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1. Introduction

In an Urban Search and Rescue (USAR) mission, fast pinpoint-
ing of the locations of victims trapped by structural collapse is
crucial to maximize the chance of survival, as the initial

reconnaissance work could take 3 h on
average.[1] Since the locations of the
trapped victims are usually inaccessible
to humans, various tools such as electronic
cameras, seismic sensors, and sniffing
dogs are utilized to track down possible
hidden victims in a small area. However,
these methods have constraints such as
handling difficulty, limited range, sensitiv-
ity to environment, and slow searching
speed, which limits the number of victims
that can be quickly located.[2] Mini robots
with dimensions of 10 cm or less can be
immensely helpful in increasing search
efficiency, especially as they are compact
and lightweight enough to penetrate
through the rubble to locate victims.
However, there are certain requirements
for these types of robots to be used in
search and rescue. First, they must have
a high level of mobility to autonomously
negotiate and traverse through obstacles
without commands from a remote opera-
tor. They must also be able to detect life
signatures of a human to locate survivors

automatically. Finally, wireless communication is also necessary
for them to report to a remote operator or a rescue team base.[2]

Owing to breakthroughs in fabrication technologies and actu-
ator developments, researchers have built mini robots that can
walk/crawl,[3–5] climb,[6] or fly,[7,8] which are compatible with
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Developing small mobile robots for Urban Search and Rescue (USAR) is a major
challenge due to constraints in size and power required to perform vital functions
such as obstacle navigation, victim detection, and wireless communication.
Drawing upon the idea that insects’ locomotion can be controlled, what if we
further utilize the insects’ intrinsic ability to avoid obstacles? Herein, a cockroach
hybrid robot (� 1.5 cm height, 5.7 cm length) that implements the abovemen-
tioned functions is developed. It is tested in an arena with randomly placed
obstacles, and a motion capture system is used to track the insect’s position
among the untracked obstacles. A navigation algorithm that uses an inertial
measurement unit (IMU) is developed to heuristically predict the insect’s situ-
ation and stimulate the insect to escape nearby obstacles. The utilization of
insect’s intrinsic locomotor ability and low-powered IMU reduces the onboard
power load, allowing the addition of a human-detecting function. An image
classification model enables the use of an onboard low-resolution infrared
camera for human detection. Consequently, a single hybrid robot is established
that includes locomotion control, autonomous navigation in obstructed areas,
onboard human detection, and wireless communication, representing a signif-
icant step toward real USAR application.
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USARmissions. State-of-the-art technology has made mini-insect-
scale robots that crawl or fly in untethered conditions.[7,9–12]

However, to the best of our knowledge, none of them are capable
of autonomous navigation inside an unknown environment. This
is mainly due to the large physical dimensions and/or large power
requirements to realize autonomous navigation and obstacle
detection.[13] For example, the simultaneous localization and map-
ping (SLAM) technique,[14] which is commonly used in robot
navigation, relies on bulky and/or resource-consuming devices
such as RGB-D (Red Green Blue-Depth) camera[15] or LiDAR
(Light Detection and Ranging).[16] As a result, the proposed obsta-
cle negotiation solutions[17,18] often require large and complex
mechanical systems to avoid obstacles while traveling across
uneven terrain, and the high power consumption of locomotion
on mini robots, in the order of 10–1,000mW, depletes their power
source within minutes.[3–5]

Additionally, human detection is also another important crite-
rion for USAR robots that most mini robots fail to achieve. As
state-of-the-art human-detection methods are normally unsuit-
able for low-powered devices, there have been efforts to develop
detection algorithms usable for low-power systems[2,19,20] that
employ visible-light cameras, infrared (IR) cameras, or acoustic
listening devices. Based on these works, mini robots with the
ability to detect humans or objects were further explored, but
their limitations such as low accuracy of sensors,[21] insufficient
onboard computational resources,[22] and high power consump-
tion by the locomotion system[23] have prevented their practical
applications. Therefore, the creation of mini robots satisfying all
the USAR requirements remains a challenge to be solved.

An alternative approach for these issues has emerged over the
past decade in the form of insect–computer hybrid robots. These
hybrid robots are the fusion of a living insect platform and a min-
iature electronic controller, created to combine the locomotion
proficiency of an insect and the controllability of a robot. The ear-
liest studies of insect control were demonstrated by Holzer et al.
andMoore et al. in the late 20th century.[24,25] Latest development
in insect–computer hybrid robots includes locomotion advance-
ment such as free flight control of beetle with motion capture
feedback[26,27] or walking control of beetle[28] and cockroach with
integrated sound sensors.[29] Their low mass and volume, further
enhanced by their intrinsic ability to walk, fly, and sense the sur-
rounding environment, make them suitable candidates for the
task of penetrating and navigating inside complex environments
to search for a target.[29,30]

There are certain challenges that are unique to insect–computer
hybrid robots that do not normally exist for artificial robots. These
challenges include coarse navigation control due to the insects’
voluntary action or habituation of electrical stimulus, and the lim-
ited environmental conditions under which the insect platforms
can operate. Even so, the insect–computer hybrid robots can out-
perform their artificial counterpart by requiring much simpler
hardware and control algorithm to operate in complicated
unknown terrain, due to their natural ability to maneuver through
obstacles.[31–33] In addition, as the insect platform is mainly con-
trolled via electrical stimulus at neural, neuromuscular, or sensory
sites,[34–36] their locomotion control can be achieved with power as
few as 0.1mW.[28,37] This leads to a much lower power consump-
tion when compared with their artificial counterpart,[3–5] allowing
them to participate in operations that last for more than an hour.

The insects are also targeted as application platforms for latest
advancements in fabrication technology such as miniature camera
implementation on living insect.[38]

However, all recent studies of hybrid robots demonstrated
operations of insect in an obstacle-free environment[39,40] or
manually avoiding obstacle by navigating in a preplanned
path,[41–43] despite having a natural obstacle negotiation ability
that is beneficial for search-and-rescue missions. An onboard
human-detection algorithm for such a system has not been thor-
oughly studied as well.[29,44,45] Existing literature suggested to
use acoustic sensors for survivor detection.[29,44] For example,
Eric Whitmire et al. developed a hybrid robot using omni-
directional microphones to detect help calls from survivors
buried under rubbles.[44] However, this technique consumed a
significant amount of power (i.e., 36mW) and was computation-
ally heavy, thereby preventing it from being implemented
onboard.[29,44] To create an insect–computer hybrid robot appli-
cable for search-and-rescue missions, the verification of a com-
prehensive hybrid robot for autonomous navigation through
obstructed environments, human presence detection, and wire-
less communication must be addressed.

