈A〉ELA

F of A inside F is also strong in F , and it is isomorphic to a free ELA-field extension AELA.
Furthermore, if the hypotheses of Theorem 3.9 hold, then the isomorphism type of 〈A〉ELA

F over A does 
not depend on the choice of strong ELA-extension F .

Proof. This follows from the proof of [17, Theorem 2.18], which exploits the fact that the ELA-closure 
is the union of a chain of one-step free extensions. That theorem is stated with the assumptions (1) or 
(2) in Remark 3.10, but those assumptions are used only in the uniqueness part of the proof. We get the 
uniqueness in the “furthermore” statement instead from Theorem 3.9. �

It follows from Theorem 3.20 that for any ELA-field F and subset A we have 〈�A�F 〉ELA
F isomorphic to 

(�A�F )ELA. To simplify notation, we write the former as �A�ELA
F , or just �A�ELA without the subscript. 

So �A�ELA
F is the smallest strong ELA-subfield of F containing A ∪ kerF , and it follows that the category 

ELAF� has intersections.

3.4. Free amalgamation

Proposition 3.12 shows that any two kernel-preserving extensions A ← C → B of ELA-fields can be 
amalgamated, and this can be done in many ways. We pick out a particular way to do it freely. Uniqueness 
of this free amalgamation is intimately connected to stability.

Definition 3.21. Let

F

A B

C

be kernel-preserving inclusions of partial E-fields such that F and C are ELA-fields, A ∩ B = C, and 
F = 〈AB〉ELA

F . We say that F is a free amalgam of A and B over C if

(i) A |�
td
C
B, and

(ii) F is a free ELA-extension of its partial E-subfield 〈AB〉F .

Given such an A, B, C, we can always construct a free amalgam by Corollary 3.13 and the (−)ELA

construction. We identify one case where it is unique.

Lemma 3.22. When C is an ELA-field with very full kernel, the free amalgam of A and B over C is unique 

up to isomorphism. That is, if A 
f1−→ F1

g1←− B and A 
f2−→ F2

g2←− B are free amalgams over C then there is 
an isomorphism θ : F1 → F2 such that θf1 = f2 and θg1 = g2.
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Proof. Note that the inclusions of C into A and B and the first condition above determine the square

〈AB〉F

A B

C

uniquely up to isomorphism, and then from Theorem 3.9 we get uniqueness of the amalgam F in the case 
where C has very full kernel. �

We can use this construction to prove the amalgamation property for strong embeddings.

Lemma 3.23. Suppose that F is a free amalgam of A and B over C as above. Suppose also that C � A. 
Then B � 〈AB〉F . If also C � B then A � 〈AB〉F .

In particular, the category ELAF� has amalgamation.

Proof. This is a straightforward predimension calculation, using the fact that A |�
td
C
B, that C is an ELA-

field, and that the kernel does not extend. See [2, Proposition 5.7] for the proof in a more general setting. �
Proposition 3.24. Each JEP-class in ELAF� is an AEC with amalgamation, joint embedding, and inter-
sections.

Proof. Clearly ELAF� is closed under isomorphisms. Coherence is well known (see e.g. [18, Lemma 3.11(d)]) 
and easily follows from the definition of strong embeddings. It is also straightforward to verify that we have 
unions of chains, using finite character of the properties involved. For downward Löwenheim-Skolem we can, 
given any A ⊆ F , consider �A�ELA

F , which will always be bounded in cardinality by |A| + |�kerF �F |, and 
this hull of the kernel is constant on JEP-classes. Lemma 3.23 gives amalgamation, JEP is immediate and 
we observed closure under intersections above, after Theorem 3.20. �
3.5. Closed embeddings

Recall that the exponential algebraic closure pregeometry depends on existential information, so if 
F1 ↪→ F2 is an extension of exponential fields, eclF1 may not be the restriction to F1 of eclF2 . Indeed 
π is exponentially algebraic in Cexp, because eiπ + 1 = 0 but, assuming Schanuel’s conjecture, π is actually 
exponentially transcendental in Rexp.

Definition 3.25. An embedding F1 ↪→ F2 of exponential fields is said to be closed if eclF2(F1) = F1, or 
equivalently if for all A ⊆ F1 we have eclF1(A) = eclF2(A).

It follows immediately that the independence relation |�
etd satisfies Invariance for closed embeddings 

of exponential fields.
Like strong embeddings, closed embeddings can be characterised by the predimension function Δ, and 

indeed the predimension function also characterises exponential transcendence degree.

