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1 Introduction

The large mass of the top-quark plays a role in much of the dynamics of elementary particles
via loop diagrams. In the Standard Model (SM), the large top-quark mass significantly
affects the radiative corrections to both the Higgs boson and W -boson masses, providing a
relationship that can be used for precision tests of the consistency of the SM [1]. Furthermore,
a precise measurement of the top-quark mass is required to predict the evolution of the
Higgs quartic coupling at high scales [2, 3]. If performed with a precision of the order of a
few hundred MeV, the direct determination of the top-quark mass from its decay products,
and the indirect measurements from top-quark production cross-sections or kinematic
distributions, are important not only for the constraints mentioned above, but also for the
challenge of the interpretation of such measurements in the context of a strongly interacting
particle theory [4, 5].

A direct measurement of the top-quark mass (mt) is presented that uses a partial,
leptonic-only, invariant mass reconstruction of the top-quark decay products. The analysis
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is performed from a sample of reconstructed tt̄ events in the ℓ+jets channel, where one of
the two W -bosons from the top- and antitop-quarks decays leptonically. In the top-quark
decay t → Wb, the invariant mass mℓµ of the lepton ℓ (with ℓ = e, µ) from the W -boson
decay and the muon µ from a semileptonic decay of a b-hadron is constructed as the
observable sensitive to the parent mt value. The advantages of a strategy based on the
invariant mass of visible leptonic decay products for the measurement of the top-quark mass
rest mainly on the smaller sensitivity to the jet energy calibration and energy resolution,
compared to the standard direct reconstruction methods, and on less sensitivity to top-quark
production modelling (owing to the boost-invariant construction) than in methods based
on the W -decay lepton alone [6]. Moreover, methods with different types of systematic
uncertainties are important when combining measurements, and for testing the consistency
of the theoretical interpretation of the top-quark mass.

In this analysis the mℓµ distribution from models with different top-quark mass hypothe-
ses is compared with data, and the optimal value of mt is determined from a binned-template
profile likelihood fit. A similar technique was first employed by the CDF Collaboration at the
Tevatron collider [7], and a closely related analysis with J/ψ decays has been presented by the
CMS Collaboration [8]; however, both these analyses yielded uncertainties in mt of several
GeV. Until now, the most precise measurement of the top-quark mass in the tt̄ → ℓ+jets
channel by the ATLAS Collaboration was mt = 172.08 ± 0.39 (stat.) ± 0.82 (syst.) GeV,
whereas combining multiple ATLAS measurements gave mt = 172.69 ± 0.48 GeV [9]. The
CMS Collaboration reports its most precise combination as mt = 172.44 ± 0.49 GeV [10],
and the Tevatron experiments report a combined value of mt = 174.30 ± 0.65 GeV [11].
Finally, the mass of the top-quark is indirectly determined from global electroweak fits as
mt = 176.4 ± 2.1 GeV [12].

2 ATLAS experiment

The ATLAS experiment [13] at the LHC is a multipurpose particle detector with a forward-
backward symmetric cylindrical geometry and a near 4π coverage in solid angle.1 It consists
of an inner tracking detector surrounded by a thin superconducting solenoid providing a 2 T
axial magnetic field, electromagnetic and hadronic calorimeters, and a muon spectrometer.
The inner tracking detector covers the pseudorapidity range |η| < 2.5 and consists of silicon
pixel, silicon microstrip, and transition radiation tracking detectors. The innermost layer,
known as the insertable B-layer [14, 15], was added in 2014 and provides high-resolution hits
at small radius to improve the tracking performance. Lead/liquid-argon (LAr) sampling
calorimeters provide electromagnetic (EM) energy measurements with high granularity. A
steel/scintillator-tile hadronic calorimeter covers the central pseudorapidity range (|η| < 1.7).
The endcap and forward regions are instrumented with LAr calorimeters for both the EM

1ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in

the centre of the detector and the z-axis along the beam pipe. The x-axis points from the IP to the centre

of the LHC ring, and the y-axis points upwards. Cylindrical coordinates (r,φ) are used in the transverse

plane, φ being the azimuthal angle around the z-axis. The pseudorapidity is defined in terms of the polar

angle θ as η = − ln tan(θ/2). Angular distance is measured in units of ∆R ≡
√

(∆η)2 + (∆φ)2.
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and hadronic energy measurements up to |η| = 4.9. The muon spectrometer surrounds
the calorimeters and is based on three large air-core toroid superconducting magnets with
eight coils each and a bending power of 2.0 to 7.5 Tm. It includes a system of precision
tracking chambers covering the region |η| < 2.7 and fast detectors for triggering in the
range |η| < 2.4. A two-level trigger system was used to select events [16]. The first-level
trigger is implemented in hardware and uses a subset of the detector information to reduce
the accepted rate to at most 100 kHz. This is followed by the software-based high-level
trigger, which reduces the event rate to around 1 kHz. An extensive software suite [17] is
used in the reconstruction and analysis of real and simulated data, in detector operations,
and in the trigger and data acquisition systems of the experiment.

3 Data and simulation

3.1 Data sample and object definition

The analysis is performed with the 2015 and 2016 proton-proton collision data sample
produced by the LHC at a centre-of-mass energy of

√
s = 13 TeV and collected by the

ATLAS experiment, corresponding to an integrated luminosity of 36.1 fb−1 [18]. The data
sample was recorded during stable beam conditions, and all relevant ATLAS detector
subsystems were required to be operational. The average number of pp collisions in the
same bunch crossing (referred to as pile-up) in the data sample is 24.1.

Electron candidates are reconstructed from energy deposits (clusters) in the electro-
magnetic calorimeter matched to reconstructed tracks in the inner detector. Candidates in
the transition region 1.37 < |ηcluster| < 1.52 between the calorimeter barrel and endcaps
are excluded. Muon candidates are reconstructed from track segments in the layers of
the muon spectrometer, and matched to tracks found in the inner detector. The final
muon candidates are re-fitted using the complete track information from both detector
systems. Jet candidates are reconstructed from three-dimensional topological EM-scale
energy clusters [19] in the calorimeter using the anti-kt jet algorithm [20, 21] with a radius
parameter R = 0.4. The reconstructed jets are calibrated to the level of stable-particle jets
by the application of a jet energy scale (JES) correction derived from simulation and in situ

corrections based on 13 TeV data [22]. There is no dedicated energy scale correction for jets
with semileptonic heavy-flavour hadron decays. The missing transverse momentum, Emiss

T ,
is defined as the magnitude of the negative vector sum of the transverse momentum, pT, of
all reconstructed and calibrated physics objects in the event, with an extra term added to
account for soft energy in the event that is not associated with any of the reconstructed
objects [23]. This soft term is calculated from inner-detector tracks matched to the primary
vertex in order to make it more resilient to pile-up contamination.

3.2 Object and event selections

The event selection is designed to collect a sample of tt̄ candidate events in the final state
ℓνbjj′b̄, where ℓ = e or µ and the jj′ are the jets produced in the decay of the W -boson
into quarks, and at least one of the b-initiated jets is associated with a muon from the
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semileptonic decay of a b-hadron. The goal is to select events where the lepton ℓ from the
W -boson and the b-initiated jet with the muon from semileptonic decay come from the
same top-quark.

Events are required to pass either a single-electron or single-muon trigger. Multiple
trigger types were used: the lowest-threshold triggers include isolation requirements to
reduce the trigger rate and had pT thresholds of 20 GeV for muons and 24 GeV for electrons
in 2015 data, and 26 GeV for both lepton types in 2016 data [16, 24, 25]. These triggers
were complemented by others with higher pT thresholds and no isolation requirements to
increase event acceptance. Events must have at least one reconstructed vertex, i.e. at least
two tracks with pT > 0.4 GeV consistent with the beam-collision region in the x–y plane. If
multiple vertices are reconstructed, then the primary vertex is taken to be the one with
the largest sum, over the tracks assigned to it, of the transverse momentum squared of
each track.

