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Abstract: Modelling of fluids in deformable geoformation media has gained great attention in the 16 

past decades due to significant applications such as groundwater prediction, shale gas and carbon 17 

capture and storage. However, considerable research has been focused on the porous media concept, 18 

and dual network (fracture and pores) multiphysics coupled modelling has remained a challenge due 19 

to the lack of a systemic theory to bridge the physical deformation of the media (e.g., rocks) and the 20 

interaction of water flow in pores and fractures. This paper adopts the non-equilibrium 21 

thermodynamics-based approach, the Mixture Coupling Theory, to develop a thermodynamics 22 

consistency constitutive model for the fully coupled Hydro-Mechanical behavior in double porosity 23 

formation. The energy dispassion due to fluid flow in matrix pore and fracture is given through non-24 

equilibrium thermodynamics, and the relationship between the solid and fluid is linked through 25 

Helmholtz free energy. The dynamic evolution of stress, porosity change of the matrix pores and 26 

fracture, are derived with respect to mechanical strain, pore pressure, and fracture pressure to account 27 

for the flow-deformation interaction. The developed constitutive equations are then solved 28 

numerically to show the hydraulic and mechanical behavior of double porosity formation, as well as 29 

their sensitivity to parameters. 30 

Keywords: double porosity; nonequilibrium thermodynamics; hydraulic-mechanical 31 
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Introduction 32 

The ubiquity of double porosity media and its completely different characteristics compared to porous 33 

media give rise to the importance of studies on water flow in fractured soil or rock in groundwater 34 

sources evaluation, underground construction, groundwater contamination, petroleum and shale gas 35 

exploitation, underground gas storage, geothermal reservoir (Berkowitz 2002, Rutqvist and 36 

Stephansson 2003, Gupta and Yadav 2020). Water flow in the subsurface is driven by both hydraulic 37 

gradient and rock mechanical field. The interaction between water flow and the deformation of the 38 

solid results in a more complex process in groundwater flow (Segura and Carol 2008, Tsang et al. 39 

2015), making it difficult for mathematical modelling. 40 

The early modelling work toward the Hydro-Mechanical coupling are the ones by Terzaghi (1943) 41 

and Biot (1962), Biot (1972), then followed extensively by many other researchers (Lewis and 42 

Schrefler 1987, Vardoulakis et al. 1996, Rutqvist and Tsang 2002, Laloui et al. 2003, Rajagopal and 43 

Tao 2005, Tarantino and Tombolato 2005, Wong and Mašín 2014, Zhou and Sheng 2015). In these 44 

studies, the porous media is assumed to be homogeneous with single porosity. However, many 45 

geomaterials have two scales of void space: the matrix pores and the fracture (Borja and Koliji 2009), 46 

as illustrated in Fig. 1. 47 

The distinctive fluid transport and pressure distribution in the fracture and matrix pores are quite 48 

different from those in the single porosity situation, so that the classic Biot equations fail to capture 49 

the feature of the double porosity situation.  50 

To describe the coupled hydro-mechanical behavior of the double porosity material, the material is 51 

often viewed to be composed of two distinct but overlapping media: one consisting of the porous 52 

matrix, in which there are the solid matrix and matrix pores, and the other is the fracture (Barenblatt et 53 

al. 1960, Warren and Root 1963), see Fig. 1. The two media can exchange water mass as the porous 54 

matrix holds a large storage capacity and low permeability, while the fracture has high permeability 55 

and low storability (Song et al. 2019). Based on the above concept, various mathematical formulations 56 

representing the fluid flow or hydro-mechanical coupling have been developed by different 57 

approaches with different degrees of sophistication. 58 
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The early double porosity model (Barenblatt et al. 1960, Warren and Root 1963, Aifantis 1980) 59 

explored the fluid transport behavior but failed to explore the mechanical deformation and its 60 

coupling with fluid. In these research, the coupling between the fluids in the matrix pores and the 61 

fracture is achieved by the fluid exchange between the two regions; the flow is assumed to be 62 

independent of deformation. Later models (Wilson and Aifantis 1982, Khaled et al. 1984, Beskos and 63 