Theorem 3.26. Let F be an exponential field. Then B is exponentially-algebraically closed in F iff kerF ⊆ B

and for any finite tuple a from F , not contained in B, we have Δ(a/B) � 1. In particular, closed embeddings 
are strong embeddings.
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Furthermore, if C � F and a is any finite tuple from F then

etd(a/C) = min{Δ(ab/C) : b ⊆ F}.

Proof. The furthermore part is [16, Theorem 1.3], and the rest of the theorem follows. �
4. EA-independence

Recall that for an EA-field F and a subset A ⊆ F we write 〈A〉EA
F , or just 〈A〉EA when F is clear, for the 

smallest EA-subfield of F containing A.
We recall the following independence relation for EA-fields from [8, Definition 5.1].

Definition 4.1. We define |�
EA-independence as follows. Let F be an EA-field and A, B, C ⊆ F , then:

A
EA,F

|�
C

B ⇐⇒ 〈AC〉EA
td
|�

〈C〉EA

〈BC〉EA.

In [8] it was shown that this independence relation is an NSOP1-like independence relation in some 
sense, but the list of properties proved there is not exactly the list needed for the canonicity theorem, so we 
explain why the extra properties also hold. We also provide a counterexample to Base-Monotonicity, 
Example 4.3, giving a direct proof that this independence relation is not simple.

Proposition 4.2. On any EA-field F , |�
EA satisfies the six basic properties of an independence relation from 

Definition 2.1.

Proof. All immediate from the definition or the corresponding properties of |�
td and of the 〈−〉EA-closure 

operator. �
We could in fact define |�

EA on an E-field or even a partial E-field F rather than an EA-field, and prove 
the same result, if we relativise the EA-closure operator inside F . However, we will not make use of that.

We give an example to show that Base-Monotonicity can fail, so |�
EA is not a simple independence 

relation on EAF.

Example 4.3. Let C be any EA-field. Let F be the field F = C(a, d, b1, b2)alg, where a, d, b1, b2 are alge-
braically independent over C. We consider various algebraically closed subfields of F , and will make them 
into EA-fields.

Let A = C(a)alg and D = C(d)alg, and choose any exponential maps on them extending that on C to 
make them EA-field extensions of C. Let B = D(b1, b2)alg, and choose any exponential map making it an 
EA-field extension of D.

Let t = ab1 +b2 ∈ F . Then t is transcendental over A ∪D, and transcendental over B. Let E = A(d, t)alg. 
We choose a point u ∈ C(a, d)alg which is not in the Q-linear span A + B, for example take u = ad. Then 
we can extend the exponential map from A + B to an exponential map on E such that exp(u) = t.

Then we choose any exponential map on F extending that on E + B.
Then the EA-closure of A ∪D in F is E.
We have the following diagram of EA-fields, with transcendence degrees of each extension as given.
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F

E B

A D

C

1 1

2
22

1 1

Now we have C ⊆D⊆B and by considering transcendence degrees, we see that A |�
td
C
B and thus 

A |�
EA
C

B but E � |�
td
D
B, and so A � |�

EA
D

B. So Base-Monotonicity does not hold.

Remark 4.4. This gives a good illustration of what the Base-Monotonicity property means. To see 
whether or not A |�

EA
C

B, we look only at 〈AC〉EA ∪ 〈BC〉EA, not at all of 〈ABC〉EA.

Remark 4.5. We can contrast this example with the theory ACFA of (existentially closed) fields with an 
automorphism, σ. This is a simple theory, with simple independence relation given by A |�

ACFA
C

B if and 

only if σ-cl(AC) |�
td
σ-cl(C) σ-cl(BC), where σ-cl(X) means the closure of X under σ, σ−1, and field-theoretic 

algebraic closure.
If we try to construct an example similar to Example 4.3 but with σ-closed fields in place of EA-fields, 

we find that the field E, which is now the σ-closure of A ∪D, is just the field-theoretic algebraic closure of 
A ∪D, because the automorphism σ commutes with the field operations. Of course as |�

ACFA is simple it 
does satisfy Base-Monotonicity.

We can now put together the proof that |�
EA is an NSOP1-like non-simple independence relation on the 

category EAF of EA-fields.

Proof of Theorem 1.2. Since Base-Monotonicity fails, |�
EA is non-simple.

The 〈−〉EA-closure operator respects embeddings of EA-fields, so Invariance holds. The Extension

property is verified in [6, Proposition 10.5]. 3-amalgamation is verified in [8, Theorem 6.5]. (In fact, 
n-amalgamation is proved in [8, Theorem 5.4].)