Events are further selected based on the presence of an electron or muon candidate
from the decay of a W -boson, called ‘primary’ leptons. Primary-lepton electron candidates
must satisfy a ‘tight’ likelihood-based identification criterion [26], be matched to the
corresponding trigger, and have pT > 27 GeV, |η| < 2.47 with the exclusion of 1.37 <

|η| < 1.52, longitudinal impact parameter |z0 sin θ| < 0.5 mm and transverse impact
parameter significance |d0/σ(d0)| < 5, where σ(d0) is the uncertainty in the transverse
impact parameter. Background from photon conversions, hadrons, and electrons produced
away from the primary vertex (‘non-prompt’ electrons) is reduced by requiring the primary
electron candidates to pass an isolation requirement based on the surrounding tracks and
topological clusters in the calorimeter [26]. Primary-lepton muon candidates must satisfy
a ‘medium’ quality identification criterion [27], be matched to the corresponding trigger,
and have pT > 27 GeV, |η| < 2.5, longitudinal impact parameter |z0 sin θ| < 0.5 mm and
transverse impact parameter significance |d0/σ(d0)| < 3. Background from hadrons and from
muons produced away from the primary vertex (‘non-prompt’ muons) is reduced by requiring
primary muon candidates to pass an isolation requirement based on the surrounding tracks
and topological clusters in the calorimeter, and be separated by ∆R > 0.4 from the nearest
selected jet. If the nearest selected jet is ∆R ≤ 0.4 from the muon and has less than three
associated tracks (including the muon track), the muon is kept and the jet is removed from
the jet list, to ensure high efficiency for muons undergoing significant energy loss in the
calorimeter. Events with more than one candidate primary lepton with pT > 25 GeV are
vetoed, in order to reject events from the tt̄ dileptonic decay channel.

Jet candidates are required to have pT > 25 GeV and |η| < 2.5, and a multivariate jet-
vertex-tagger (JVT) is applied to suppress jets from pile-up [28]. During jet reconstruction,
no distinction is made between identified electrons and jet energy deposits. Therefore, if
any of the jets lie within ∆R = 0.2 of a selected electron, the single closest jet is discarded
in order to avoid double-counting electrons as jets. After this, electrons that are within
∆R = 0.4 of a remaining jet are removed. Jets are identified as originating from a b-quark
(b-tagged) using two techniques, one based on the reconstruction of a displaced jet (DJ
tagging) and the other based on the semileptonic decay of a b-hadron into a so-called
‘soft muon’ (SMT tagging). For DJ tagging, multivariate techniques are used to combine
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information about the impact parameters of displaced tracks and the topological properties
of secondary and tertiary decay vertices reconstructed within the jet [29]. The algorithm
is trained on simulated tt̄ events to discriminate b-jets from a background consisting of
light-flavour jets and c-jets. A selection corresponding to an efficiency of 77% for b-jets in
tt̄ events is employed, with a rejection rate of a factor of 7 (100) for c-jets (light jets). The
SMT tagging is performed by requiring the presence of a muon candidate satisfying the
‘tight’ quality identification criterion [27], pT > 8 GeV and |η| < 2.5, with loose requirements
on the impact parameters (|d0| < 3 mm, |z0 sin θ| < 3 mm) and with a distance ∆R < 0.4

from a selected jet candidate. The definition of the muon object for the SMT tagging was
optimised by maximising the efficiency for muons originating from the semileptonic decays
of b- and c-hadrons (selecting approximately 50% of b-jets containing a muon, which are in
turn 20% of all b-jets produced in tt̄ events), minimising the misidentification rate (about
10−3 per light-flavour jet, mostly due to the decays of pions and kaons), and minimising the
uncertainty in the measured top-quark mass. If more than one muon satisfying the criteria
above is found within a given jet, the muon with the highest pT is chosen.

Events must have at least one SMT-tagged jet and at least one DJ-tagged jet (which
could be the same jet), among a total of at least four jet candidates with pT > 30 GeV
(with the exception of the SMT-tagged jet which may have a pT as low as 25 GeV). If more
than one SMT-tagged jet is found in the event, only the one with the highest-pT muon is
considered. The SMT muon and the primary lepton must be separated by ∆Rℓ,µ < 2. The
presence of at least one neutrino in the final state is inferred from the requirements that
Emiss

T > 30 GeV and Emiss
T +mT(W ) > 60 GeV.2 The requirement that the SMT muon and

the primary lepton must be separated by ∆Rℓ,µ < 2 enhances the fraction of events where
both leptons come from the same top-quark, in contrast to events where the two leptons
originate from different top-quarks. The selected events are categorised as same-sign (SS)
events or opposite-sign (OS) events according to the charge signs of the primary lepton and
the soft muon. When both leptons come from the same top-quark, opposite-sign events are
enriched in direct b → µX decays, while same-sign events have a large contribution from
sequential b → cX ′ → µX

′′

decays; both samples carry information about the mass of the
parent top-quark though. Finally, the invariant mass of the primary lepton and the soft
muon (mℓµ) is required to be between 15 and 80 GeV, as this is the region most sensitive to
the top-quark mass. This requirement also suppresses the Z-boson, J/ψ and Υ resonances.

3.3 Signal and background simulations

A number of Monte Carlo (MC) simulation samples are used to model the expected signal
of top-quark pairs and the background. The MC samples were processed either through the
full ATLAS detector simulation [30] based on Geant4 [31] or through a faster simulation
making use of parameterised showers in the calorimeters [32]. Additional simulated pp

collisions generated by Pythia 8.186 [33] with the MSTW2008 [34, 35] set of leading-
order (LO) parton distribution functions (PDFs) and a set of tuned parameters called the

2The transverse mass is given by mT(W ) =
√

2pℓ
TEmiss

T
(1 − cos ∆φ), where pℓ

T is the transverse momen-

tum of the muon (electron) and ∆φ is the azimuthal angle separation between the lepton and the direction

of the missing transverse momentum.
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A2 tune [36] were used to model the effects of both in-time and out-of-time pile-up. They
were superimposed on the MC events, matching the luminosity profile of the recorded data.
All simulated samples were processed through the same reconstruction algorithms and
analysis chain as the data.

Simulated MC events were corrected so that the object identification efficiencies and
energy and momentum scales and resolutions matched those determined from data control
samples [22, 27, 28, 37]. The modelling of SMT muons and their misidentification due to
light-hadron decays and detector background (‘SMT fake’) was studied using control samples
as well. The efficiency of muon identification in jets was calibrated using muons from J/ψ

and Z decays, and checked as a function of nearby track and calorimeter activity, and of the
muon’s transverse impact parameter d0. The calibration of the misidentification rate was
performed, using the sample of W+jets events described in the following of the section, with
the same approach used in ref. [38]. A data-driven technique, described in detail in ref. [39],
is used to measure in data the normalisation and flavour composition of such events and to
derive corrections that are applied to simulated samples for the calibration. A light-jets
dominated sample of W+ 1 jet events is then defined by selecting events where the jet is
SMT-tagged but is not DJ-tagged, and using the SS category. A data-to-simulation scale
factor (SF) of 1.10 ± 0.14 is measured. A slight miscalibration of the pT of jets that contain
a soft muon was observed, and the pT of these jets was corrected in the simulation with
a factor of 0.967 ± 0.024. It has been measured by studying the distribution of the ratio
of the pT values of the SMT-tagged jet and the average non-SMT-tagged jet in tt̄ data
and simulation.