This study presents the first-ever demonstration of an
insect–computer hybrid robot developed for USAR purposes that
has the added capability of autonomous navigation in unknown
environments with an external position tracking system, onboard
human presence detection, and wireless communication, all inte-
grated into a single hybrid robot (Figure 1a, Table S1, Supporting
Information). A Madagascar hissing cockroach (Gromphadorhina
portentosa) was used for the hybrid robot, which has a maximum
payload limit of 15 g[29] and an average size of 6� 2 cm. A custom
backpack circuit board wasmounted on the insect, which included
the insect locomotion control system, navigation system, minia-
ture IR camera, and wireless communication module (Figure 1b).
The backpack was powered by a rechargeable LiPo battery (3.7 V,
120mAh, 10� 15mm, 2.5 g, Figure 1b). The total weight of a fully
assembled backpack, including the battery, was 5.5 g, which was
safe within the insect’s payload limit. A stimulation protocol and
a simple and effective navigation program were implemented to
utilize and harmonically cooperate with the insect’s intrinsic obsta-
cle negotiation ability in motion control (Figure 1c). In addition
to that, onboard human detection was achieved by loading a light-
weight yet accurate image classification model onboard that was
based on histogram of oriented gradients (HOG) and support vec-
tor machine (SVM). The whole system was subsequently tested in
an unknown environment to evaluate its performance (Movie S1,
Supporting Information). The completed hybrid robot in this
paper has a compact size and can navigate to predetermined desti-
nations, autonomously traverse unknown obstacle–terrain, detect
human presence, and wirelessly report the result to a remote
console.

2. Results and Discussion

2.1. Navigation of Insect–Computer Hybrid Robot with Simple
Feedback Control

The insect–computer hybrid robot consisted of an insect plat-
form manipulated by a customized wireless backpack control
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system (Figure 1a,b). The insect’s movement was directed by
electrically stimulating its left and right cerci to induce turning;
the insect made a right turn (clockwise rotation) when the left
cercus was stimulated, and vice versa (Movie S2, Figure S1a,
Supporting Information). This stimulation method did not hin-
der the insect’s antennae, which act as crucial sensors for the
insect to retain its original movement behavior.[31,46]

Based on this stimulation protocol, a simple on–off feedback
control algorithm (Figure 2a), similar to those used in recent
literature on navigation control of insect–computer hybrid
robots,[39] was developed to evaluate the onboard automatic navi-
gation capability of the insect in a predefined area (Figure 2b and
S2, Supporting Information). This program used the position
and orientation data of the insect provided in real time by a
3D motion capture system (Figure 2c) to steer the insect toward
the destination. It was tested in low obstacle scenarios with
1.5 cm obstacle height[31] without prior knowledge of the environ-
ment (Figure 2b, N= 5 insects, n= 49 trials). The results
(Figure 3a, Table S2, S3, Supporting Information) showed that
the hybrid robot demonstrated superior capability of handling
low obstacles, with only a simple feedback control navigation
and no prior information of the obstacle.

The hybrid robot showed issues when it was tested with tall,
wall-like obstacles at 10 cm height[47] (N= 5 insects, n= 50 tri-
als). The simple navigation program cannot rely on insect obsta-
cle negotiation behavior to overcome large path obstructions,
thus it frequently failed to navigate the insect to the destination
(Figure 3b, Table S2 and S3, Supporting Information). In 17 out
of 37 failed navigation trials, the insect was immobilized while
under electrical stimulation, in which the small θ (i.e., the angle
made of the insect’s orientation and the walls, Figure 2d) sug-
gested that it was caused by physical obstruction from the tall
obstacles (Figure 3c). To the contrary, 16 of 37 failed trials were
caused by the insect’s immobilization without electrical stimula-
tion. In these cases, the navigation program deactivated the
stimulation when the insect exhibited its obstacle negotiation
behavior and reoriented itself to face toward the target, but
the stimulation did not reactivate when the insect remained
motionless (Figure 3d). In the last 4 out of 37 failed trials, the
navigation process was negatively affected due to the contradic-
tion between the insect’s obstacle negotiation behavior and the
navigation program. When the insect encountered a wall and
retreated according to its natural behavior, it was trapped in that
local vicinity when the navigation program stimulated it to move

Figure 1. The insect–computer hybrid robot. a) The hybrid robot consists of a living Madagascar hissing cockroach and a wireless backpack controller.
Autonomous navigation is enabled by electrically stimulating the insect’s sensory system, while the infrared (IR) camera allows for onboard human
detection via image classification. b) Main components of the backpack. The backpack is designed with necessary components to study the
search-and-rescue activities of insect–computer hybrid robots. Wireless communication chip allows the communication with the rescue team base.
IR camera provides information of survivors. A low-power microcontroller is used as the main control unit, which regulates the autonomous navigation
as well as human-detection tasks. Onboard inertial measurement unit (IMU) provides the location of the insect for the navigation task. c) The established
navigation algorithm cooperates harmoniously with the insect’s natural locomotive ability to deal with unknown environments during the insect’s explo-
ration missions. By controlling the stimulation (denoted with red arrows), the algorithm directs the insect through obstacles to reach predetermined
targets. Only data from the onboard IMU is used in navigation to predict and prevent potential navigation failure conditions (denoted with warning
symbols).
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toward the obstacle again, causing the whole process to be
repeated (Figure 3e). This could be seen in all four trials, where
nearly half of the total navigation time before timeout was spent
on backward motion, that is, 40.93� 13.34 s out of 100 s
(Figure 3f ).