Finally, following [6, Remark 9.8], Club Local Character with λ = ℵ1 follows using the same methods 
as in [14], because [8, Theorem 6.5] actually gives us a strengthened version of Finite Character called
Strong Finite Character. �

We note that the Strong Finite Character property makes use of formulas, and so this proof of
Club Local Character makes essential use of the fact that EAF is the category of models of some 
theory. The other proofs are more algebraic (semantic) in nature.

5. ELA-independence

We now come to a relation of independence which takes account of the kernel of the exponential map, 
and so is appropriate when we have fixed the kernel.

Recall that for an ELA-field F and a subset A ⊆ F , we write 〈A〉ELA
F or just 〈A〉ELA, for the smallest 

ELA-subfield of F containing A ∪ kerF .
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Definition 5.1. We define |�
ELA-independence as follows. Let F be an ELA-field and A, B, C ⊆ F , then:

A
ELA,F

|�
C

B ⇐⇒ 〈AC〉ELA td
|�

〈C〉ELA

〈BC〉ELA
.

Proposition 5.2. On any ELA-field F , |�
ELA-independence satisfies the six basic properties of an indepen-

dence relation from Definition 2.1. Furthermore, it satisfies Invariance for kernel-preserving embeddings, 
so is an independence relation on ELAFkp.

Proof. The basic properties are almost immediate, as for |�
EA. Since the ELA-closure 〈−〉ELA is preserved 

under kernel-preserving embeddings of ELA-fields, the Invariance property holds on ELAFkp. �
A variant of Example 4.3 shows that Base-Monotonicity fails, so it is not simple.

Example 5.3. Let C be an ELA-field, and take F to be the ELA-extension of C generated by algebraically 
independent elements a, d, b1, b2 subject only to the relation exp(ad) = ab1 + b2. Now we define several 
ELA-subfields of F , namely A = 〈Ca〉ELA

F , D = 〈Cd〉ELA
F , B = 〈Db1, b2〉ELA

F , E = 〈A ∪D〉EA
F .

From the freeness of the construction we see that A |�
td
C
B and therefore A |�

ELA
C

B. On the other hand, 
looking at the elements a, ab1 + b2, b1, b2 we see that E � |�

td
D
B, and so A � |�

ELA
D

B. Thus, |�
ELA does not 

satisfy Base-Monotonicity.

While they look similar, EA-independence and ELA-independence are different.

Example 5.4. We construct an ELA-field F and EA-subfields A, B, C with the same kernel such that

A
EA,F

|�
C

B but A
ELA,F

� |�
C

B.

To do this, take any ELA-field C, for example Cexp. Let F := C(d)ELA be the free ELA-extension of C
on a single generator d, as in Construction 3.7. Then F has infinite transcendence degree over C, and the 
same kernel.

Let a := ed, b := ed
2 , A := 〈C(a)〉EA

F and B := 〈C(b)〉EA
F .

Then 〈A〉ELA
F = F = 〈B〉ELA

F , and so A � |�
ELA,F

C
B.

However, a and b are algebraically independent over C, and so the freeness of the construction of F
ensures that A |�

EA,F

C
B.

Example 5.5. We can also get the opposite situation. For this, let D = Cexp or any ELA-field. Then we take 
F := D(a, b)ELA, the free ELA-extension on two generators, and take EA-subfields

A :=
〈
D(a, eb)

〉EA
F

, B := 〈D(ea, b)〉EA
F , and C :=

〈
D

(
ee

a

, ee
b
)〉EA

F
.

Then 〈C〉ELA
F = 〈A〉ELA

F = 〈B〉ELA
F = F , so we have A |�

ELA,F

C
B trivially.

However, A ∩B =
〈
D(ea, eb)

〉EA
F

which properly contains C, and so A � |�
EA,F

C
B.

We now prove that |�
ELA is an NSOP1-like and non-simple independence relation on the category 

ELAFkp of ELA-fields together with kernel-preserving embeddings, or more precisely on each connected 
component, which is obtained by fixing the ELA-closure of the kernel, and is an AEC with amalgamation, 
joint embedding, and intersections. It remains to prove Club Local Character, Extension, and 3-

Amalgamation.
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Proposition 5.6. The relation |�
ELA satisfies Club Local Character on each connected component of 

ELAFkp. The relevant cardinal is λ = κ+, where κ is cardinality of the kernel in the connected component.