The tt̄ sample was generated using the hvq program [40] in the Powheg-Box v2
generator [41, 42] with the NNPDF3.0nlo set of PDFs [43] and the top-quark mass set to
172.5 GeV. Additional samples with different top-quark mass hypotheses were produced
in the range of mt between 165 and 180 GeV, with steps of 0.5 GeV between 170 and
175 GeV. The samples have been produced using the appropriate top-quark decay width
values predicted at next-to-next-to-leading order (NNLO) as a function of mt [44]. The
hvq program uses on-shell matrix elements for production of tt̄ pairs at next-to-leading
order (NLO) in quantum chromodynamics (QCD). Off-shell effects and top-quark decays,
including spin correlations, were approximated using Madspin [45]. Parton showers and
hadronisation were modelled by Pythia 8.2 [33] using a dedicated ‘A14-rb’ setting of the
ATLAS A14 [46] tune, as detailed in section 3.4. The A14 tune is based on LEP and
Tevatron collider data and also uses a combination of ATLAS

√
s=7 TeV measurements

of the underlying event, jet production, Z-boson production and top-quark production
in order to constrain the parameters for the showers, multiple parton interactions and
colour reconnection effects. Radiation in top-quark decays was handled entirely by the
parton-shower generator, which implements matrix-element corrections with an accuracy
equivalent to a calculation at the NLO level. The hdamp parameter, which controls the pT

of the first additional emission beyond the Born configuration, was set to 1.5 times the
top-quark mass of each sample. The main effect of the hdamp setting is to regulate the
high-pT emission against which the tt̄ system recoils. The EvtGen v1.2.0 [47] program
was used to simulate bottom and charm hadron mixing and decays. The production
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fractions and the branching ratios (BR) of the decay of b-hadrons and c-hadrons into muons
were rescaled to the latest values from the Particle Data Group (PDG) [1], as detailed in
section 3.4. The simulated tt̄ event sample was normalised to the Top++2.0 [48] theoretical
cross-section of 832+46

−51 pb, calculated at NNLO in QCD and including resummation of
next-to-next-to-leading logarithmic (NNLL) soft gluon terms [49–53].

The main backgrounds to candidate signal events come from the production of a
single top-quark, and from a W - or Z-boson in association with jets. A small background
contribution arises from diboson (WW , WZ, ZZ) production. Events not containing
prompt leptons also contribute to the selected sample via the misidentification of a jet or
a photon as an electron, or the presence of non-prompt electrons or muons passing the
prompt isolated lepton selection. This contribution is referred to as ‘multijet’ background,
and was estimated using data by following the matrix method described in ref. [54].

The production of V+jets was simulated with the Sherpa 2.2.1 [55] generator using
next-to-leading-order (NLO) matrix elements (ME) for up to two partons, and leading-
order (LO) matrix elements for up to four partons calculated with the Comix [56] and
OpenLoops [57–59] libraries. They were matched with the Sherpa parton shower [60]
using the MEPS@NLO prescription [61–64] with the set of tuned parameters developed by
the Sherpa authors. The NNPDF3.0nnlo set of PDFs [43] was used and the samples were
normalised to a next-to-next-to-leading-order (NNLO) prediction [65]. The normalisation
of the W+jet background and the fractions of W -bosons produced in association with
heavy-flavour quarks are extracted from data, taking advantage of the intrinsic W -boson
charge asymmetry in this process [66]. The Z+jets contribution is estimated from MC
simulation and checked in a data control sample.

Diboson processes were simulated with the Sherpa 2.1.1 event generator. They were
calculated using Comix and OpenLoops, and merged with the Sherpa parton shower
according to the MEPS@NLO prescription. The CT10nlo PDF set [67] was used in
conjunction with dedicated parton shower tuning developed by the Sherpa authors.

Samples of t−, Wt- and s-channel single top-quark background events were generated
with Powheg-Box v1, using the 4-flavour scheme for the NLO matrix element calculations
together with the fixed four-flavour PDF set CT10f4. Overlaps between the tt̄ and Wt

final states were removed with the ‘diagram removal’ prescription [68]. For all top processes,
top-quark spin correlations were preserved (for t-channel, top quarks were decayed using
Madspin). All single top-quark samples were interfaced to Pythia 6.428 [69] with the
CTEQ6L1 PDF set [70] and the corresponding Perugia 2012 [71] set of tuned parameters.
The EvtGen v1.2.0 program was used to model properties of the bottom and charm hadron
decays. The single top-quark t- and s-channel samples were normalised to the approximate
NNLO theoretical cross-sections [72–74].

3.4 Modelling of heavy-quark fragmentation, hadron production and decays

The modelling of the momentum transfer between the b-quark and the b-hadron is an
important aspect of this analysis. The Monte Carlo event generators, such as the Pythia,
Herwig [75, 76] and Sherpa programs, describe this transfer according to phenomenological
models, namely the string and cluster models containing parameters which are tuned to data.
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The Pythia8 program uses parametric functions to describe the b-quark fragmentation
function, while Herwig7 and Sherpa use a non-parametric model which handles the
complete parton-shower evolution. The free parameters in those models are typically fit to
measurements from e+e− colliders, and this analysis assumes that the b-quark fragmentation
function is the same in e+e− and pp collisions, as supported by dedicated studies.

The Lund-Bowler parameterisation [77, 78] in Pythia8 was used. It is given by

f(z) =
1

z1+brbm2
b

(1 − z)a exp(−bm2
T/z),

where a, b and rb are the function parameters, mb is the b-quark mass, mT =
√

m2
B + p2

T

the b-hadron transverse mass (mB being the b-hadron mass), and z is the fraction of the
longitudinal energy carried by the b-hadron with respect to the b-quark, in the light-cone
reference frame. The fragmentation function is defined at the hadronisation scale and it is
evolved by the parton shower to the process scale through DGLAP evolution equations. In
Pythia8, the values of a and b were fit to data sensitive to light-quark fragmentation [79],
such as charged-particle multiplicities, event shapes and scaled momentum distributions.
They are assumed to be universal for light- and heavy-quarks, while the rb parameter is
specific to b-quark fragmentation.

The description of the b-quark fragmentation in the ATLAS A14 tune is improved
by fitting for the StringZ:rFactB Pythia8 parameter (corresponding to rb) following
the approach given in refs. [80–83]. The A14 tune sets the parton shower αs to 0.127,
whereas the value of 0.1365 is used in Monash [79]. However, both Monash and A14 set
rb = 0.855. Since the b-quark fragmentation is controlled both by αs and rb, the procedure
described in the following is used to determine a value of rb more appropriate for a value of
αs = 0.127. The fit uses the A14 tune with e+e− collision data from the ALEPH, DELPHI
and OPAL experiments at the LEP collider, and from the SLD experiment at the SLC
collider [84–87]. The distribution of xB = 2pB · pZ/m

2
Z from semileptonically decaying

b-hadrons in e+e− → Z → bb̄ events is used, where pB and pZ are the four-momenta of the
b-hadron and the Z-boson, respectively. In the Z rest frame, mZ is twice the beam energy
and therefore xB = 2EB/mZ , where EB is the energy of the b-hadron. The fit is performed
using Rivet v3.1.0 [88] to implement the measurements. The effect of the matrix-element
corrections for e+e− → Z → bb̄g is taken into account. Eighty simulated samples of 1M
e+e− → Z → bb̄ events were produced using Pythia8 with different values of the rb

parameter in the interval [0.8–1.4] and compared to the experimental data in HEPDATA
format. The extraction of the best rb value is performed through a standard binned χ2

test on the experimental xB distribution where statistical and systematic uncertainties are
taken into account for each of the four experiments. In addition, for the results of ALEPH,
DELPHI and OPAL, bin-by-bin correlations are taken into account in the fit procedure. The
SLD experiment did not provide the full covariance matrix for the total uncertainties and
therefore the χ2 fit for this experiment is performed ignoring bin-by-bin correlations. For
each experiment, the χ2 minimisation is performed and the best rb value and its uncertainty
are found. The results are summarised in table 1. The values of χ2/ndf for DELPHI and
SLD experiments show a poor modelling of the data by the simulated templates. Therefore,
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Experiment rb χ2/ndf
ALEPH 1.070 ± 0.035 21/18
DELPHI 1.094 ± 0.030 73/8
OPAL 1.023 ± 0.019 18/19
SLD 1.092 ± 0.018 58/21

Table 1. Results of a fit of the rb parameter of the Lund-Bowler b-quark fragmentation function in
Pythia8 to different experimental data where bin-by-bin correlations for ALEPH, DELPHI and
OPAL experiments were considered.

before including these results into a global χ2 combination, the uncertainties found in the
rb parameter for these two cases were rescaled by a factor of S =

√

χ2/ndf following the
procedure outlined in ref. [1]. After these uncertainties are rescaled, the four χ2 curves
are summed up to produce a single χ2 curve taking into account the information of all
four experiments. In this approach, the four experiments are considered uncorrelated since
the dominant uncertainties on the measurements come from uncorrelated sources. This
curve is then fitted with a parabola to find the minimum of the χ2 and to extract the best
value of the rb parameter and its uncertainty, yielding rb = 1.05 ± 0.02. The values of
the rb parameter and its uncertainty for the four experiments, and their combination are
shown in figure 1. A similar procedure is performed, as a cross-check, exploiting the average
value <xB> of the four xB distributions. The experimental <xB> values are compared
with the predicted value of the various simulated samples, and the best rb values and their
uncertainties are extracted. A weighted average of the single results is calculated and the
result is found to be compatible with the previous method.