2.2. Enhanced Navigation Performance with Predictive
Feedback Control

The three types of failures listed earlier showed the conflict
between the insect’s behavior and the navigation algorithm, espe-
cially when the algorithm failed to recognize and handle the
immobility or “trapped state” (in the case of timeout failures)
of the insect. This is because the simple feedback control only
decides the turning direction based on the angular displacement
between the insect’s orientation and the destination but ignores
the insect’s natural movement. To overcome this shortcoming,

a failure prediction algorithm was developed to improve the navi-
gation performance in the tall obstacles situation, and subse-
quently implemented in a new navigation program, henceforth
named as “Predictive Feedback Control” navigation (Figure 2a, S3,
Supporting Information). The Predictive Feedback Control naviga-
tion improves upon the simple feedback control by involving
insect’s intrinsic natural obstacle avoidance ability. This allows
the algorithm to heuristically predict whether the insect is blocked
by obstacles. It is explained further in the next paragraph.

The Predictive Feedback Control navigation works by utilizing
the fact that the insect typically walked straight without any exter-
nal stimulus.[48,49] The navigation algorithm monitors linear
speed of the insect (vl, Figure 2e), then predicts and prevents
immobility by prematurely accelerating it when vl decrease below
a given threshold (Table S4, Supporting Information). Similarly,
a small measured ω (i.e., the insect’s angular speed, Figure 2e)
would indicate that the insect might be blocked by an obstacle,
and it would otherwise cause the insect to either stay immobile or

Figure 2. Control diagram of the “Predictive Feedback Control” navigation algorithm and the experimental setup. a) The Predictive Feedback Control
algorithm is improved from the existing simple feedback control with the insertion of the “Failure Prediction Block.” This block prevents the conflict
between the insect’s intrinsic behaviors and the navigation commands by monitoring the insect’s motion (ω, vl). If the monitored speeds fall below their
thresholds (ωt, vt) indicating that the insect is halted by environment interaction, the steering stimulus is immediately discontinued and an acceleration
stimulus is released to direct the insect out of its current vicinity, thereby preventing a navigation failure. b) Obstruction setup. The hybrid robot navigates
across the arena with either low obstacles or tall walls to represent two different levels of obstruction complexity. The height of low obstacles is 1.5 cm,
which is higher than the insect’s usual height (�1 cm). The height of tall walls is 10 cm. The characteristics of the two obstacles (e.g., shape, size, location)
are unknown for the 3Dmotion capture system as well as the navigation program. c) The insect location is tracked using a 3Dmotion capture system. The
system acquires the insect’s anterior and center points via three retroreflective markers (i.e., M1, M2, M3) mounted on a light carbon fiber frame
(�20mg). The asymmetricity of the markers location allows the insect orientation to be recognized by the system. The marker coordinates are transferred
to a computer, where they are displayed and logged for post-experimental analysis. The coordinates are sent wirelessly via a central station to the onboard
navigation program as feedback data. d) Graphical description of navigation parameters. The angle ϒ represents the angular displacement between the
insect’s orientation and the destination, calculated based on the insect’s center point. The insect’s anterior point is utilized to compute the distance D
between itself and the destination. The insect reaches the target when D is smaller than its thresholdDt, which is the radius of the destination region. The
acute angle made by the insect’s body and the nearest obstacle is named as θ. e) The insect’s velocities. Angular velocity (ω) is centered around the middle
point of the insect. The linear velocity (vl) is the superposition of two elements: the forward velocity (vf, longitudinally aligned with the insect’s orientation)
and the lateral velocity (i.e., perpendicular with the insect’s body).
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start a backward motion if not intervened. It is then possible to
prevent both the immobility and timeout cases by interrupting
the original stimulation and accelerating the insect away from
the local vicinity when the insect’s angular speed drops below the
threshold (ωt, Table S4, Supporting Information). The accelera-
tion was attained by stimulating the insect’s two cerci simulta-
neously (Movie S2, Supporting Information).[25]

In tall obstacle tests, the hybrid robot with Predictive Feedback
Control navigation recorded a higher success rate of 94%
(Figure 4a, N= 5 insects, n= 49 trials, Table S2 and S3,
Supporting Information). As shown in a representative case
(Figure 4d), during its stimulation states and free-walking states,
the ω and vl of the insect were respectively and periodically moni-
tored by the navigation program (Figure 4e). In this example,
there were four locations where ω and vl were below their thresh-
olds, each leading to an acceleration event. In the first and fourth
events, the insect was walking freely while facing the destination
when the vl dropped below its given threshold. As a result, the
navigation program accelerated the insect to keep it in motion,
causing the insect to dash toward the obstacle and moved along

the wall. This behavior was consistent with present studies on
the insect’s response to the obstacles situated on its escape
path.[46,50] Such a reaction allowed the navigation algorithm to
take advantage of the insect’s natural obstacle negotiation reac-
tion, which would be beneficial for cases where obstacle detec-
tion/crash prevention sensors could not be used. The second
and third acceleration events occurred when ω was measured
to be smaller than its threshold due to the insect being steered
toward an obstacle. The stimulation was then interrupted by the
navigation program, and the insect was accelerated so that it rap-
idly escaped the vicinity, preventing it from stopping or being
trapped in the area.

For environments with low obstacles, this Predictive Feedback
Control navigation retained a 100% success rate (Figure 4b, N= 5
insects, n= 49 trials, Table S2, S3, Supporting Information).
There was a minor difference in navigation time, specifically
8.29� 6.29 s in simple feedback control and 6.35� 4.92 s in
Predictive Feedback Control (Figure 4c, t-test, p= 0.09, df= 95).
This can be attributed to the similar movement responses, clearly
seen as the insect in both navigation programs displayed themajor