Aifantis 1986, Zhang et al. 2003, Zhang and Roegiers 2005) incorporated the fluid pressure into the 64 

strain equation and the strain influence on the fluid transport to achieve the coupling between flow 65 

and deformation. However, these models made no progress in the coupling between the fluids in the 66 

matrix pores and the fracture, as they only considered the mass exchange. The fact is that the fracture 67 

fluid acting on the porous matrix must lead to the change of fracture volume and matrix pore volume, 68 

and further influence the fluid transport in the matrix pore, and vice versa. Such a phenomenon is then 69 

incorporated in the new fully coupled Hydro-Mechanical models proposed by Khalili (2003), Khalili 70 

(2008). 71 

The mathematical models are developed by different approaches. There is no certain classification of 72 

the approaches for modelling the double porosity problem. Different categories of approaches can be 73 

found in (Chen and Teufel 2000, Gelet et al. 2012, Boutin and Royer 2015). Among all the 74 

approaches, two noticeable ones are the conventional mechanics approach and the mixture theory 75 

approach. Some remarkable mathematic models have been developed by the mechanics approach 76 

(Elsworth and Bai 1992, Khalili and Valliappan 1996, Pao and Lewis 2002, Khalili 2003, Khalili 77 

2008) and by the mixture theory approach (Aifantis 1977, Aifantis 1979, Aifantis 1980, Wilson and 78 

Aifantis 1982, Beskos and Aifantis 1986, Bai et al. 1993, Bai et al. 1993, Borja and Koliji 2009) and 79 

following further work (Wilson and Aifantis 1982, Khaled et al. 1984, Beskos and Aifantis 1986, 80 

Berryman and Wang 1995). 81 

The mechanics approach is straightforward and simple, but it often requires ad hoc assumptions, and 82 

it lacks the ability of systemic self-development (Laloui et al. 2003). For the mixture theory approach, 83 

as pointed out by Heidug and Wong (1996), since it maintains the individuality of the solid and fluid 84 

phase, it highly relies on the phase interaction information that is very difficult to obtain. Physical 85 
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intuition and specific assumptions must be required to form the coupling between phases. This may 86 

bring difficulties for this approach and restrict the application.  87 

In this paper, a non-equilibrium thermodynamics-based approach, the mixture coupling theory, is 88 

adopted to develop the fully coupled governing equations for the hydro-mechanical behavior of 89 

double porosity media saturated with single-phase flow. This theory origins from Heidug’s research 90 

for single porosity media with swelling effects (Heidug and Wong 1996). It is modified from the 91 

mixture theory by viewing the solid-fluid mixture as a single continuum without explicitly 92 

discriminating between the solid and fluid phases, therefore, this theory is more like a hybrid of the 93 

Biot poroelasticity view and the mixture theory. Unlike the mixture theory adopting the momentum 94 

conservation equation, mixture coupling theory directly works on the free energy conservation, 95 

making it easier. This theory provides a rigorous framework to study the coupling effects between 96 

multi-physics and multi-phases and has been applied to different couplings in porous media (Chen 97 

2013, Chen et al. 2013, Chen et al. 2016, Chen et al. 2018, Ma et al. 2020), and it is the first attempt 98 

to apply the theory to the double porosity media to develop the fully coupled Hydro-Mechanical 99 

model. 100 

By using mixture coupling theory, the very general evolution equation of stress, the porosity of the 101 

matrix pores and fracture are obtained with respect to the pore water pressure and fracture water 102 

pressure as well as coupling with mechanical strain. The final governing equations are restricted 103 

within the small strain and elastic conditions, and are the same as the model proposed by Khalili 104 

(2003) through the mechanics approach. The developed mathematical models are solved by the finite 105 

element method to illustrate the coupling phenomenon in double porosity media and the sensitivity of 106 

parameters. 107 

Balance equation 108 

Basic definitions and relationships 109 

In a double porosity model, water can pass through the boundary via the porous matrix and the 110 

fracture, so that two water flux, namely, porous matrix flux 
MwI  and fracture flux 

FwI , are defined 111 
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  Mw Mw Mw s I v v ,  Fw Fw Fw s I v v  (1) 112 

where the subscripts wM , 
w

F  , s  represent the water in the matrix pore, water in fracture and the 113 

solid phase. 
Mw and 

Fw  are the density of porous water and fracture water, which are relative to 114 

the volume of the whole mixture system. 
Mw

v , 
Fw

v , 
s

v are the velocity of porous water, fracture 115 

water and the solid. 116 

Mw and 
Fw  are related to the true mass density (relative to the volume of porous water and fracture 117 

water) Mw

t and Fw

t  through 118 

 
Mw Mw Mw

t    , 
Fw Fw Fw

t    (2) 119 

where 
Mw , 

Fw  are the porosity of porous matrix and fracture, and they are the volume of the matrix 120 