The setting with rb = 1.05 ± 0.02 is referred to as A14-rb and is applied in this analysis
to all signal MC samples using Pythia8 for the simulation of the parton shower. The xB

distributions measured by the ALEPH, DELPHI, OPAL and SLD experiments are shown
in figure 2 together with the MC predictions obtained with the A14, the A14-rb and the
Powheg+Herwig7 settings respectively. Recent b-fragmentation measurements based on
LHC data [89, 90] show reasonable agreement with simulations using the A14-rb tune.

The production fractions of weakly decaying b- and c-hadrons observed in
Powheg+Pythia8 MC simulation with EvtGen are rescaled to those from the Heavy
Flavour Averaging Group (HFLAV) [91] as reported by the PDG [1] and in ref. [92]. The
production fraction values and corresponding scale factors for Powheg+Pythia8 simula-
tions are shown in table 2. These scale factors refer only to the first weakly decaying hadron
produced in the hadronisation process of b- and c-quarks. The scale factors are applied
to each of these hadrons present in a MC simulated event, with the overall event weight
given by the product of these scale factors. This procedure assumes that the production
fractions of heavy-flavour quarks can be regarded as universal in the kinematic phase space
relevant for this analysis, within the uncertainties accounted for here, as supported by recent
results [93–99] which find deviations from universality only in the very low-pT regime.

The branching ratios of the b- and c-hadron decays that contain a muon are also
adjusted to match those measured by previous experiments [1]. Central values and relative
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Figure 1. Fit of the rb Pythia parameter to the four experiments considered: SLD, OPAL, DELPHI
and ALEPH. For each experiment, the rb fitted value is shown together with its uncertainty. These
results have been obtained including bin-by-bin correlations in the experimental data (except for
SLD experiment) and after rescaling the uncertainties on rb for DELPHI and SLD experiments as
explained in the text. The solid blue line represents the value of rb obtained from the combined fit
to the four experiments. The blue band represents the uncertainty from the combined fit to the
four experiments.

Hadron PDG Powheg+Pythia8 Scale Factor

B0 0.404 ± 0.006 0.429 0.941 ± 0.014

B+ 0.404 ± 0.006 0.429 0.942 ± 0.014

B0
s 0.103 ± 0.005 0.095 1.088 ± 0.052

b-baryon 0.088 ± 0.012 0.047 1.87 ± 0.26

D+ 0.226 ± 0.008 0.290 0.780 ± 0.027

D0 0.564 ± 0.015 0.553 1.020 ± 0.027

D0
s 0.080 ± 0.005 0.093 0.857 ± 0.054

c-baryon 0.109 ± 0.009 0.038 2.90 ± 0.24

Table 2. The production fraction values for b-hadrons and c-hadrons in the PDG and
Powheg+Pythia8. The relative scale factors applied to Powheg+Pythia8 are also shown.
The values in the PDG column are derived from refs. [1] and [92]. The same scale factors are applied
to the charge-conjugate hadrons.
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Figure 2. Distributions of xB from semileptonically decaying b-hadrons in e+e− → Z → bb̄ events
as measured by the ALEPH, DELPHI and OPAL experiments at the LEP collider, and by the
SLD experiment at the SLC collider. Each of the measured spectra is compared with a set of
MC predictions. The Pythia8 A14-rb prediction includes a systematic uncertainty band obtained
considering the rb parameter variations described in the text and included as systematic uncertainty
in the analysis.

scale factors, along with the corresponding uncertainties, are shown in table 3; these are
measured after applying the corrections for the production fractions described above. The
b → c̄ → µ branching ratio was determined by averaging the direct measurement from
DELPHI [100] and the predicted values computed by the LEP Electroweak Heavy Flavour
Working Group [101]. The latter prediction is based on flavour-specific B → D and B → Λ+

c

rates measured at CLEO [102–104] in combination with the B → DD(X) rates measured
in ALEPH [105] to extract the probabilities of producing the different c-hadrons from the
initial b-hadron decays. The c-hadron semileptonic branching fractions were also used in the
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Hadronic PDG Powheg Scale
Decay Mode Pythia8+EvtGen Factor

b → µ 0.1095 +0.0029
−0.0025 0.106 1.032 +0.0027

−0.0023

b → τ 0.0042 ±0.0004 0.0064 0.661 ±0.062
b → c → µ 0.0802 ±0.0019 0.085 0.946 ±0.022
b → c̄ → µ 0.016 ±0.003 0.018 0.89 ±0.17
c → µ 0.082 ±0.005 0.084 0.976 ±0.059

Table 3. Hadron to muon branching ratios from the PDG and in Powheg+Pythia8+EvtGen.
The relative scale factors applied to Powheg+Pythia8 are also shown. The values in the PDG
column are derived from refs. [1] and [92]. The c → µ scale factor is applied only to the semileptonic
decays of c-hadrons into muons when the c-hadrons do not come from a cascade b-hadron decay.
The same scale factors are applied to the charge conjugate hadrons.

prediction. The c → µ scale factor is applied only to the semileptonic decays of c-hadrons
into muons when the c-hadrons do not come from a cascade b-hadron decay.

4 Analysis

4.1 Event yields and sample composition

The number of observed candidate events and the predicted signal and background are
shown in table 4, for both the OS and SS regions. Over 90% of the events in the sample
contain a top-quark pair, including cases where the soft muon is erroneously chosen from a
tt̄ dilepton decay, whereby a muon from the prompt W decay is found near a jet or radiates
a near-collinear photon mimicking a soft muon tag, and cases where the soft muon candidate
does not originate from a b decay such as in W → cs or SMT fakes. The contributions
from single top-quark, W - or Z-boson in association with jets, and multijet background are
not negligible. The Z+jets background gives a small contribution near the peak of the mℓµ

distribution, but becomes important for mℓµ close to the Z-boson mass peak.
Of the selected tt̄ events in the OS class, 83% are cases where the primary lepton

and the soft muon belong to the decay of the same top-quark, and 10% are events where
the two originate from different top-quarks. The topological requirement ∆Rℓ,µ < 2 is
responsible for much of the purity because it is very effective in preferentially selecting the
same top-quark decays. For the remaining 7% of cases, the soft muon does not originate
from either of the b-quarks produced in the two top-quark decays. In the SS class, the above
fractions are 57%, 41% and 2%, respectively. The rate of soft muons that are not from
b-quarks is higher in OS events owing to the decay of c-quarks that come from W → cs in
the top-quark decay chain.

In order to better understand the nature of the sample composition in the OS and SS
regions, the expected tt̄ events shown in the first row of table 4 are further resolved into
components. Table 5 shows the components involving direct and sequential decays, and
decays not belonging to the b-quark from the t → Wb transition. The direct t → B → µ
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Process Yield (OS) Yield (SS)

tt̄ (SMT from b- or c-hadron) 55 700 ± 3400 34 800 ± 2300

tt̄ (SMT from W → µν) 2190 ± 310 4.9 ± 3.6

tt̄ (SMT fake) 1490 ± 210 1240 ± 170

Single top t-channel 770 ± 70 490 ± 40

Single top s-channel 63 ± 6 49 ± 4

Single top Wt channel 1840 ± 140 1260 ± 100

W+jets 1600 ± 400 1080 ± 240

Z+light jets 210 ± 80 15 ± 6

Z+HF jets 550 ± 180 310 ± 100

Diboson 17.2 ± 2.9 6.3 ± 1.4

Multijet 530 ± 140 480 ± 130

Total Expected 65 000 ± 4000 39 700 ± 2500

Data 66 891 42 087

Table 4. Event yields with mℓµ between 15 and 80 GeV, separately for OS and SS regions.
Uncertainties shown include statistical and systematic contributions but not the recoil uncertainty.

decays are by far the dominant component in the OS sample, while the sequential t → B →
D → µ decays are also suppressed by the kinematic requirement on the soft muon. Decay
channels involving τ leptons give a small contribution.