Proof. Let F be an ELA-field, and A, B ⊆ F with A finite. We prove that the set

C = {B0 ∈ [B]<λ : A
ELA
|�

B0

B}

is club in [B]<λ, where λ = | kerF |+.
Closed. Let (Bi)i<γ with γ < λ be a chain in C. Set Bγ =

⋃
i<γ Bi. For every i < γ we have 

by assumption that 〈ABi〉ELA |�
td
〈Bi〉ELA 〈B〉ELA. So by Base-Monotonicity for |�

td we have that 
〈ABi〉ELA |�

td
〈Bγ〉ELA 〈B〉ELA for every i < γ. Then because 〈ABγ〉ELA =

⋃
i<γ〈ABi〉ELA we can use Fi-

nite Character of |�
td to conclude that 〈ABγ〉ELA |�

td
〈Bγ〉ELA 〈B〉ELA and so indeed A |�

ELA
Bγ

B.

Unbounded. Let D ∈ [B]<λ. Then by Local Character and Base-Monotonicity of |�
td there is 

B0 ⊆ 〈B〉ELA with |B0| < λ such that D ⊆ B0 and A |�
td
B0

B. Since |AB0| < λ and λ = | kerF |+ we have 

that |〈AB0〉ELA| < λ.
Then by Local Character for |�

td (or rather, by a standard consequence), there is B1 ⊆ 〈B〉ELA

with |B1| < λ such that B0 ⊆ B1 and 〈AB0〉ELA |�
td
B1

〈B〉ELA. Repeating this process we obtain a 

chain (Bi)i<ω of subsets of 〈B〉ELA, each of cardinality < λ, such that 〈ABi〉ELA |�
td
Bi+1

〈B〉ELA for all 
i < ω. Set Bω =

⋃
i<ω Bi. By Base-Monotonicity for |�

td we have 〈ABi〉ELA |�
td
〈Bω〉ELA 〈B〉ELA for 

all i < ω. So because 〈ABω〉ELA =
⋃

i<ω〈ABi〉ELA we can use Finite Character for |�
td to obtain 

〈ABω〉ELA |�
td
〈Bω〉ELA 〈B〉ELA.

For every c ∈ 〈Bω〉ELA there is some finite tuple bc ∈ B such that c ∈ 〈bc〉ELA. Set B′
ω = D ∪

⋃
{bc :

c ∈ 〈Bω〉ELA}. Then |B′
ω| < λ because |〈Bω〉ELA| < λ. By construction we have D ⊆ B′

ω ⊆ B while also 
〈B′

ω〉ELA = 〈Bω〉ELA. So 〈AB′
ω〉ELA |�

td
〈B′

ω〉ELA 〈B〉ELA and thus A |�
ELA
B′

ω

B. We conclude that B′
ω ∈ C, so C

is indeed unbounded in [B]<λ. �
This proof strategy does not seem to yield anything better than λ = κ+. However, we have not proved 

that this is optimal, and indeed our initial guess was that one might be able to take λ = ℵ0 for any kernel. 
This remains open.

Proposition 5.7. The relation |�
ELA satisfies Extension on ELAFkp.

Proof. Let F be an ELA-field, let C, B ⊆ F , let a be a possibly infinite tuple in F such that a |�
ELA,F

C
B

and let B ⊆ D ⊆ F . We have to produce a′ in some extension N of F such that a′ |�
ELA,N

C
D and 

gtp(a/BC) = gtp(a′/BC).
We may assume C = 〈C〉ELA

F , B = 〈BC〉ELA
F , D = 〈D〉ELA

F and that a enumerates 〈Ca〉ELA
F . Let 

A = 〈Ba〉ELA
F .

As subsets of F , it may be that A and D are not independent from each other over B. However, we can 
also regard them as extensions of B and let M be their free amalgam, shown by the dashed arrows in the 
diagram below. We now have both F and M as extensions of D, and we let N be their free amalgamation, 
yielding the dotted arrows in the diagram below.

a A F N
C B D M
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We can then regard the embedding of F into N as an inclusion. We let a′ and A′ be the image of a and A
in N , when factored through M . Then A ∼= A′ with an isomorphism fixing B pointwise and sending a to 
a′, and so by Lemma 2.9 we have gtp(a′/B) = gtp(a/B), which, as C ⊆ B, is what we needed.