Figure 3. Contradiction of the existing simple feedback control navigation and the insect’s behaviors. a,b) Trajectories of the insects in low obstacles and
tall walls, respectively (N= 5 insects, 49≤ n≤ 50 trials for each configuration). Successful and failed navigations are plotted in green and red colors,
respectively. In the cases of low obstacles, the simple algorithm attains a high success rate owing to the insect’s ability to climb over the obstruction.
However, the failure becomes dominant when the obstruction complexity is increased. This failure can be attributed to the conflict between the insect’s
behaviors and the navigation program. c,d) Anatomy of the first two types of failures: immobility with electrical stimulation and immobility without
electrical stimulation. The stimulation and stimulation-free periods are denoted with red/black curves (mean) and shaded regions (standard deviation),
respectively. The zeroth time mark indicates experiment termination. In (c), despite being stimulated (as ϒ> ϒt – dash purple line), the induced angular
speed of the insect reduces toward zero. Its angle θ is small (18°), implying that the insect is obstructed (n= 17 trials). In (d), the insect orients its body
toward the destination (i.e., ϒ< ϒt) by moving backward (i.e., vf< 0 cm s�1) and then stops moving (n= 16 trials). e,f ) Analysis of the third type of failure:
timeout (n= 4 trials). The timeout is set at 100 s as a heuristically sufficient time for the insect to navigate to the destination (Navigation Experiment
section). Figure (e) represents a typical case where the purple insect is trapped in some local vicinity as it continuously performs backward motion
(i.e., vf< 0 cm s�1) to escape an obstacle but is then directed back to the obstacle, thus unable to reach the destination prior to timeout. The chart
in Figure (f ) plots the vf against time in all 4 trials, with the blue regions depicting the forward motion (i.e., positive values) and the purple regions
depicting the backward motions (i.e., negative values). The insect spends nearly half of the navigation time moving backward to reorient its body as an act
of obstacle negotiation.
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Figure 4. Performance of the Predictive Feedback Control algorithm. a,b) Navigation trajectories of the insect (N= 5 insects, n= 49 trials for each configu-
ration). The navigation algorithm resolves the conflict between the insect and the navigation commands, resulting in the dominance of successful nav-
igations (i.e., 45 green curves) over the failed ones (i.e., 4 red curves). In addition, the benefits of the insect’s obstacle negotiation ability (i.e., climbing over
low obstacles) are preserved. c) Comparison between the two navigation algorithms. Error bars represent 1-standard deviation. The asterisk indicates
statistical significance. In the case of tall walls, the Predictive Feedback Control algorithm not only results in a higher success rate compared to its counterpart
but also shortens the navigation time (t-test, p< 0.01, df= 57). Both algorithms perform similarly in the low obstacle case. d,e) Anatomy of a successful trial
attained with the Predictive Feedback Control navigation. The black, green/red, and cyan segments each represent the free-walking period, left/right steering
stimulation, and acceleration, respectively. The purple insect-like objects denote the insect’s orientation, and the pink and blue triangles denote positions
where vl and ω fall below their thresholds (i.e., purple dashed lines), respectively. The accelerations fired by the Failure Prediction Block when the speeds fall
below the threshold direct the insect out of failure-prone regions and kept it in motion. In addition, the insects avoid obstructions when dashing toward walls
by changing their movement to follow the wall. f,g) Effect of the Predictive Feedback Control navigation in failure prevention. The figures display the com-
parison between the angle θ in motionless failures with and without stimulation in simple feedback control navigation and the angle θ recorded at locations
where the corresponding speed fell below threshold in Predictive Feedback Control navigation. Error bars represent 1-standard deviation. Statistically, the
similarity in the angle θ of both programs for each failure type implies that the new navigation program can foresee and prevent the potential failures that
could occur with the simple feedback control navigation (t-test, p= 0.80, df= 66 for Figure (f ), and p= 0.07, df= 113 for Figure (g)).
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trend of climbing over low obstacles, that is, this behavior had a
96% rate of occurrence (Figure 3a and 4b).

Overall, the efficacy of the Predictive Feedback Control navi-
gation algorithm to predict and prevent immobility of the insect
could be observed by comparing the recorded angles θ for the two
navigation programs in the same environment, in which there
was a high correlation between the locations of acceleration
events in the new navigation algorithm and the locations of
the insect’s immobility in the previous navigation algorithm
(Figure 4f,g). The insect controlled by the new navigation algo-
rithm also spent 5.15� 5.33 s in a backward motion, which was
eight times lesser than the previous navigation program. With
the reduction in time spent for backward motion, the success rate
was improved by reducing the probability of timeout, and gen-
erally shortened the total navigation time from 48.98� 19.49 s to
33.91� 18.35 s (Figure 4c, t-test, p< 0.01, df= 57). These results
showed that the new navigation algorithm successfully overcame
the tall obstacle negotiation issue in hybrid robots. Nevertheless,
it should be noted that there were three failed trials, that is, 6%
out of all trials, recorded for the Predictive Feedback Control nav-
igation, which was caused by the insect missing the obstacle
entrance due to acceleration and thereby forcing the insect to
navigate around the obstacles again until a timeout occurred
(Figure 4a). However, this overshooting also occurred in other
successful trials (Figure 4a), implying that these failed trials
can be solved by optimizing the control parameters.

The new Predictive Feedback Control navigation algorithm
is an important improvement compared to current navigation
methods in insect–computer hybrid robots. The previous method
navigated the insect at the expense of natural insect movement
behavior; in this study, the Predictive Feedback Control navigation
algorithm allows for the harmonic cooperation between the navi-
gation program and insect’s obstacle negotiation abilities, such
that the insect can independently negotiate through obstacles
encountered on its path while navigating toward the destination.
This cooperation with the insect’s natural movement behavior ena-
bles this simple navigation program to be exceptionally effective
in handling unknown obstacles without any additional sensor
requirements. A similar performance in artificial mini robots
would require the inclusion of more obstacle recognition sensors
that further increase its size and power requirements. In contrast,
the hybrid robot used in this study reduces the computing and
power consumed for the navigation process. This is important
because it allows the robot to use these resources for other tasks,
such as integrating an onboard human-detection system.

2.3. Onboard Human-Detection System

Considering the environment under rubble, an accurate human-
detection system is required to achieve the goal of autonomous
search and rescue in structural collapse disasters. The system
must be able to operate under lightless conditions for at least
several hours. An IR camera is an appropriate choice for such
missions, as it can detect humans by capturing the thermo-
graphic difference between the human body and the surround-
ings.[51] However, due to high energy consumed by wireless
communication, it is not possible to continuously stream data
from the system to its control station. Therefore, all decisions

regarding human presence detection must be made indepen-
dently by the onboard system, subject to constraints on hardware
size, power, and computational resource. The usage of an insect
platform displays its benefit here by allowing much of the
onboard resources to be saved for human detection.