pore and fracture against the volume of the whole mixture. 121 

The Darcy velocity for porous water and fracture water are 122 

  Mw Mw Mw s u v v ,  Fw Fw Fw s u v v  (3) 123 

Balance equation 124 

An arbitrary domain V  with a boundary S attached to its surface is selected. The domain includes all 125 

phases and the double porosity feature. Water flow can pass through the boundary while the solid 126 

cannot. 127 

1. Balance equation for Helmholtz free energy 128 

In the double porosity model, the Helmholtz free energy change involves four parts: the mechanical 129 

energy, the energy change by porous water flow, the energy change by fracture water flow and the 130 

entropy part, the balance equation writes as 131 

 
s Mw Mw Fw Fw

V S S S V

D
dV dS dS dS T dV

Dt
             σn v I n I n   (4) 132 
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where:   is Helmholtz free energy density, σ is the Cauchy stress tensor, 
Mw , 

Fw are the 133 

chemical potential of porous water and fracture water, respectively. T is the temperature, which is 134 

regarded as constant in this paper;    is the entropy produced per unit volume of the mixture.  135 

The material time derivative is s

t

D

Dt
   v ,  where t is the time derivative and   the gradient, 136 

then the derivative version of the balance equation (4) for the Helmholtz free energy is  137 

       0s s Mw Mw Fw Fw
T           v σv I I  (5) 138 

2. Balance equation for water mass 139 

Water in the matrix pore (fracture) changes in two ways: 1. Water flow 
MwI  (

FwI ) passes through the 140 

boundary and exchanges with the surroundings; 2. Water exchanges between the matrix pore and the 141 

fracture. The balance equation for water in the matrix pore and the fracture are 142 

  Mw Mw

ex
V S V

D
dV dS r dV

Dt
      I n  (6) 143 

  Fw Fw

ex
V S V

D
dV dS r dV

Dt
      I n   (7) 144 

where exr  is the exchange rate of fluid mass between the fracture and matrix pore. 145 

The time derivative versions of the water balance equations are 146 

 0Mw Mw s Mw

exr     v I  (8) 147 

 0Fw Fw s Fw

exr     v I   (9) 148 

 149 

Entropy production and transport law 150 

Entropy production 151 

During irreversible processes, such as heat and mass transfer, entropy will be produced. The entropy 152 

production can be expressed in terms of thermodynamic flows and thermodynamic forces (Kondepudi 153 

and Prigogine 2014). The quantification of entropy production through non-equilibrium 154 

thermodynamics is the core of the Mixture Coupling Theory.  155 
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During water transport in double porosity media, the entropy is generated from one mechanism, i.e., 156 

the friction between the solid and water boundary, which consists of three parts: 1. the friction of 157 

porous water Mw ; 2. the friction of fracture water 
Fw

 ; 3. the friction generated when water 158 

exchange between the matrix pore and the fracture networks ex . From non-equilibrium 159 

thermodynamics (Katchalsky and Curran 1965), there is 160 

 Mw Mw

Mw   I  , Fw Fw

Fw   I  (10) 161 

According to Gelet et al. (2012) and Coussy (2004), ex  can be expressed as 162 

  Mw Fw

ex ex
r      (11) 163 

Then, the overall entropy production of the mixture system can be written as 164 

  0 Mw Mw Fw Fw Mw Fw

ex
T r           I I   (12) 165 

In equation (12), 
MwI , 

FwI , exr  are the thermodynamic flows, and 
Mw , 

Fw ,  Mw Fw   166 

are the corresponding thermodynamic forces that drive the transport processes.  167 

The quantification of the entropy production (12) and the following substitution of T  term in the 168 

free energy equation (5) (like what has been done leading to equation (14)) are the key features of the 169 

Mixture Coupling Theory, distinguishing it from other thermodynamics approaches, such as the ones 170 

by Coussy (2004), Gelet et al. (2012), Nakshatrala et al. (2018). The advantages of the two features 171 

have been presented in Ma et al. (2022) when dealing with the dissolution process. 172 

Transport Law 173 

The entropy production in section 3.1, on the one hand, can be used to develop the transport law, like 174 

what has been done in Chen et al. (2018). This paper focuses on the coupling between the flow and 175 

deformation. To simplify the discussion, the fluid flow is assumed to obey the Darcy’s law. The 176 