OS [%] SS [%]
Processes involving a µ from a t or t̄
t → B → µ 73.6 51.2

t → B → D → µ 16.7 44.2

t → B → τ → µ 2.0 1.3

t → B → D → τ → µ 0.8 0.8

Processes involving a µ not from a t or t̄
B → µ 0.6 0.9

D → µ 5.8 1.4

Other (τ → µ) 0.5 0.1

Table 5. Fraction of MC-simulated tt̄ events with a soft muon originated by a b- or c-hadron split
into components of direct and sequential decays, and decays not belonging to the b-quark from the
t → Wb transition, separately for the opposite-sign and same-sign event selections. The letters B
and D indicate b- and c-hadrons of either charge. Only MC events with two real muons are included.

The data are compared with the sum of the predicted signal and backgrounds in figures 3
and 4, for an illustrative selection of kinematic distributions of the candidate events for the
OS and SS selections: pT(µSMT), η(µSMT), pT(ℓ primary) and mT(W ). The uncertainties are
discussed in detail in section 5. The compatibility of the data and MC predictions is studied
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Figure 3. Comparison of data and prediction before the fit described in section 4.2 in the OS
sample, i.e. for events with primary lepton and the soft muon with opposite charges, for the (a) soft
muon pT, (b) soft muon η, (c) primary lepton pT and (d) W -boson transverse mass. The prediction
reports the expected event contribution from the signal and backgrounds. The uncertainty band
includes statistical and systematic uncertainties, but does not include the recoil uncertainty.

using a χ2 test involving the bin-by-bin full correlation matrix, and for all distributions the
level of agreement is better than 2 standard deviations. The slight excess of SMT muons
in regions of high-η is associated with a potential small mismodelling of the efficiency for
low-pT muons in simulation. The corresponding impact on the measurement is negligible.
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Figure 4. Comparison of data and prediction before the fit described in section 4.2 in the SS
sample, i.e. for events with primary lepton and the soft muon with same charges, for the (a) soft
muon pT, (b) soft muon η, (c) primary lepton pT and (d) W -boson transverse mass. The prediction
reports the expected event contribution from the signal and backgrounds. The uncertainty band
includes statistical and systematic uncertainties, but does not include the recoil uncertainty.
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Figure 5. Sensitivity of the mℓµ distribution to different input top-quark masses from simulated
events, separately for the OS and SS samples.

4.2 Extraction of the top-quark mass

The distribution of the invariant mass of the primary lepton and the soft muon, mℓµ is
used to determine the mass of the parent top-quark. A binned-template profile likelihood
fit is performed, with a Poisson likelihood model and systematic uncertainties included as
Gaussian-constrained nuisance parameters [106]. Only the range of mℓµ between 15 and
80 GeV is considered in the fit, since the tail of the mℓµ distribution is more sensitive to tt̄
modelling uncertainties and higher-order corrections, and to the Z+jets background. The
fit is performed simultaneously for the OS and SS charge-combination samples, and figure 5
shows the sensitivity of each of these distributions to variations of the top-quark mass, as
well as the binning used by the templates. The SS sample has less sensitivity than the OS
sample due to the larger incidence of sequential b → c → µ decays, where the SMT muon
carries a smaller fraction of the parent b-quark momentum, and due to the larger fraction
of events in which the leptons originate from different top-quarks.

The fit uses template histograms simulated as for the nominal tt̄ sample but with
different values for the input top-quark mass. The templates from the different mass
samples are interpolated with piece-wise linear functions built bin by bin. To improve the
stability of the method, the templates are smoothed assuming a linear dependence on mt

for the fraction of the total number of events in each bin. A maximum-likelihood fit is
performed with three free parameters: mt, which controls the shape of the mℓµ distribution
for tt̄ events, and the normalisation factors for tt̄ events in the OS and SS samples. The
normalisation factors ensure that the total of the tt̄ signal and background events is always
equal to the total number of selected data events, and no mt information is extracted from
the number of events.

The uncertainty due to the limited number of simulated events, and due to statistical
fluctuations in the background estimates based on control samples, is evaluated by defining
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a new source of systematic uncertainty for each bin of the prediction, which modifies the bin
content by its statistical uncertainty. Since a very large number of systematic uncertainties
are considered a priori, a pruning procedure is applied to reduce the number of statistically
insignificant systematic uncertainties affecting the prediction of each of the signal and
background processes. A systematic variation of the mℓµ templates is excluded if the total
predicted change is smaller than 0.05% of the nominal bin content for all bins. The impact
on the total estimated uncertainty is smaller than 0.03 GeV.

The top-quark mass determination from the fit is found to be linear and unbiased
with respect to the input top-quark mass hypothesis by means of pseudo-experiments, and
its uncertainty from the likelihood ratio is also checked to ensure it reports the correct
statistical coverage. The fit method and the event selection were optimised to minimise the
total uncertainty in mt in a ‘blinded’ approach, i.e. using pseudo-data and data without
knowledge of the best-fit top-quark mass. The fit yields:

mt = 174.41 ± 0.39 (stat.) ± 0.66 (syst.) ± 0.25 (recoil) GeV,

where the statistical, systematic and recoil uncertainties are described in detail in section 5.
Figure 6 shows the post-fit mℓµ distributions in the OS and SS samples; a goodness-of-fit
test is performed using the saturated model technique [1, 107] and returns a probability of
56%. Figures 7 and 8 display the corresponding post-fit plots for the kinematic variables
of figures 3 and 4. The data distributions are well described by the prediction, with the
primary lepton pT exhibiting a slight trend which is traced to the boost of the tt̄ system, but
which has no appreciable impact on the determined top-quark mass. This was confirmed
by detailed checks, performed by testing the impact of NNLO corrections on the top quark
kinematics, and by performing a test fit including the lepton pT as a second fit variable. In
all cases the impact on the measurement was shown to be well within the quoted modelling
uncertainties associated with ISR effects and ME generator choice. The post-fit uncertainties
shown in figures 7 and 8 are significantly reduced with respect to the pre-fit ones shown
in figures 3 and 4 due to the tt̄ normalisation being treated as a free parameter in the fit
procedure; the normalisation uncertainty considered at pre-fit level is thus removed after
the fit procedure. The likelihood scan with the best-fit top-quark mass value is shown in
figure 9.

Checks were performed by fitting the OS and SS regions separately, giving mt(OS) =

174.63±0.47 (stat.)±0.75 (syst.) GeV and mt(SS) = 173.88±0.74 (stat.)±1.01 (syst.) GeV.
Checks were performed by separately fitting the electron and muon channels, different
W -decay lepton charges and different configurations of b-tagging and event selection, and
were found to all give consistent results. Checks also included the extraction of the top-
quark mass with alternative statistical methods, namely using analytic functions for mℓµ

with a parametric dependence on the top-quark mass, only using the mean value of the
mℓµ distribution, and using a binned-template likelihood fit without including systematic
uncertainties as nuisance parameters. In particular, the inclusion of systematic uncertainties
as nuisance parameters in the fit reduces the total uncertainty by 2.6%, in line with
reasonable constraints from the fit.
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Figure 6. Post-fit mℓµ distributions in the (a) OS sample and in the (b) SS sample. The prediction
reports the event contribution for the signal and backgrounds. The uncertainty band includes
statistical and systematic uncertainties, but does not include the recoil uncertainty. The SS (same
sign) or OS (opposite sign) refers to the charge signs of the primary lepton and the soft muon.

5 Measurement uncertainties

The individual sources of uncertainty and the evaluation of their effect on mt are described
in the following. Many sources of systematic uncertainty are considered, corresponding
to a total of 151 individual variations. Table 6 summarises the impact on mt of the main
sources of systematic uncertainty, and each systematic uncertainty is accompanied by an
estimate of its statistical precision performed using the bootstrap method [108].