The components, algorithm, and strategy for human detection
have been carefully selected to achieve a fast, precise, and energy-
efficient human-detection system that can be successfully imple-
mented onboard. The human-detection system developed for the
hybrid robot utilized an IR thermopile array with 32� 32 pixels
and 90°� 90° field of view (Figure 1b and S1c, Supporting
Information). This IR camera is suitable for insect mounting
due to its low power consumption and small physical size.
The main microcontroller denoises the IR images captured by
the camera with a median filter[52] and then passes them to a
machine-learning algorithm based on HOG and SVM that has
been trained to recognize human heat signature[20] (Figure 5a).
The human-detection results are then obtained and can be wire-
lessly sent to a remote base.

The machine-learning algorithm was built and tested on a
computer to determine the suitable parameters to optimize
the algorithm for onboard performance. A HOG feature descrip-
tor with a cell size of 4� 4 was selected after comparing
the algorithm’s accuracy with different cell sizes (Table S5,
Supporting Information), and a linear SVM was used for the
classifier due to its fast yet still sufficiently accurate classifica-
tion results (Figure 5b,c). Next, a custom dataset (Table S6,
Supporting Information) was prepared by capturing human
images from the insect’s point of view (POV) using the low-
resolution 32� 32 IR camera. Different human subjects and
nonhuman hot objects were used for the training and testing
dataset to prevent overfitting.

The established human-detection algorithm achieved 87%
average accuracy in classifying between human and nonhuman
subjects (Figure 5b), which is comparable to other studies
on human classification using HOG and linear SVM.[20,53]

Specifically, an average recall rate of 90% was achieved for
human images captured within a distance of 0.5–1.5 m
(Figure S4, Supporting Information). Additionally, the developed
model occupied only 18.3 kB (�1%) of Flash and 52.2 kB (�20%)
of Static Random Access Memory (SRAM) during onboard
implementation (Table S7, Supporting Information), and its
average computational time was only 95ms. Although the hard-
ware limitations caused the detection frame rate to be lower than
similar pedestrian detection systems,[54] it was sufficient to cap-
ture up to 10 images per centimeter under the average insect
speed of 3 cm s�1,[34] thus preserving the locality of each proc-
essed image and reducing the probability of overlooking the
entrapped victims.

As long hours of operation are expected, the whole system was
designed and developed to minimize total power consumption.
The energy consumed by our human-detection algorithm run-
ning at 100% duty cycle was only 24mW when embedded in
the microcontroller. It consumed less energy than the human-
detection technique used in a microphone-equipped back-
pack,[29,44] which detected sound sources and needed to consume
36mW just for wireless audio transmission to a base station
(personal computer (PC)) for remote processing. Similar
human-detection algorithms were also implemented in
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Figure 5. Overview of the human-detection algorithm and the demonstration in an unknown environment. a) The process of IR image classification to
extract feature descriptors and determine the human presence in image. b) The accuracy and c) processing time are compared between three support
vector machine (SVM) methods. While their detection accuracy is similar, linear SVM pulls ahead in terms of computational simplicity. d) In an envi-
ronment with an unknown obstacle layout, the insect is able to reach all destinations (i.e., red/green 8 cm radius circles) in a predefined sequence (shown
with the white numbered circles) before returning to the origin. The activations of Failure Prediction Block are denoted at instances where vl or ω,
respectively, fall below thresholds with red and blue arrows showing the insect’s orientations. The onboard human-detection system operates at
1 Hz. Some captured IR images are shown with their corresponding scores and position where they are captured. The human-detection algorithm
is only activated if the captured picture contains enough human-related information (i.e., when the number of pixels within the human temperature
range is above its threshold of 15 pixels). As such, the left bottom-most picture does not possess a score. e) The plot depicts the operation of the human-
detection algorithm during the demonstration. The pixel count that lies within the human temperature range is indicated by the blue curve. The output
scores of possible human presences detected by the algorithm are denoted with red dots. The plot is temporally synced with the path in (d), with
numbered circles referring to the same numbered locations in (d). The effectiveness of the onboard human-detection algorithm can be seen by referring
to the corresponding subjects (i.e., either human or hot object), their location, and their respective scores along the horizontal axis.
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field-programmable gate arrays (FPGAs)[54] and consumes
566mW just to run the linear classification on a Virtex 7 plat-
form.[20] In contrast, our insect–computer hybrid robot has a total
system power consumption of 205.5 mW. Up to 2.2 h of
operation time can be achieved with a 120mAh battery, which
is suitable for a practical USAR mission.

2.4. Demonstration of Insect–Computer Hybrid Robot
Autonomously Searching for Human in an Unknown
Environment

A demonstration of the insect–computer hybrid robot in a sim-
plified search and rescue scenario was performed using the
Predictive Feedback Control navigation program along with the
onboard human-detection system. An insect–computer hybrid
robot navigated autonomously through an uncharted terrain that
included two humans and three hot objects with different
shapes, sizes, and locations (Figure 5d, Movie S1, Supporting
Information). A 3Dmotion capture system was used only to mea-
sure the position and orientation of the hybrid robot. The robot’s
linear speed and angular speed were calculated by an onboard
inertial measurement unit (IMU).

As demonstrated, the Predictive Feedback Control navigation
program succeeded in guiding the insect to reach all predeter-
mined destinations in a set sequence, despite the lack of infor-
mation regarding obstacles. The insect performed its obstacle
negotiation ability by either climbing over the cement fragments
or following the contour of obstacles, both with and without elec-
trical stimulations (Figure 5d). There were seven times the insect
was accelerated when the IMU measured its angular speed fell
below the threshold, and two acceleration events were generated
when the IMUmeasured a low linear speed. Simultaneously, the
insect–computer hybrid robot actively searched for humans dur-
ing the whole demonstration. The onboard human-detection sys-
tem accurately distinguished between human and hot objects,
shown in demonstration by correctly classifying the human
11 times while making zero misclassification mistakes on the
nonhuman hot objects (Figure 5e). Overall, the results demon-
strated the feasibility of the insect–computer hybrid robot in this
simplified search and rescue mission where it must navigate into
an unknown environment while scanning the area to locate
victims.