Since M is the free amalgam of A and D over B, we have A′ |�
ELA,M

B
D. Then by Invariance we 

have A′ |�
ELA,N

B
D and by Monotonicity we have a′ |�

ELA,N

B
D. Also, since a |�

ELA,F

C
B, by the above 

equality of Galois types and Invariance we have a′ |�
ELA,N

C
B. So, by Transitivity we find a′ |�

ELA,N

C
D, 

as required. �
Proposition 5.8. The relation |�

ELA satisfies 3-Amalgamation on ELAFkp.

The proof is similar to the case of amalgamating independent systems of EA-fields and arbitrary em-
beddings, which was done in [8, Theorem 5.4]. We will just consider 3-amalgamation, but with somewhat 
more complicated notation, and an inductive argument, one can also show that ELAFkp has independent 
n-amalgamation for all n � 3.

Proof. Suppose we are given a commuting diagram consisting of the solid arrows below, such that 
Fi |�

ELA,Fij

F
Fj for all 1 � i < j � 3.

F13 F ′

F1 F12

F3 F23

F F2

We will construct F ′ with the dashed arrows such that the entire diagram commutes, and such that 
F1 |�

ELA,F ′

F
F23. We will in fact additionally get F2 |�

ELA,F ′

F
F13 and F3 |�

ELA,F ′

F
F12 from the symme-

try of the construction. To distinguish between the exponential maps on these fields, we will use subscripts 
and write, say exp1 or exp12, with exp′ for the map on F ′.

First, we can amalgamate the system just as algebraically closed fields, to get an algebraically closed 
field F ′′ and embeddings into it such that F1 |�

td,F ′′

F
F23.

As in the proof of [8, Theorem 5.4], the map exp12 ∪ exp23 ∪ exp31 extends to a homomorphism exp′′

from F12 + F13 + F23 to (F ′′)×, making F ′′ into a partial E-field.
We must show that there are no new kernel elements in F12+F13+F23. Let a12 ∈ F12, a13 ∈ F13, a23 ∈ F23

such that exp12(a12) exp13(a13) exp23(a23) = 1. Write K = kerF for the kernel of the ELA-fields in the 
original system, so we need to show that a12 + a13 + a23 ∈ K.

Using a lemma of Shelah on stable systems of models (in this case algebraically closed fields) [21, Fact 
XII.2.5], also quoted as [8, Fact 5.3], we can find c1 ∈ F1 and c2 ∈ F2 such that exp12(a12)c1c2 = 1. As F1
and F2 are ELA-fields there are b1 ∈ F1 and b2 ∈ F2 such that exp1(b1) = c1 and exp2(b2) = c2. Hence we 
have exp12(a12 + b1 + b2) = 1 and so a12 + b1 + b2 ∈ K.

We also have exp13(b1) exp23(b2) = exp12(a12)−1 = exp13(a13) exp23(a23), so exp13(a13 − b1) exp23(a23 −
b2) = 1. Thus we have that exp13(a13 − b1) = exp23(−(a23 − b2)) ∈ F13 ∩ F23 = F3. As F3 is an ELA-field 
there is d ∈ F3 with exp3(d) = exp13(a13 − b1) = exp23(−(a23 − b2)). Therefore a13 − b1 − d ∈ K and 
a23− b2 +d ∈ K. Since K is an abelian group we get that their sum a13 +a23− (b1 + b2) is in K. Combining 
with a12 + b1 + b2 ∈ K from before, we conclude that indeed a12 + a13 + a23 ∈ K. Hence the embeddings 
of the Fij into F ′′ are kernel-preserving.

Now we set F ′ := (F ′′)ELA to complete the system with an ELA-field. This free extension is also kernel-
preserving. The system is independent with respect to |�

td and each node is an ELA-subfield (with the 

same kernel), hence it is an | ELA-independent system as required. �
�
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That completes the proof of Theorem 1.3.

6. Strong independence

Recall that for an ELA-field F and A ⊆ F we write �A�ELA
F , or just �A�ELA, for the smallest strong 

ELA-subfield of F containing A ∪ kerF and, if F has very full kernel, the isomorphism type of �A�ELA
F does 

not depend on F beyond the isomorphism type of 〈�A�〉F .

Definition 6.1. Let F be an ELA-field and A, B, C ⊆ F . We say that A is strongly independent from B
over C in F , and write A |�

�,F

C
B, if

(STR1) �AC�ELA |�
td
�C	ELA�BC�ELA, and

(STR2) �AC�ELA ∪ �BC�ELA � F .

We now show that this strong independence is related to free amalgamation and give an equivalent 
definition which is easier to check.