Darcy’s law for porous water and the fracture water can be derived through the entropy production, 177 

Gibbs-Duhem equation and phenomenological equation, as (Chen 2013) 178 
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Mw
Mw Mw

w

k
p


  u  ,   

Fw
Fw Fw

w

k
p


  u  (13) 179 

where 
Mw

k , 
Fw

k are the intrinsic permeability for porous matrix and fracture, 
Mw

p  and 
Fw

p  180 

correspond to the porous water pressure and fracture water pressure, respectively, 
w is the water 181 

viscosity. 182 

 183 

Constitutive equation 184 

Basic equation for deformation  185 

Assuming the material maintains mechanical equilibrium so that there is  σ 0 . Substituting the 186 

entropy production (12) into the Helmholtz free energy balance equation (5), the Helmholtz free 187 

energy change of the mixture system can be written as 188 

                      0s s Mw Mw Fw Fw Mw Fw

ex
r              v σv I I   (14) 189 

Equation (14) gets rid of the entropy term in equation (5), and enables us to explore the 190 

Helmholtz free energy change through the mass flux 
MwI , 

FwI  and exr . Multiplying 
Mw , 191 

Fw  on both sides of equation (8), (9), and substituting the corresponding results into 192 

equation (14), the Helmholtz free energy change becomes 193 

                    s s Mw Mw Mw s Fw Fw Fw s               v σv v v  (15) 194 

In equation (15), the term 
Mw Mw s  v  is the pore water mass change in the mixture, and 195 

therefore  Mw Mw Mw s   v  represents the free energy change due to pore water mass 196 

change. Equation (15) indicating that the free energy change of the system is the result of the 197 

mechanical energy and the mass energy. 198 

Next, classic continuum mechanics method is adopted to measure the deformation state. Some basic 199 

relationships are required (Wriggers 2008) 200 
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  , t





x
F X

X
 ,  1

2
 T

E F F I ,
1 T

J
 T F σF  (16) 201 

where X  is an arbitrary reference configuration, x is the position, E represents Green strain, F is the 202 

deformation gradient, T  and σ are the second Piola-Kirchhoff stress and Cauchy stress. J  is the 203 

Jacobian of F ( detJ  F ), and satisfies 
0

dV
J

dV
 (V , 0V  are the volume in the current and reference 204 

configuration.)  205 

The time derivation of J satisfies the Euler’s formula 206 

 
sJ Jdiv   (17) 207 

From equation (15), with the relationships (16) and (17), the Helmholtz free energy equation (15) can 208 

be switched into the reference configuration as 209 

   Mw Mw Fw Fw
tr m m    TE   (18) 210 

in which: J   is the Helmholtz free energy in the reference configuration, 
Mw Mw

m J , 211 

Fw Fw
m J  are the mass density of porous water and fracture water in the reference configuration. 212 

Helmholtz free energy density of porous/fracture water 213 

According to classical thermodynamics, the free energy density of porous matrix water and fracture 214 

water can be written as 215 

 
Mw Mw Mw

porous t
p       (19) 216 

 
Fw Fw Fw

fracture t
p       (20) 217 

Using the Gibbs-Duhem equation for porous water and fracture water, it leads to 218 

 
Mw Mw Mw

tp     (21) 219 

 
Fw Fw Fw

tp     (22) 220 

Invoking equation (21), (22) into the time derivation of equation(19), (20), the following relationships 221 

can be obtained 222 

 
Mw Mw

porous t
     (23) 223 
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Fw Fw

fracture t
     (24) 224 

Free energy density of the solid matrix   225 

The free energy of the solid-porous-fracture mixture system consists of three parts: the free energy of 226 

the porous water, the free energy of the fracture water and the free energy of the solid matrix. By 227 

subtracting the free energy of the porous water and fracture water from the free energy of the mixture 228 

system, the free energy of the solid matrix can be obtained. 229 

From equation (18), (23), (24) and using the density relationship (2), the free energy of the solid 230 

matrix is  231 

    Mw Fw Mw Mw Fw Fw

porous fracture
J J tr p p          TE   (25) 232 

where 
Mw Mw

J  , 
Fw Fw

J   are the porosity of porous matrix and fracture in the reference 233 

configuration. 234 

Subtracting the contribution of porous water pressure and fracture water pressure, that is 235 