5.1 Statistical and datasets

The uncertainty related to the size of the data sample (data statistical uncertainty) is
obtained by performing the fit while keeping constant all of the nuisance parameters associ-
ated with the systematic uncertainties. The data statistical uncertainty obtained by using
both the OS and SS selections is ±0.39 GeV, while the OS sample alone yields ±0.47 GeV,
highlighting the contribution to the sensitivity from the SS sample. The uncertainty due to
the limited size of the simulated signal and background samples includes both the impact of
the signal samples size on mt-dependent templates used for the top mass interpolation, and
the uncertainty of the backgrounds due to the limited size of the corresponding MC samples.
This includes the multijet background, which is estimated with a data control sample. The
uncertainty in the combined 2015–2016 integrated luminosity is 2.1% [18], obtained using
the LUCID-2 detector [109] for the primary luminosity measurements. The distribution of
the average number of interactions per bunch crossing (pile-up activity) in each MC sample
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Figure 7. Post-fit comparison of data and prediction in the OS sample, i.e. for events with primary
lepton and the soft muon with opposite charges, for the (a) soft muon pT, (b) soft muon η, (c) primary
lepton pT and (d) W -boson transverse mass. The prediction reports the event contribution for the
signal and backgrounds. The uncertainty band includes statistical and systematic uncertainties, but
does not include the recoil uncertainty.
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Figure 8. Post-fit comparison of data and prediction in the SS sample, i.e. for events with primary
lepton and the soft muon with same charges, for the (a) soft muon pT, (b) soft muon η, (c) primary
lepton pT and (d) W -boson transverse mass. The prediction reports the event contribution for the
signal and backgrounds. The uncertainty band includes statistical and systematic uncertainties, but
does not include the recoil uncertainty.
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Source Unc. on mt [GeV] Stat. precision [GeV]

Statistical and datasets

Data statistics 0.39

Signal and background model statistics 0.17

Luminosity < 0.01 ±0.01

Pile-up 0.07 ±0.03

Modelling of signal processes

Monte Carlo event generator 0.04 ±0.06

b, c-hadron production fractions 0.11 ±0.01

b, c-hadron decay BRs 0.40 ±0.01

b-quark fragmentation rb 0.19 ±0.06

Parton shower αFSR
S 0.07 ±0.04

Parton shower and hadronisation model 0.06 ±0.07

Initial-state QCD radiation 0.23 ±0.08

Colour reconnection < 0.01 ±0.02

Choice of PDFs 0.07 ±0.01

Modelling of background processes

Soft muon fake 0.16 ±0.03

Multijet 0.07 ±0.02

Single top 0.01 ±0.01

W/Z+jets 0.17 ±0.01

Detector response

Leptons 0.12 ±0.01

Jet energy scale 0.13 ±0.02

Soft muon jet pT calibration < 0.01 ±0.01

Jet energy resolution 0.08 ±0.07

b-tagging 0.10 ±0.01

Missing transverse momentum 0.15 ±0.01

Total stat. and syst. uncertainties (excluding recoil) 0.77 ±0.03

Recoil uncertainty 0.25

Total uncertainty 0.81

Table 6. Impact of main sources of uncertainty on mt. Each row of the table corresponds to a
group of individual systematic variations. For each uncertainty source the fit is repeated with the
corresponding group of nuisance parameters fixed to their best-fit values. The contribution from
each source is then evaluated by subtracting in quadrature the uncertainty obtained in this fit from
that of the full fit. The total systematic uncertainty is different from the sum in quadrature of
the different groups due to correlations among nuisance parameters in the fit. The last column
shows the statistical uncertainty on each of the top-quark mass uncertainties as estimated with the
bootstrap method [108].

21



J
H
E
P
0
6
(
2
0
2
3
)
0
1
9

171 172 173 174 175 176 177

 [GeV]
t

m

0

1

2

3

4

5

6

7

8

9

10)
L

 l
n
(

∆
 2

 
−

ATLAS
-1 = 13 TeV, 36.1 fbs

stat.

stat.+syst.

Figure 9. Likelihood scan, showing the best-fit value and the statistical and total uncertainty
profiles (excluding the recoil uncertainty).

is reweighted to match the conditions in data, and a corresponding uncertainty is evaluated
according to the uncertainty in the average number of interactions per bunch crossing.

5.2 Modelling of the signal process

Uncertainties in the tt̄ signal modelling include all sources that affect the kinematics of the
lepton from the W -boson decay and the kinematics of the b-hadron giving rise to the soft
muon, and also the fraction of events from different soft-muon flavour components (from
b-hadrons, c-hadrons, light jets and W -bosons). The tt̄ inclusive cross-section uncertainty
does not affect the measurement, since the fit is based only on the shape of the distribution
from tt̄ events after background subtraction.

Uncertainties that depend on the choice of NLO matching scheme in the tt̄ MC
generator are estimated by comparing a sample generated with Powheg+Pythia8 with a
sample generated with MadGraph5_aMC@NLO+Pythia8 [110] (referred to hereafter
as aMC@NLO+Pythia8). The aMC@NLO matching requires specific settings of the
Pythia8 shower to retain the NLO accuracy. The matrix-element corrections are switched
off for both initial-state radiation and the global-recoil settings that are used for final-state
radiation emissions. These settings are different from the nominal Powheg+Pythia8.
In order to have a coherent comparison, an alternative Powheg+Pythia8 sample was
generated with the same Pythia8 configuration as that used to shower aMC@NLO events.
Additionally, since aMC@NLO+Pythia8 is known to describe poorly the distribution of
the boost of the tt̄ system (ptt̄

T) [111], the ptt̄
T in aMC@NLO+Pythia8 is reweighted to

that of the Powheg+Pythia8 sample. The full difference between the top-quark masses
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obtained with the two samples is considered as the positive and negative uncertainty due to
the MC generator NLO matching.

Uncertainties in the b-hadron production fractions and the BRs of the inclusive decays
of b- and c-hadrons into muons are derived from the uncertainties in the rescaling procedure,
described in section 3.4 and shown in tables 2 and 3. These uncertainties are propagated
through the analysis. In addition, a check was performed to verify that the impact on mℓµ

due to the different admixture of D-mesons involved in b → cµ+X transitions was within
the uncertainty assigned to b → µ inclusive BRs. For this purpose, the exclusive decays
B0 → D−µν, B0 → D∗(2010)−µν, B+ → D0µν, B+ → D∗(2007)0µν and their charge
conjugates were considered. For each of these decays, a kinematic selection similar to that
of the main selection was applied to the events and the BR of each decay was varied within
the uncertainty quoted by the PDG. The impact on mℓµ was found to be significantly
smaller than the effect of varying only the BR of the inclusive b → µ decays. The impact on
mℓµ from the uncertainties in the B0

(s) mixing parameters is much smaller than the impact
from imperfect knowledge of the b-hadron production fractions and from the heavy-quark
hadrons BRs. Similarly, the impact of the modelling of the soft-muon kinematics in the
exclusive semileptonic decays of b- and c-hadrons in EvtGen v1.2.0 was tested by varying
the various BRs within their uncertainties. The total impact was found to be negligible
with respect to the impact of the inclusive b-hadron production fractions and heavy-quark
hadrons BRs uncertainties.

Uncertainties in the modelling of the parton shower and hadronisation processes include
the estimation of several components. An alternative simulation of the tt̄ sample is considered
whereby the Powheg-Box generator is matched to the Herwig 7.1.3 generator for the
modelling of the parton shower and hadronisation. The Herwig 7.1.3 generator release
includes several improvements in the shower description for heavy-quark fragmentation,
together with a new tune to e+e− data. The angle-ordered shower algorithm is preferred
to the dipole shower for this sample, as it better describes both the shower evolution in
the 7 TeV ATLAS measurement of jet shapes in tt̄ events [112], and the xB distribution of
LEP data, although it does not describe the xB spectrum of LEP data as well as Pythia8.
The sample based on Herwig 7.1.3, when compared with the nominal tt̄ simulation used
in the fit, allows the effects of changes in the shower algorithm, and therefore in initial-
and final-state emissions, to be assessed using alternative but coherent models of b-quark
fragmentation and hadronisation, the underlying event and colour reconnection. The full
difference between the top-quark masses obtained with the two samples of Powheg events
showered with Pythia8 A14-rb and Herwig 7.1.3 is considered as the positive and negative
uncertainty from variations of the parton shower and hadronisation modelling.