Proposition 6.2. Let F be an ELA-field, let A, B, C ⊆ F , and for notational convenience assume that 
C = �C�ELA, that C ⊆ A ∩B, and that A = �A� and B = �B�.

Then A |�
�,F

C
B if and only if

(STR1′) A, exp(A) |�
td
C
B, exp(B), and

(STR2′) A ∪B � F .

Equivalently, F is a strong extension of the free amalgam of 〈A〉 and 〈B〉 over C, or equivalently again, 
�AB�ELA

F is isomorphic to that free amalgam.

Proof. Suppose conditions (STR1) and (STR2) hold. Then (STR1′) holds by Monotonicity (and Sym-

metry) for |�
td.

Since A, B�F , the extensions 〈A〉 ↪→ �A�ELA and 〈B〉 ↪→ �B�ELA are free by Theorem 3.20, so there are 
Q-linear bases (ai)i<α of �A�ELA over A and (bi)i<β of �B�ELA over B generating the chains of one-step free 
extensions. It follows from (STR1) that (ai)i<α also generates a chain of one-step free extensions of 〈A ∪B〉, 
and then that (bi)i<β generates a chain of one-step free extensions of �A�ELA ∪ 〈B〉. So the extensions

〈A ∪B〉 ↪→
〈
�A�ELA ∪B

〉
↪→

〈
�A�ELA ∪ �B�ELA〉

are free, and hence strong. Combining with (STR2), we see that A ∪B � F , so (STR2′).
Conversely, suppose (STR1′) and (STR2′) hold. From (STR2′) and Theorem 3.20, the extension 

〈A ∪B〉 ↪→ �AB�ELA is free. We can choose a chain of one-step free extensions which goes via 
〈
�A�ELA ∪B

〉
, 

and then starting with (STR1′) one can prove inductively on these one-step extensions that �A�ELA |�
td
C
B, 

and then that �A�ELA |�
td
C
�B�ELA, which gives (STR1). Likewise (STR2) can be proved by induction on 

the one-step free extensions.
It follows that conditions (STR1′) and (STR2′) are equivalent to �AB�ELA

F being the free amalgam of A
and B over C. �

We now verify that |�
� satisfies the various properties of a stable independence relation, under appro-

priate hypotheses.
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Proposition 6.3. Let F be any ELA-field. Then |�
� satisfies the six basic properties of an independence 

relation on F , and Base-Monotonicity.

Proof. We get Normality, Existence, Symmetry, and Finite Character directly from the definition 
and the corresponding properties of algebraic independence and �−�ELA-closure.

For Transitivity, assume A |�
�
C
D and A |�

�
D
B with C ⊆ D. Condition (STR1) holds by Transitiv-

ity for algebraic independence. Condition (STR2) follows from a direct calculation:

(�AC�, �BC�)ELA = (�AC�, �DC�, �BD�)ELA = (�AD�, �BD�)ELA = �ABD�ELA,

where the first equality follows from C ⊆ D ⊆ B, and the second and third from A |�
�
C
D and A |�

�
D
B

respectively.
For Monotonicity, suppose A |�

�
C
B, and D ⊆ B. We want to show A |�

�
C
D. We may assume all of 

A, B, C, and D are strong ELA-subfields of F , and C ⊆ A ∩D.
Condition (STR1′) follows from Monotonicity for |�

td. For condition (STR2′), we have A |�
td
C
B, so 

by Base-Monotonicity and then Normality for |�
td we have AD |�

td
D
B, the latter being equivalent 

to 〈AD〉 |�
td
D
B.

We have D � F , so in particular D � B. So applying Lemma 3.23, we get 〈AD〉 � 〈AB〉. We know 
〈AB〉 � F , and the composite of strong embeddings is strong, so 〈AD〉 � F , which is condition (STR2′). 
Hence A |�

�
C
D.

For Base-Monotonicity, suppose again that A |�
�
C
B, and C ⊆ D ⊆ B. We now want to show 

A |�
�
D
B. Again we may assume all of A, B, C, and D are strong ELA-subfields of F , and C ⊆ A ∩D. By

Monotonicity it suffices to prove that �AD� |�
�
D
B, for which we will use Proposition 6.2.

As in the proof of Monotonicity, we have 〈AD〉 |�
td
D
B, and 〈AD〉 � F , so �AD� = span(AD). Hence 

�AD� ∪ exp(�AD�) ⊆ 〈AD〉 and (STR1′) holds. Now note that 〈�AD� ∪B〉 = 〈A ∪D ∪B〉 = 〈A ∪B〉
because D ⊆ B, and hence �AD� ∪B � F . So (STR2′) holds, which concludes our proof. �

Recall that ELAF� is the category of all ELA-fields with strong embeddings.