  Mw Fw Mw Mw Fw Fw

porous fracture
W J p p            (26) 236 

Substituting equation (25) into the time derivation of the equation (26), the evolution of W  can be 237 

obtained as below, enabling us to use the pressure  
Mw

p  and 
Fw

p  as variables 238 

   Mw Mw Fw Fw
W tr p p   TE   (27) 239 

where W  is a function of E , 
Mw

p  and 
Fw

p . 240 

From equation (27), there must be  241 

 

,Mw Fw

ij

ij p p

W
T

E

 
    

 ,

, Fw
ij

Mw

Mw

E p

W

p


 
   

,

, Mw
ij

Fw

Fw

E p

W

p


 
   

 (28) 242 

So that  243 

 

, ,,

( , , )
Fw MwMw Fw

ij ij

Mw Fw Mw Fw

ij Mw Fw

ij E p E pp p

W W W
W p p E p p

E p p

       
              

E   (29) 244 

Differentiating equation (28), with the help of equation (29), the evolution of stress, porosity matrix 245 

porosity and fracture porosity can be obtained.   246 
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Mw Fw

ij ijkl kl ij ij
T L E M p S p     (30) 247 

 
Mw Mw Fw

ij ij
M E Qp Bp      (31) 248 

 
Fw Mw Fw

ij ij
S E Bp Zp      (32) 249 

where the parameters 
ijkl

L ,
ij

M , ij
S , ij

H , B  , Q  , Z , are as following group equations 250 

 

, ,
Mw Fw Mw Fw

ij kl
ijkl

kl ijp p p p

T T
L

E E

   
          

, 

, ,
Fw Fw

ij ij

Mw
ij

ij Mw

ijE p E p

T
M

p E

   
           

 251 

 

, ,
Mw Mw

ij ij

Fw
ij

ij Fw

ijE p E p

T
S

p E

   
           

, 

,
Mw

ij

Fw

Fw

E p

Z
p

 
   

  (33) 252 

 

, ,
Fw Mw

ij ij

Fw Mw

Mw Fw

E p E p

B
p p

     
        

, 

, Fw
ij

Mw

Mw

E p

Q
p

 
   

 253 

  254 

Coupled hydro-mechanical governing equations 255 

Assumptions and simplifications 256 

Equations (30), (31), (32) are the general coupled equations for stress, strain, porous/fracture pressure 257 

and porous/fracture porosity, they allow us to explore the Hydro-Mechanical coupling in a broad way 258 

including anisotropy, large deformation, et.al. This paper forms the final governing equations in a 259 

simple elastic-isotropy cases, therefore, some simplifications and assumptions are made below.  260 

1. The mechanical behavior is restricted to small strain condition, therefore the Green Strain tensor 261 

ij
E  and Piola-Kirchhoff stress 

ij
T  can be replaced by strain tensor 

ij
  and Cauchy stress 

ij
 . 262 

2. Although many double porosity formations show the features of anisotropic and heterogeneous, 263 

following some other research (e.g. Berryman and Wang (1995)), it is roughly assumed that the 264 

material is isotropic. Therefore, material-dependent constants 
ij

M , 
ij

S can be substituted by a form of 265 

scalar multiplied by Kronecker delta. 266 

 
j

M

j

w

i i
M    , 

j

F

j

w

i i
S    (34) 267 
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and considering only the elasticity, the elastic stiffness 
ijkl

L  can be a fourth-order isotropic tensor 268 

   2

3
ijkl ik jl il jk ij kl

G
L G K          

 
  (35) 269 

in which G  and K  denote the shear modulus and bulk modulus of the material. 270 

According to equations (34), (35) and assumption (1), the stress evolution equation (30) can be 271 

simplified to  272 

 
2

2
3

Mw Mw Fw Fw

ij kk ij ij ij ij

G
K G p p            

 
  (36) 273 

 With assumption 1, 2, the porosity evolution equations (31) and (32) can be simplified as 274 

 Mw Mw Mw Fw

ii Qp Bp      (37) 275 

 Fw Fw Mw Fw

ii Bp Zp      (38) 276 

Parameter identification 277 

Identification of 
Mw  and 

Fw  278 

Consider a situation where the porous matrix block is blocked from the fracture, which means that 279 

there is no mass exchange between the matrix pores and the fracture. In this situation, the porous 280 

matrix block can be viewed as a non-porous material. The stress/strain change is purely induced by 281 

fracture water. This situation is the same as the traditional single porosity research as the porous block 282 

can be viewed as solid grain and the fracture become the pores.  283 

In this situation, the incremental relationship between stress and pore fluid pressure is    284 