To evaluate the uncertainty on the modelling of the b-quark fragmentation, additional
samples were produced with the value of rb in the fragmentation function varied by its
uncertainty of ±0.02. Additionally, the uncertainty on the choice of the renormalisation and
factorisation scales in the final-state radiation (FSR) description of Pythia8 is evaluated
using alternative simulated tt̄ samples generated with the scale parameters explicitly3 varied

3With explicit scale variations, dedicated alternative MC samples are generated with the µR,F scales
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up and down by factors of
√

2 [113]. For these alternative settings, the appropriate rb

values are determined following the same fit procedure described in section 3.4, in order
to still correctly model the xB distribution for LEP/SLD data. It must be noted that the
xB distribution will however be different for the tt̄ samples with varied scales with respect
to the nominal one, due to process-dependent effects. This uncertainty is labelled αFSR

S in
table 6.

As a check of the separate rb and αFSR
S uncertainties reported in table 6, a sample of

Powheg events showered with Pythia using the Monash tune [79] (which has different
values of αS and rb than the A14-rb tune), is used to obtain an equivalent systematic
uncertainty. The change in the measured top-quark mass obtained with this sample
is 0.30 ± 0.06 GeV, consistent with the uncertainties associated with αFSR

S , rb and the
hadronisation model, listed in table 6.

In the modelling of the parton shower of the b-quark from t → Wb with Pythia 8.2,
there is the possibility to change the default gluon recoil scheme from recoiling against the
b-quark (the nominal setting, referred to here as RTB), to recoiling against the W -boson
(recoilToColoured=off, referred to as RTW) [114]. Before Pythia version 8.160, the
RTW was the only possibility, but it could give unphysical radiation patterns and it is now
kept as an option to understand the effect this setting has in view of previous measurements.
This setting changes the modelling of second and subsequent gluon emission from quarks
produced by coloured resonance decays, such as the b-quark in a t → Wb process, but it
has no impact for example on Z → bb̄ decays. A third recoil scheme has been recently
made available via the UserHook functionality of Pythia 8.2 with the top-quark itself
serving as recoiler for second and subsequent gluon emission of the b-quark (referred to as
RTT).4 The RTW and RTT setups give wider-angle gluon radiation, resulting in energy
deposits that do not get clustered into the b-jet, and lower gluon-energy emission, altering
the modelling of the b-quark fragmentation and hardening the b-hadron momenta. They
also mildly change the W -boson pT and the angle between the W -boson and the b-hadron
resulting from the top-quark decay. The recently-developed RTT option has been considered
as an additional uncertainty in the measurement, even though the implementation could
only be performed based on particle-level simulation and without a dedicated tune that
would normally accompany a change of setup of this nature. The change of the recoil model
modifies the distribution of the momentum fraction of the b-hadron

xB =
1

1 −m2
W /m2

t +m2
b/m

2
t

2pB · pt

m2
t

,

where mw is the W -boson mass and pt is the top four-momentum. However, the Mellin
moments of this distribution derived with the RTB setup agree well with those predicted by
the NLO+NLL resummation convoluted with the Kartvelishvili model tuned on ALEPH,
OPAL and SLD data [80]. Therefore, the xB distribution derived with the RTT shower is

modified in the parton shower settings, as opposed to the automated parton shower variations discussed in

ref. [113], where weights are applied to the MC sample to obtain the systematic shifts. Explicitly changing

µR,F by a factor
√

2 corresponds approximately to an automated variation of a factor 2, thanks to the

implementation of the NLO compensation terms in the latter case.
4The code used for the RTT UserHook was provided by the Pythia authors directly.
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reweighted to that of the RTB simulation. The reweighting of xB is a crude adjustment,
since its distribution is controlled by the parameters of the fragmentation function and
αFSR

S , which are set in the A14-rb Pythia tune, and bound by the universality of the
b-quark fragmentation model. Closure tests demonstrated that the xB reweighting provides
the correct mℓµ distribution, and the correct extracted top mass, even though it does not
fully address the modelling of other variables of the event. Overall, the analysis performed
with the RTT shower setup as above yields a measured top-quark mass value which is larger
than the one obtained with the nominal parton shower configuration by approximately
0.25 GeV. The less physically-motivated RTW setup has been also checked, and would have
an effect at the same level as RTT. A one-sided shift of the measured top mass is seen with
the RTT and RTW setups, but a symmetrised uncertainty of ±0.25 GeV is assigned and
indicated by “recoil”. This uncertainty is considered outside of the profile likelihood fit, and
quoted as a separate uncertainty on the result.

The uncertainty in the modelling of initial-state radiation (ISR) is estimated by using
four variations: the first two are obtained by independently changing the Powheg ISR
renormalisation and factorisation scales up and down by a factor 2.0, the third by comparing
with an alternative sample obtained doubling the hdamp parameter with respect to the
nominal settings, the fourth one corresponds to the Var3c up and down variations of the
Pythia8 A14 tune [115].

The modelling of the underlying event and of colour reconnection (CR) can affect the
amount of radiation emitted from the b-quark, as well as modify the kinematic distribution
of the b-hadron. An underlying-event uncertainty is estimated using the corresponding
eigentunes of the A14 Pythia8 tune. Variations of colour reconnection parameters are
also provided by the A14 eigentunes, determined from measurements of the underlying
event in jet production. Samples are generated where the colour reconnection strength in
the Pythia8 default model is set to its maximum value (all hadrons are reconnected) and
are compared with a setting with the colour reconnection switched off. To account for the
possibility of colour reconnection also affecting the top-quark decay products, a comparison
with the ‘Early Resonance Decay’ (ERD) model is performed [116]. In this model, the
top-quarks and W -bosons are allowed to decay before CR takes place, so the top-quark
decay products directly participate in CR. The impact on the measured top-quark mass is
found to be negligible.

The systematic uncertainty due to the choice of PDFs is evaluated using the
PDF4LHC15 error set [117] applied to the nominal tt̄ MC settings, and is obtained
by means of event reweighting for 30 PDF replicas. The mt value is extracted for each of
the 30 cases, and the total systematic uncertainty due to this effect is computed as the sum
in quadrature of the single variations.

5.3 Modelling of background processes

Several sources of uncertainty are considered for the normalisation and shape of the
background contributions. The relative uncertainty in the normalisation of the soft-muon
component of tt̄ events which arises from light-hadron decays and detector background (‘Soft
muon fake’) is derived from the uncertainty in the calibration of the misidentification rate.
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An additional uncertainty is derived from the difference in shape and normalisation of the
mℓµ distribution of SMT mistags between tt̄ samples generated with Powheg+Pythia8

and Sherpa. For the tt̄ dilepton component, uncertainties in the modelling of the ISR, in
the NLO matching and in the parton shower and hadronisation model are estimated in the
same way as for the nominal tt̄ sample.

An uncertainty of +5%/− 4% is applied to the total cross-section for single top-quark
production [72–74]. An additional uncertainty in the amount of initial- and final-state
radiation is evaluated in a manner similar to that used for tt̄. The uncertainty in the
interference between Wt and tt̄ production at NLO is assessed by comparing the default
‘diagram removal’ scheme with an alternative ‘diagram subtraction’ scheme [68]. The
uncertainty in the event generator for the t-channel is evaluated by comparing it with
a sample simulated with aMC@NLO+Pythia8. The uncertainty in the parton shower
and hadronisation models for the t- and Wt-channels is derived from a comparison with
samples showered with Herwig++. The impact of mt variations on the single top-quark
background has been found to yield negligible effects.