Proposition 6.4. The independence notion |�
� satisfies Invariance for strong embeddings, and hence is 

an independence notion on the category ELAF�.

Proof. Suppose F1 �F2 is a strong extension of ELA-fields. Then for any subset X ⊆ F1 we have �X�ELA
F1

=
�X�ELA

F2
. Then (dropping the subscripts), since F1 �F2 we also have �AC�ELA ∪ �BC�ELA �F1 if and only 

if �AC�ELA ∪ �BC�ELA � F2. So the result follows. �
Proposition 6.5. The independence relation |�

� satisfies Local Character on ELAF�, and the cardinal 
λ involved is ℵ0.

Proof. Let F be an ELA-field, and let A, B ⊆ F with A finite. We have to find a finite B0 ⊆ B such that 
A |�

�
B0

B.
First we show that we can assume B = �B�ELA. If there is a finite B1 ⊆ �B�ELA such that A |�

�
B1

�B�ELA

then by finite character of the �−�ELA operator there is a finite B0 ⊆ B with B1 ⊆ �B0�ELA, and hence 
�B0�ELA = �B1�ELA. So then A |�

�
B0

B.
Next, by Lemma 3.19, there is a finite A′ ⊇ A such that A′B � F . We can replace A by A′, by Mono-

tonicity for |�
�, so we assume AB � F .

By Local Character for |�
td, there is finite B′ ⊆ B with A exp(A) |�

td
B′ B. Let C := �B′�ELA. Then 

C � AB so, by Lemma 3.19 again, there is a finite B0 ⊆ B with B′ ⊆ B0 such that CAB0 � F . So by 
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Theorem 3.20 �CAB0�ELA is (isomorphic to) a free ELA-extension of 〈CAB0〉. This free extension can be 
factorised as 〈CAB0〉 ↪→

〈
A�B0�ELA〉 ↪→ �CAB0�ELA, where each inclusion is free. As free extensions are 

strong we have A1 := A�B0�ELA � F .
By Base-Monotonicity for |�

td and our choice of B′ ⊆ �B0�ELA ⊆ B we have A exp(A) |�
td
�B0	ELA B. 

Then by Normality for |�
td, we get A1 |�

td
�B0	ELA B. We also have A ⊆ A1 ⊆ AB, so �A1B� = �AB�. 

Since AB � F we thus have A1B � F . Hence conditions (STR1′) and (STR2′) hold, so A1 |�
�
B0

B.
Finally, A |�

�
B0

B by Monotonicity. �
Proposition 6.6. The independence relation |�

� satisfies Extension on the category ELAF�.

Proof. The same as in Proposition 5.7, only we replace 〈−〉ELA and |�
ELA by �−�ELA and |�

� respec-
tively. �
Proposition 6.7. The independence relation |�

� satisfies Stationarity on the category ELAFvfk,� of 
ELA-fields with very full kernel and strong embeddings.

Proof. Let C � F be a strong inclusion of ELA-fields with very full kernel. Let B ⊆ F , and let a1 and a2
be possibly infinite tuples from F such that a1 |�

�
C
B and a2 |�

�
C
B, and gtp(a1/C) = gtp(a2/C). We may 

assume that B = �BC�ELA and will show that gtp(a1/B) = gtp(a2/B).
Using Lemma 2.9 together with gtp(a1/C) = gtp(a2/C) we find an isomorphism θ : �Ca1�ELA ∼=

�Ca2�ELA, fixing C pointwise and sending a1 to a2. As �Cai�ELA
F |�

�
C
B for i = 1, 2 we can apply Lemma 3.22

to see that θ extends to an isomorphism �Ba1�ELA
F

∼= �Ba2�ELA
F , fixing B pointwise and sending a1 to a2. 

By Lemma 2.9 again we then indeed conclude that gtp(a1/B) = gtp(a2/B). �
Putting the above results together, we can now prove that |�

� is a stable independence relation on 
ELAFvfk,� (or, more correctly, on each connected component).