 Fw

ij ij
p     (39) 285 

strain rate is related to the fracture water pressure through 286 

 
3

Fw

ij ij

pb

p

K
     (40) 287 

where 
pb

K  is the bulk modulus of the porous matrix block.  288 

Substituting equation (39) and (40) into equation (36) for the above situation 289 
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2

2
3 3

Fw Fw
Fw Fw Fw

ij ij ij kl

pb pb

G p p
p K G p

K K
   

                     
  (41) 290 

From equation (41), the expression of 
Fw  can be obtained as 291 

 1Fw

pb

K

K
     (42) 292 

Next, to identify the parameter 
Mw , a second situation is assumed where the porous water pressure 293 

and fracture water pressure change in the same way by p


. In this situation, there is no 294 

discrimination between matrix pores and fracture, they are all viewed as the void space in the system. 295 

The incremental relationship between the stress and fluid pressure, and the strain response are 296 

 
ij ij

p    , 
3

ij ij

s

p

K
 



   (43) 297 

Invoking equation (43) into equation (36) for the second situation, it’s easy to obtain 298 

 1Mw Fw

s

K

K
      (44) 299 

Then, with equation (42), the expression of 
Mw  can be obtained 300 

 
Mw

pb s

K K

K K
     (45) 301 

Identification of Q , B  and Z  302 

In the first situation considered in section 5.2.1, the fracture volume fraction change is related to 303 

fracture water pressure through 304 

 
Fw

Fw Fw

pb

p

K
     (46) 305 

Invoking (46), (40) and the expression for 
Fw  into equation (38) for the first situation leads to 306 

 1
Fw Fw

Fw Fw

pb pb pb

p K p
Zp

K K K


  
        

  
  (47) 307 

The expression of Z  can be derived as 308 
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1

1 Fw

pb pb

K
Z

K K


 
    

 
  (48) 309 

Then, in the second situation in section 5.2.1, the fracture volume change is  310 

 
Fw Fw

s

p

K
 



    (49) 311 

With equation (49), (43), (48), equation (38) for the second situation can be written as 312 

 
1

1 1Fw Fw

s pb s pb pb

p K p K
Bp p

K K K K K
 

 
 

    
                  

  (50) 313 

Then, the expression B  can be obtained as 314 

 
1 1

1 Fw

pb s pb

K
B

K K K


  
       
  

  (51) 315 

Applying the second situation to equation (37), with the strain and porosity evolution equations 316 

 
3

ij ij

s

p

K
 



  ,  
Mw Mw

s

p

K
 



    (52) 317 

It leads to  318 

 
1 1

1Mw Mw Fw

s s pb s pb

p p K
Qp p

K K K K K
  

 
 

   
                 

  (53) 319 

So that the expression for Q  can be obtained as 320 

 
1 1

1
Mw

Fw

pb s pb s s

K K
Q

K K K K K


  

         
  

  (54) 321 

Governing equations 322 

Effective stress and mechanical equation 323 

With the expression of 
Mw and 

Fw , equation (36) can be written as 324 

 
2

2
3

Mw Mw Fw Fw

ij kk ij ij ij ij

G
K G p p            

 
  (55) 325 

From which the effective stress can be written as  326 
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 Mw Mw Fw Fw

ij ij ij ij
p p        (56) 327 

where 
ij

   is the effective stress.  328 

The proposed effective stress includes the influence of matrix water pressure 
Mw

p  and fracture 329 

water pressure 
Fw

p  through the coefficient 
Mw  and 

Fw . It is the same as the one proposed by 330 

Callari and Federico (2000) and the one by Khalili et al. (2005), Khalili (2008) reduced for saturated 331 

condition. When there is no fracture, the effective stress can be reduced to the effective stress in 332 

porous media by regarding 
pb

K K . 333 

Assuming the mechanical equilibrium condition / 0
ij j

x   , and using displacement variables 334 

( 1, 2,3)id i   through 
, ,

1
( )

2
ij i j j id d   , it leads to 335 

  2 0
1 2

Mw Mw Fw FwG
G p p


           

d d   (57)  336 

in which   is Poisson’s ratio 337 

Hydraulic behavior 338 

According to the parameters identified in section 5.2, the porosity change equation (37) and 339 

(38) can now be quantitated as 340 

                 1
Mw Mw Mw

Mw Mw Mw Fw Mw Fw Fw Fw

ii

s

p p
K K K

     
   

          
  