3. Conclusion

We have presented an insect–computer hybrid robot with com-
bined autonomous navigation and obstacle avoidance in an
unknown environment and onboard human-detection system,
which overcomes many flaws of USAR mini robots in terms
of maneuverability and power consumption. The hybrid robot
is capable of navigating and searching for victims in unknown
environments and has a remarkably compact size yet exhibited
a robust obstacle handling capability, owing to the custom navi-
gation program that retains the natural locomotive ability of the
insect. The inclusion of an onboard human-detection system
using IR images removes the need for manual operation, allow-
ing the hybrid robot to work autonomously and improve the over-
all searching efficiency. This study successfully proves the

efficiency of a biological machine implementation in solving
the issue of power–hungry actuators in artificial robots, thereby
allowing the saved energy to be better utilized for other tasks,
such as sensing and communication. There are improvements
to be addressed in the hybrid robot design toward the implemen-
tation of insect–computer hybrid robots in real-life search-and-
rescue missions. First, it is crucial for a localization system to
be implemented onboard. A combination of IMU and UWB
(Ultra-Wide Band) localization is being developed as a solution
for this problem due to the power efficiency of IMU in providing
position and orientation[55] and high penetration capability and
high accuracy of UWB-positioning method.[56] The accuracy of
such an onboard localization system should be at least 1.5 m,
which can be lower than the 3D motion capture system.
While high accuracy is not necessary as area-to-area navigation
is preferred over point-to-point navigation in search-and-rescue
missions, the navigation algorithm and searching strategy should
be modified based on the accuracy. Second, it is essential to
further improve the accuracy and operating range of the
human-detection algorithm. This can be achieved by enhancing
the sufficiency and quality of the thermal information provided
to the algorithm using high-resolution IR cameras.[57,58] In addi-
tion, the algorithm’s practicality can be strengthened by training
it with more diverse datasets, such as those containing human
images captured at different angles of view, which are likely to
occur as the hybrid robots dynamically change their orientations
when traversing complex terrains. Additionally, the backpack
can be equipped with other sensors to enrich the collected
information (e.g., CO2 sensors

[58]), thereby increasing reliability
in survivor detection. In addition, the insect–computer hybrid
robot has its own unique challenges to be addressed, for example,
the coarse level of locomotion control leading to imperfect
navigation path and difficulty in handling small opening in the
rubble,[59] inability to operate in muddy or flooded terrain, and
adverse effects caused by extreme environment conditions,
such as in low-temperature situations. For the hybrid robot to
smoothly crawl through obstacles, the backpack and the battery
should be further miniaturized, which could be done by intro-
ducing energy harvesters and electric power generators such as
thin-film solar cells and radiofrequency emitters.[60,61] Further
investigation in expanding the roster of applicable insect plat-
forms to fit with different working conditions, and swarm control
of the hybrid robot to compensate the inaccuracy in locomotion
control and improve coverage speed will be necessary to enable
the participation of hybrid robots in real-life search-and-rescue
missions.

4. Experimental Section

Animals: Male Madagascar hissing cockroaches (Gromphadorhina por-
tentosa, 5.7� 0.6 cm, 6.32� 1.5 g) were kept in a laboratory terrarium
(NexGen Mouse 500, Allentown Inc.) and were fed sliced carrots every
week. The temperature and relative humidity were maintained at 25 °C
and 60%, respectively. The use of the cockroach was permitted by the
National Environmental Agency (Permit number NEA/PH/CLB/19-
00012). Although ethical regulations for invertebrate research are still a sub-
ject of debate,[62] the study attempted to treat its experimental insects well
and provide themwith good living conditions. Specifically, the temperature,
humidity, and feeding conditions were maintained appropriately for the
insects by following a published guidance.[63] The insects were reared using
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a mouse housing system (NexGen Mouse 500, Allentown Inc.), which cir-
culated clean air to the insects’ territories, which were 19� 13� 38 cm plas-
tic containers. These containers were washed weekly to maintain their
hygiene. The number of insects in each container was limited to five to
ensure that they had a spacious territory. They were fed weekly with various
vegetables (e.g., carrots and apples). These conditions were applied not only
to the intact insects (those to be used for the study) but also to the post-
experimental insects (those were no longer being used for the study).

Electrode Implantation and Stimulation: Our method of steering the
insect’s locomotion was based on existing procedures.[25,64] The insect
was first anaesthetized using carbon dioxide in an airtight container for
30 s. Sandpaper was used to file the mounting sites of the wireless stimu-
lator and the implantation sites on the third abdominal segment, that is,
the black dots located at the sides of the insect (Figure S1a, Supporting
Information). This process allowed the backpack and beeswax to attach to
the cuticle securely after implantation. Next, the cerci of the insect and
their bases were covered with glue (Figure S1a, Supporting Information).
After the glue solidified, the tips of the cerci were cut to create a small
opening. A Teflon-insulated platinumwire (A–MSystems, coated diameter
0.14mm, uncoated diameter 0.08mm) was then inserted coaxially into the
cerci, with an implantation depth of 10mm from the tip of the electrode.
The wire was de-insulated using tweezers prior to implantation such that
the entire implanted portion was de-insulated. Beeswax was applied to
secure the electrode in place and to seal the opening on the cercus.

For the third abdominal segment, an insect pin was used to create a
small hole on each implantation site. A platinum wire was then inserted
into the third segment while ensuring that the axis of the inserted wire
was perpendicular to the surface of the cuticle. The implantation depth
was 5mm from the tip of the electrode. After implantation, beeswax was
applied to cover the openings. The other ends of the implanted electrodes
were connected to the wireless stimulator, which in turn would be
mounted on the dorsal side of the insect throughout the experiments.

The insect was steered by passing a current through a pair of electrodes
on one side, which induced the insect’s rotation in the opposite direction
(Movie S2, Supporting Information). The stimulation waveform was a
biphasic square waveform of frequency 40 Hz and 50% duty cycle, in
the range of 6–8 V.