Proof of Theorem 1.4. The basic properties, together with Base-Monotonicity, are proved in Propo-
sition 6.3. We get Invariance from Proposition 6.4, Local Character from Proposition 6.5, and
Extension from Proposition 6.6. We proved these properties for |�

� as an independence relation on 
ELAF�, but they are preserved when restricting to the subcategory ELAFvfk,� which consists of those 
connected components of ELAF� where the kernel of the exponential map is very full. Stationarity is 
given by Proposition 6.7. Then by Remark 2.14 we get Club Local Character and 3-amalgamation, 
completing the list of required properties. �
6.1. More general kernels

As mentioned in the introduction, we conjecture that the restriction to exponential fields with very full 
kernel is not needed, and that strong independence is a stable independence relation on ELAF�. Only the
Stationarity property is needed, and this is equivalent to the uniqueness of free amalgams. This in turn is 
related to the uniqueness of the free ELA-closure, for which we give sufficient conditions in Theorem 3.9 and 
Remark 3.10. The assumption of very full kernel essentially identifies the appropriate consequence of first-
order saturation to sidestep any obstacles to amalgamation (and hence the construction of isomorphisms 
to show uniqueness) which might occur. The alternative conditions stated in Remark 3.10 make use of the 
so-called Thumbtack Lemma of [23,3] of Kummer theory, and we have uniqueness in the case that everything 
is countable. In particular, we can prove the case of Stationarity where a, B, C are all countable. The 
construction of Zilber’s exponential field and the proof of its uncountable categoricity in [22,2] uses a higher 
amalgamation technique (excellence) to extend this uniqueness from the countable case to the arbitrary 
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uncountable cardinalities, using systems which are independent with respect to the pregeometry ecl. We 
would hope that a similar technique could be used in our case, especially in the case of exponential fields 
F such that �∅�ELA

F is countable, but we have not been able to achieve this. The case where �∅�ELA
F is 

uncountable but F does not have very full kernel seems harder again.

7. Comparison with exponential algebraic independence

Earlier we mentioned that closed embeddings can be characterised by the predimension function Δ, in a 
similar way to strong embeddings. We use this to show that the exponential algebraic independence notion 
|�

etd can be characterised in terms of strong independence. Recall from the introduction:

Theorem (1.6). Let F be an exponential field and A, B, C ⊆ F . Then we have

A
etd,F
|�
C

B ⇐⇒ A
�,F

|�
eclF (C)

B.

Proof. We may assume C = ecl(C), A = �AC� and B = �BC�. We will drop the indices for F as it will 
not change in the proof.

First, suppose that A � |�
etd
C

B. Then there is a finite tuple a ∈ A such that etd(a/B) < etd(a/C). We 
can assume that a is a basis for �Ba� over B to ensure that Ba � F . Then since B � Ba � F we have 
etd(a/B) = Δ(a/B).

By Theorem 3.26 we have etd(a/C) � Δ(a/C) = td(aea/C) − ldim(a/C).
So we have

td(aea/B exp(B)) − ldim(a/B) < td(aea/C) − ldim(a/C).

Since ldim(a/B) � ldim(a/C), we have that td(aea/C) > td(aea/B exp(B)). We thus have
A exp(A) � |�

td
C
B exp(B) and hence A � |�

�
C
B.

Conversely, suppose that A � |�
�
C
B. So by Proposition 6.2 either A exp(A) � |�

td
C
B exp(B) or AB is not 

strong in F .
In the first case there is a ∈ A such that Ca � F and td(aea/B exp(B)) < td(aea/C). There are two 

possibilities:

(1) If ldim(a/B) < ldim(a/C), then (span(Ca) ∩ B) \ C is nonempty and thus contains some d ∈ A. So 
etd(d/B) = 0 and etd(d/C) = 1, where the latter follows because d /∈ C while C = ecl(C). Thus we 
have A � |�

etd
C

B.
(2) If ldim(a/B) = ldim(a/C), then Δ(a/B) < Δ(a/C). Since Ca �F we have etd(a/C) = Δ(a/C). So we 

have

etd(a/B) � Δ(a/B) < Δ(a/C) = etd(a/C),

and thus A � |�
etd
C

B.

In the second case we assume A exp(A) |�
td
C
B exp(B) but AB is not strong in F . So there is a ∈ A, Q-

linearly independent over C, and hence also over B, such that Ca �A while Ba is not strong in F . We can 
then string together inequalities as follows:

etd(a/B) < Δ(a/B) = Δ(a/C) = etd(a/C).



26 V. Aslanyan et al. / Annals of Pure and Applied Logic 174 (2023) 103288
The first inequality and the final equality follow from Theorem 3.26. The equality in the middle follows 
from the assumptions td(aea/B exp(B)) = td(aea/C), together with ldim(a/B) = ldim(a/C). So we again 
conclude that A � |�

etd
C

B, which concludes the proof. �
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