 (58) 341 

    1 1 1Fw Fw Fw Fw Mw Fw Fw Fw

ii

s pb pb

p p
K K K

     
 

       
 

 (59) 342 

The two equations represent the pore and fracture porosity change with respect to the 343 

volumetric strain, the porous water pressure and the fracture water pressure in a fully coupled 344 

way, which are the same as the porosity change equation in Khalili (2003).  345 

1. Porous matrix water  346 

From water partial mass equation (8), water density relationship (2),  Darcy velocity equation (3), 347 

water flux equation (1) and Euler identity, the conservation equation of water can be written as 348 
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     0Mw Mw Mw Mw

t t ex
r    u   (60) 349 

Expanding the first term in equation (60) and considering the variation of true density as 350 

 
1 1

Mw Mw
Mw Mw Mw Mwt
t t tMw Mw

t w

p
p

p t K

  


  
    

  (61) 351 

where 
w

K  is the compressibility of water. 352 

With equation (61), equation (60) becomes  353 

  1
0Mw Mw Mw Mw Mw Mw Mw

t t t ex

w

p r
K

       u   (62) 354 

Invoking the porous volume fraction evolution equation (37) and Darcy’s law (13), the governing 355 

equation for porous matrix water transport is 356 

  2
Mw Mw

Mw Mw Fw Mw

ex w

w

k
Q p Bp r p

K
 


 

       
 

d   (63) 357 

with  
Mw

pb s

K K

K K
   ,  1

Mw Mw
Mw Fw

s

Q
K K

      , 1
Mw

Fw

pb

K
B

K K
  

     
 

. 358 

 359 

2. Fracture water  360 

Similar to the above steps, the governing equation for the fracture water transport can be obtained as 361 

 2
Fw Fw

Fw Mw Fw Fw

ex w

w

k
Bp Z p r p

K
 


 

       
 

d   (64) 362 

with  1Fw

pb

K

K
   ,   1 1Fw Fw

s pb

B
K K

 
 

    
 

,  1 Fw Fw

pb

Z
K

   . 363 

Verification and discussion 364 

Equations (30)-(32) provide very general coupled formulations for the coupled evolution of PK-2 365 

stress, porous matrix porosity and fracture porosity, along with the dynamic change of porous water 366 

pressure and fracture water pressure, and Green strain. These formulations are for general cases like 367 

large deformation, isotropic and anisotropic. With the assumption of small deformation and isotropic, 368 
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the governing equations (57), (63), (64) derived in this paper are the same as the ones proposed based 369 

on the mechanics approach, such as Khalili et al. (1999), Khalili (2003) or the ones by Pao and Lewis 370 

(2002), Khalili (2008) reduced for saturated condition which have been verified by comparing with 371 

experimental data (Khalili 2003) and further verified through comparing with different double 372 

porosity models (Ashworth and Doster 2019). This indicates that the governing equations developed 373 

by mechanics approaches are only specific cases of the general constitutive equations by using 374 

mixture coupling theory.  375 

Additionally, the mixture coupling theory framework developed in this paper is more rigorous and 376 

realistic, with the least assumptions. For example, in the mechanics approach, the assumptions (e.g. 377 

isotropic) were made at the very beginning of the derivation process, therefore, restricting its 378 

following derivation process, limiting any possibility of extension to other conditions, for example, 379 

anisotropic. In other words, the mechanics approach can only obtain the constitutive relations for a 380 

specific case. However, through the mixture coupling theory adopted in this paper, no specific 381 

assumptions are required at the beginning, so that the general constitutive relations (i.e. equation 382 

(30),(31),(32)) can be obtained. Such a relationship applies to many conditions, e.g., large 383 

deformation, isotropic/anisotropic. Following the general constitutive relations, elasticity and isotropy 384 

conditions are selected to obtain the final governing equations. It can thus be concluded that the 385 

mixture coupling theory approach is more flexible and widely applicable. 386 

The key research object of Mixture Coupling Theory is the Helmholtz free energy change of the 387 

system, i.e., equation (15) and (25), which are achieved through the mass and energy balance, as well 388 

as the entropy production and the Gibbs-Duhem equation. Since many dynamics processes can be 389 

described through energy dispassion, Mixture Coupling Theory can be used in a lot of fields, such as 390 

thermo-hydro-mechanical-chemical coupling (Ma et al. 2022), swelling (Chen et al. 2016), dissolution 391 