Miniature Wireless Communication Stimulator (Backpack): The insect–
computer hybrid robot was controlled by a customized wireless circuit
board, or a backpack (Figure S1b,c, Supporting Information). Texas
Instruments (TI) MSP432P4011 microcontroller (ARM 32-bit Cortex
M4F, 48MHz, 2MB of Flash, 256 kB of SRAM) was used as the system’s
main controller unit for its excellent power efficiency. The stimulation sig-
nal was generated by the chip AD5504 (Analog Devices, Quad-channel,
12-bit, 7.3 mV resolution) with voltage supplied up to 12 V using TI
TPS61046 Boost Converters. The backpack was integrated with an IMU
using MPU9250 (InvenSense, 6 axes used with Digital Motion
Processor, 11.55mW) to detect the hybrid robot’s movement. For
human-detection purposes, an HTPA 32� 32 IR camera was imple-
mented for its small footprint and low power consumption (Heimann
Sensor GmbH, 8� 8� 5mm, 0.99 g, 21.45mW average, 8 μW sleep,
32� 32 resolution, 90°� 90° field of view). Additional sensors were
embedded on the backpack to retrieve environmental information includ-
ing temperature/humidity (BME280 by Bosch Sensortec) and volatile
organic compounds (CCS811 by AMS). Backpack activities and data dur-
ing the operation were recorded in the external onboard flash memory
(MX25R1635F, 2MB, Macronix) and were retrieved afterward. The
insect–computer hybrid robot was controlled wirelessly via Bluetooth
5.1 (2.4 GHz) using CC1352 microcontroller unit (ARM 32-bit Cortex
M4F, 48MHz, 352 kB of Flash, 8 kB of SRAM). An attached 120mAh
LiPo battery (10� 15 mm, 2.5 g) was used as a power source, increasing
the total weight of the whole backpack to 5.5 g but was still safely within the
maximum payload limit of the insect.[29]

Navigation Experiment: A batch of five insect–computer hybrid robots
(N= 5 insects) was tested in two different terrains including low obstacles
and tall walls (Figure S2, Supporting Information). Ten trials (n= 10 trials)
for each hybrid robot were conducted on each combination of terrain and
navigation algorithm, with a 5min interval between each trial. The

experiment for each terrain was performed on separate days. The same
batch of insects was used for both navigation algorithms. The selection
of two types of obstacles was to test the two navigation algorithms in
the following scenarios: a) surmountable obstacles with heights similar
to that of the insect and b) unsurmountable obstacles that were taller than
the insect’s height. The obstacle was selected as 1.5 cm in (a), according to
past studies investigating the climbing motions of the insects.[31] In (b),
the height of 10 cm was selected following existing studies on the insect’s
wall-following behaviors.[47]

Two 5 cm radius circles acted as the navigational origin and destination
for the insect, which then navigated accordingly from one circle to another
(Figure S2, Supporting Information). A successful trial was achieved if the
insect reached the destination within 100 s. The trial was terminated for
each of the following three conditions: when the insect reached the desti-
nation, when the insect was motionless for over 5 s, or when the experi-
ment duration exceeded 100 s, whichever came first. The insect was
defined to be motionless if its displacement was less than 0.5 cm.[65]

The success rate of each navigation algorithm was shown using the
mean and 1-standard deviation of the success rates of all five experi-
mented insects (Table S2, Supporting Information), which was defined
to be the ratio of the number of successful trials to the number of total
experimented trials.[39] Meanwhile, the navigation time of each navigation
algorithm was represented using the mean and 1-standard deviation of the
navigation time in successful trials, which was defined as the time taken
for the insect to arrive at the destination. Analysis of variance test (0.05
significant level) was used to confirm that there was no significant effect of
individual insects on this factor (Table S3, Supporting Information).
Statistical t-test was used to compare the navigation time between the
two algorithms, which was also employed to test the effectiveness of
the “Failure Prediction Block” (Figure 4f,g).

The navigation experiment was conducted inside the viewable region of
a 3D motion capture system (Vicon, Six T40 cameras, 4 Megapixel,
100 fps).[35,37] A structure made of three retroreflective markers and a car-
bon fiber frame was attached on the wireless backpack using double-sided
tape to track the insect’s location (Figure 2c).[28] Coordinates of these
markers, which represent the insect’s position and orientation, were pro-
vided by the 3D motion capture system to be used for deriving the motion
of the insect during navigation. Specifically, the distance (D) and orienta-
tion (ϒ ) of the insect relative to the destination (Figure 2d) were employed
in both navigation programs. They were calculated as

D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðX1 � XdÞ2 þ ðY1 � YdÞ2
q

(1)

ϒ ¼ cos�1 ðX1 � X2ÞðXd � X2Þ þ ðY1 � Y2ÞðYd � Y2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðX1 � X2Þ2 þ ðY1 � Y2Þ2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðXd � X2Þ2 þ ðY1 � Y2Þ2
p (2)

where (Xd, Yd), (X1, Y1), and (X2, Y2) were coordinates of the destination
and two markers representing the insect’s anterior and center points,
respectively. The first was predetermined by users, while the latter two
were provided by the 3D motion capture system.

A central station connected to the main PC was used to communicate
with the backpack (Figure 2c). The coordinates of the three markers were
streamed to the PC, which were then sent to the central station at the rate
of 30 ms per package using a custom software written in C#. The location
data was subsequently transferred wirelessly to the backpack so they could
be used in the navigation feedback control algorithm.

The two navigation algorithms (simple feedback control and Predictive
Feedback Control) were embedded into the backpack. These programs
processed the location data and then issued the corresponding stimula-
tion command to control the movement of the insect. The stimulation
command was wirelessly transferred to the main PC via the central station
for logging purposes as well as to synchronize with the location of the
markers for post-experimental analysis.

Navigation Algorithms: In the simple feedback control navigation, the
orientation of the insect relative to the destination, ϒ was computed every
30ms. If ϒ exceeded its given threshold, ϒt (°), a steering command was
executed, otherwise, the insect could walk freely without any stimulation.
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In the Predictive Feedback Control navigation (Figure S3, Supporting
Information), a similar process occurred to decide whether the insect was
1) steered or 2) allowed to walk freely, but there were additional feedback
processes for each state to predict the insect’s stopping tendency and per-
form the required preventive measures. 1) When the insect was steered
(ϒ> ϒt) and the duration of the steering stimulation exceeded ds (ms), the
insect’s angular speed (ω) was measured at every predetermined interval
tv (ms). If ω was below its threshold ωt (° s

�1), the navigation program
judged the insect to be immobile and stopped the stimulation to allow
free-walking state for tf1 (ms). The program then executed the acceleration
command for a duration of da (ms). The insect was then allowed to walk
freely for tf2 (ms) before the control loop returned to monitor ϒ. 2) When
the insect could walk freely (ϒ≤ ϒt), the program allowed the insect to
maintain the free-walking state for tf3 (ms) if it was steered in the loop
immediately preceding the current one. The linear speed (vl) was mea-
sured every tv (ms) interval. If vl dropped below a given threshold vt
(cm s�1), the program executed the acceleration command for a duration
of da (ms). The insect was then allowed to walk freely for tf2 (ms) before the
control loop returned to monitor ϒ.