An uncertainty of 30% is applied to the Z+jets background normalisation, for both its
light-flavour-jet and heavy-flavour-jet (Z+cc̄ and Z+bb̄) components. It was validated in a
control region around the Z-boson mass peak, where the normalisations of the Z+light-jet
and Z+heavy-flavour-jet are simultaneously extracted with a combined fit and are found
to be in agreement with the theoretical expectation for Z+jets. The uncertainty in the
normalisation and in the flavour composition of W+jets is assessed using data control
regions. The total normalisation and flavour fraction uncertainty is about 22% for Wb(b)

and Wcc, approximately 45% for Wc, and about 23% for W+light-jets.
For the multijet background, a 30% systematic uncertainty is assigned to the predicted

yields, based on comparisons with data yields in control regions similar to the signal region
but enriched in events from the multijet background; the e+jet and µ+jet events are
treated as uncorrelated. For the small diboson background, a 50% normalisation uncertainty
is assigned and includes uncertainties in the inclusive cross-section and additional jet
production [118].

5.4 Detector response

Uncertainties associated with leptons arise from the trigger, reconstruction, identification,
and isolation requirements, as well as the lepton momentum scale and resolution. The
reconstruction, identification and isolation efficiency for electrons and muons, as well as the
efficiency of the trigger, differ slightly between data and simulation and are compensated
for by dedicated SFs. Efficiency SFs are derived using data and simulated samples of
Z → ℓ+ℓ− (ℓ = e, µ), and are applied to the simulation to correct for differences. The effect
of uncertainties in these SFs is propagated through the analysis. The total uncertainty in
efficiency SFs, for the high-pT leptons, is < 0.5% for muons across the entire pT spectrum [27]
and for electrons with pT > 30 GeV, while it exceeds 1% for lower-pT electrons [37]. The
corresponding uncertainties are at the level of few per-mill for the momentum scale both for
electrons and muons, and of 5–10% (4–7%) for the electron (muon) momentum resolution,
strongly depending on the detector region and on the transverse momentum of the lepton.
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Additional sources of uncertainty originate from the uncertainty in the corrections applied to
adjust the lepton momentum scale and resolution in the simulation to match those in data.
They are measured using reconstructed Z → ℓ+ℓ− and J/ψ → ℓ+ℓ− dilepton invariant mass
distributions [26, 27]. To evaluate the effect of momentum scale and resolution uncertainties,
the analysis is repeated with the lepton momentum varied by ±1σ and with the lepton
momentum smeared, respectively. A systematic uncertainty due to the electron charge
misidentification is taken from ref. [26]. Scale factors correcting for the differences in
electron charge misidentification rates between data and simulation are computed using
Z → e+e− events.

Uncertainties associated with jets arise from the efficiency of jet reconstruction and
identification based on the JVT variable, as well as the JES and the jet energy resolu-
tion (JER). Although the observable mℓµ does not involve jets, the various jet uncertainties
impact the analysis through the event selection. The JES and its uncertainty were derived
by combining information from test-beam data, LHC collision data and simulation [22].
The JES uncertainty is about 5.5% for jets with pT = 25 GeV and decreases quickly with
increasing jet pT. It is below 1.5% for central jets with pT in the range of approximately
100 GeV to 1.5 TeV. The highest-pT jet in this analysis has an average pT of around
130 GeV, with a typical range between 50 GeV and 450 GeV. The uncertainty from the
soft muon jet pT calibration affects the measured top-quark mass marginally, through the
event selection. The magnitude of the JER uncertainty variation is parameterised in jet pT

and η [119], and the uncertainty is propagated by smearing the jet pT in the simulation.
The uncertainty in the efficiency to pass the JVT requirement is evaluated by varying the
scale factors within their uncertainties [28].

The efficiencies of DJ tagging in simulated samples are corrected to match efficiencies
in data. Correction scale factors are derived for jets originating from b-, c- and light-
quarks separately in dedicated calibration analyses [29, 120, 121]. For jets originating from
b- and c-quarks, SFs are derived as a function of pT, whereas the light-jet efficiency is
scaled by pT- and η-dependent factors. Uncertainties in the correction scale factors are
estimated by varying each source of uncertainty up and down by one standard deviation
and are taken as uncorrelated between b-jets, c-jets, and light-jets. The same SFs are
verified to also be applicable to jets containing soft muons by repeating the calibration
procedure on a dedicated sample of events. An additional set of MC-to-MC correction
factors are introduced to account for the different parton shower and hadronisation model
used in the calibration samples compared to those used in this analysis. Furthermore,
the efficiency of tagging the hadronic decays of τ -leptons in simulation is treated in the
same way as the efficiency of tagging c-jets, and a specific uncertainty is considered for
this simplified approach. An additional check is performed by changing the event selection
such that there is always a DJ tagged jet other than the SMT tagged jet in the event,
and the measured top-quark mass is consistent with the value measured using the nominal
event selection.

The Emiss
T reconstruction is affected by uncertainties associated with lepton and jet

energy scales and resolutions, which are appropriately propagated to the Emiss
T calculation.

Additional small uncertainties associated with the modelling of the underlying event, in
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Figure 10. Ranking, from top to bottom, of the main systematic uncertainties (excluding recoil)
showing the pulls and the impact of the systematic uncertainties on mt, from the combined OS and
SS binned-template profile likelihood fit to data. The θ’s represent each systematic variation. The
upper scale shows the uncertainty contribution to the measured top-quark mass. The PDF 2 is the
set number 2 of the PDF4LHC15 error set [117].

particular its impact on the pT scale and resolution of unclustered energy, are also taken
into account [23].

The total systematic uncertainty is computed from the variance (σ2) difference between
the total uncertainty returned by the fit and the data statistics uncertainty. The plot in
figure 10 shows the ranking of the main systematic uncertainties, including the pulls and the
impact of constraining the systematic uncertainties. Uncertainties in figure 10 are from the
individual nuisance parameters. They may be included within a grouped category in table 6.
The leading uncertainties are due to the modelling of the b-quark fragmentation b-hadron
and decay. In particular, the BRs for direct and sequential decays are important because
the SMT muon pT is softer when it is produced from c-hadrons in a cascade b-hadron decay,
than when it comes directly from a semileptonic b-hadron decay. The BRs also impact the
charge-signs combination of the primary lepton and the soft muon. Nearly all of the main
systematic uncertainties are largely uncorrelated with those dominant in previous top-quark
direct reconstruction measurements [9], and the uncertainty from jet energy calibration is
sub-dominant with a value of ±0.13 GeV.

28



J
H
E
P
0
6
(
2
0
2
3
)
0
1
9

6 Conclusions

A direct measurement of the top-quark mass has been performed using a technique that
exploits a partial, leptonic-only, invariant mass reconstruction of the top-quark decay
products. The analysis uses data corresponding to an integrated luminosity of 36.1 fb−1 of√
s = 13 TeV pp collisions provided by the Large Hadron Collider and recorded by the ATLAS

detector, and is based on the invariant mass, mℓµ, of the lepton ℓ (with ℓ = e, µ) from the
W -boson decay and the muon µ from a semileptonic decay of a b-hadron. A binned-template
profile likelihood fit to the mℓµ distribution is performed to determine the most probable
top-quark mass value. The result, mt = 174.41±0.39 (stat.)±0.66 (syst.)±0.25 (recoil) GeV,
corresponds to the most precise single measurement to date of the top-quark mass from the
direct reconstruction of its decay products by the ATLAS Collaboration, and more precise
than those performed previously with similar techniques [7, 8]. The third uncertainty arises
from using a recently developed setup of the Pythia8 parton shower gluon-recoil scheme
in top quark decays.

Taking into account the correlation between uncertainties, the result is consistent at
the level of approximately two standard deviations with the current ATLAS combination of
top-quark mass measurements from the reconstruction of the top-quark decay [9]. A similar
level of consistency is found with the equivalent combination at CMS [10], while agreement
with the latest Tevatron combination [11] is good. Agreement within one standard deviation
is also found with the indirect prediction of the top-quark mass from global electroweak
fits [12]. The main sources of systematic uncertainty are due to the modelling of top-quark
pair production and b-quark fragmentation and decay, with uncertainties from backgrounds
also being significant. On the other hand, the uncertainty due to the calibration of the jet
energies is sub-dominant, which is advantageous in future combinations of this result with
those from the standard reconstruction of the top-quark decay products.
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