The control parameters including ϒt, tv, tf1, tf2, tf3, da, ds, ωt, vt
were unchanged throughout the experiments (Table S4, Supporting
Information).

In the navigation experiment, ω and vl were computed based on the
location data of the three markers recorded by the 3D motion capture sys-
tem. To mimic real deployment conditions, the onboard IMU was used
instead for the demonstration. For the former case, an average-moving
filter with the window size of 250ms was used to compute ω and vl.
For the latter case, ω and vl were computed using the data from the gyro-
scope and accelerometer. A low-pass filter of 10 Hz was implemented for
noise removal.

Human-Detection Experiment: A machine-learning model for human
detection was developed for this study. Since a low-powered processor
was implemented, there were a few aspects to consider during the
development. First, the memory must fit within the available space of the
microcontroller, which was 1988 kB Flash and 191.8 kB Static RAM after
deducting the memory required for other tasks (Figure S1b, Table S7,
Supporting Information). Second, a fast-processing speed was required
to achieve a real-time operation. Therefore, the complexity of the human-
detection algorithm must be low to satisfy the two requests, yet its accu-
racy should be high to avoid missing potential human victims.

Images used in the training of the human-detection model were cap-
tured in our laboratory at normal room temperature (from 25 °C to 27 °C).
The thermal images of two human subjects and several nonhuman
hot objects varied in shapes and dimensions (Table S6, Supporting
Information) were captured using the IR camera mounted on the back-
pack. Each subject was placed on a turning table (BLK ND-RC6013,
120 rpm, 60 cm diameter) during the data collection process to diversify
its appearance in the image. The images for training dataset were captured
at 0.5, 1.0, and 1.5 m to fit in the predefined range of the camera within
0.5–1.5 m, such that the characteristics of humans could be clearly seen in
the captured image. In images containing human subjects, the number of
pixels that fell into the human temperature range of 28–38 °C was found to
be above 15 pixels. This number was then employed as a threshold to
activate the onboard human-detection algorithm. The collected IR images
were then preprocessed and denoised using a median filter (kernel size
3� 3). After preprocessing, the final training dataset included 11 171
human images and 11 493 nonhuman images. These images were used
to train the human-detection model.

The performance of the trained model was validated with a validation
dataset, which was prepared with a similar procedure except for some
changes made to increase the generality and variety of the images.
Specifically, different human subjects and hot objects that have different
shapes compared to that of the subjects used in the training data were
captured (Table S6, Supporting Information), and the distance between
the IR camera and the subjects was changed to increments of 0.1 m from
0.5 to 1.5 m.

For the machine-learning model itself, HOG was used as the feature
descriptor to extract features from each thermal image. This method

converted the distribution of the local intensity gradient and the orienta-
tion into a feature vector, which was used to characterize an object’s shape
and appearance in the image.[66] The feature vectors were passed to an
SVM classifier which was commonly used in supervised machine-learning
tasks.[20] Considering the 32� 32 resolution of the IR images, a compari-
son was made between different cell sizes used for the descriptor includ-
ing 2� 2, 4� 4, and 8� 8, each of which divided the image into 225, 49,
and 9 blocks containing 36 features, such that a feature vector length of
8100, 1764, and 324, respectively, was formed. In addition to that, three
different SVM methods of Linear SVM, Cubic SVM, and Quadratic SVM
were considered for the onboard human-detection classifier.

A comparison in accuracy and computational time between the three
SVMmethods was done to select the best performing model. Despite hav-
ing a slightly lower accuracy compared to its nonlinear counterparts, linear
SVM has the advantage of the lowest computational time owing to its sim-
pler calculations.[54,66] Therefore, linear SVM was employed to study the
accuracy of human detection under the three different HOG cell sizes and
the cell size giving the highest accuracy would be selected for the HOG
descriptor used in the final model. All models used in comparisons men-
tioned earlier were trained using MATLAB. The kernel parameters of the
selected model were then implemented into the backpack’s main micro-
controller to realize the onboard human-detection system.

We used Code Composer Studio (CCS), an integraded development
environment to build and transfer the human-detection program into
the MSP432 microcontroller. To evaluate the impact of the human-detec-
tion algorithm on the whole system, CCS was used to monitor the hard-
ware resources and measure the processing time for each captured image
while running human detection. The EnergyTrace tool was used to mea-
sure the power, voltage, and current during circuit operation to calculate
the power consumption.

Demonstration: To demonstrate the application in search-and-rescue
missions, an insect–computer hybrid robot navigated autonomously
through an unknown environment (Figure 5d, Movie S1, Supporting
Information). Obstacles made of building materials (concrete and cement
blocks) varying in shapes and sizes were situated randomly inside a
420� 600 cm arena (Figure S5, Supporting Information). From the origin,
the insect navigated through five predetermined targets made of 8 cm
radius circles until it reached the destination, then it was directed back
to the origin. The navigation was completed without sending the location
data of the obstacles to the navigation program. The angular and linear
speed measurements were done using an onboard IMU to simulate
the actual use case of the insect–computer hybrid robot. The 3D motion
capture system (Vicon) was used to obtain accurate insect location
(X, Y, Z ) to be fed to the onboard navigation program.Multiple hot objects
and humans were introduced nearby the navigational targets to demon-
strate the performance of the onboard human-detection system. The sub-
jects were different from those used in the model training process. IR
images captured by the IR camera were stored inside an external memory
embedded on the backpack to be extracted later for analysis. The human
detection results established from these images were wirelessly streamed
to and displayed on the main PC.

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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