(Ma et al. 2022), or potentially wave propagation as wave is mainly a movement of energy through a 392 

medium (Kumar et al. 2021, Rajak et al. 2022), or other fields like biological tissue. However, all the 393 

aforementioned research topics are mainly for porous media. This paper is the first attempt to develop 394 

the fully coupled equations for the double porosity media. It is noticed that Aghighi et al. (2021) used 395 

a similar approach to study the sorption in double porosity media, but their equations are not 396 
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presented in a fully coupled way as the pore water pressure influence is missing in the mechanical or 397 

transport equation. 398 

 399 

Numerical Simulation 400 

A simple numerical simulation is presented in this section to illustrate the mechanical and hydraulic 401 

behavior in the double-porosity formation. The mechanical deformation and hydraulic pressure 402 

change are given, as well as the porosity and permeability change. The sensitivity of fracture spacing 403 

and permeability is analyzed. 404 

Porosity, permeability and exchange rate 405 

1.Porosity 406 

The matrix and fracture porosity change equation have been derived as equation (31) and (32), which 407 

are further reduced to equation (37) and (38) according to the assumptions in section 5.1. From the 408 

parameters identified in section 5.2, the matrix and fracture porosity equation are solved in 409 

incremental form as 410 

 Mw Mw Mw Fw

ii Q p B p         (65) 411 

 Fw Fw Mw Fw

ii B p Z p         (66) 412 

2.Permeability 413 

The permeability change is related to porosity through the Kozeny-Carman’s law as (Zheng and 414 

Samper 2008) 415 

 

3 2

0

0 0

1

1

MwMw Mw

Mw Mw Mw

k

k


 
   

      
  (67) 416 

in which the subscript ‘0’ denotes the initial value. 417 

This relationship is normally for porous matrix, for fracture, although there is no evidence to support 418 

this relationship, it is roughly assumed that the fracture permeability also follows equation (67).  419 

3. Exchange rate 420 

The exchange rate can be described by 421 
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  
Mw

Mw Fw

ex w

k
r p p




    (68) 422 

where  is the shape factor. There have been some different expressions for  proposed by different 423 

researchers (Warren and Root 1963, Kazemi et al. 1976), a summary can be found in Ranjbar and 424 

Hassanzadeh (2011). In this paper, the expression of   developed by Warren and Root (1963) is 425 

adopted as 426 

 
 

2

4 2N N

L



   (69) 427 

where N ( 1,2,3N  ) represents the dimension of the porous matrix block. L  is the fracture spacing. 428 

Geometry and boundary condition 429 

A double porosity geoformation, with 20m length and 1m height (Fig. 2), is selected. The formation 430 

initially contains water at pressure of 30MPa. At the beginning of the simulation, the pressure at the 431 

right boundary drops to 5MPa due to external disturbance while maintaining 30MPa at the left 432 

boundary. By setting the right side to be permeable, water can flow out. The formation is initially at 433 

mechanical equilibrium with no effective stress. To explore the mechanical behavior when the 434 

pressure changes, the left boundary is allowed to move while the other boundaries are constrained. 435 

One observation line and three observation points A, B, C are selected.  436 

Parameters adopted in this simulation are listed in Table 1 (Abousleiman and Nguyen 2005, Nair et al. 437 

2005, Gelet et al. 2012) 438 

Numerical results 439 

1. Hydraulic and mechanical behavior 440 

The evolution of matrix pressure and fracture pressure along the observation line is presented in Fig. 3 441 

and Fig. 4. Because of a pressure gradient generated at the beginning, water will flow from the left to 442 

the right, as time goes by, the pressure within the domain decreases and trends to reach equilibrium 443 

(Fig. 3, 4). Comparing Fig. 3 and Fig. 4, the pressure change in the fracture is quicker thanthat in the 444 

matrix pore, this is mainly because of a greater permeability of the larger permeability in the fracture 445 

zone. Fig. 5 shows the pressure change with time at observation points A, B, C, from which it is 446 
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clearer that the fracture pressure changes quicker than the pore pressure, but finally, the pressure in 447 

the fracture and pore reaches the same as what has been set to be the boundary condition.   448 

The domain is initially at mechanical equilibrium with no effective stress, indicating that the external 449 

loading is born by the water pressure. Because of the loss of water pressure through the right 450 

boundary, the external loading will be taken by both water pressure and solid matrix, therefore, 451 

effective stress and displacement generate correspondingly (Fig. 6 and 7). Since water pressure losses 452 

more near the right boundary, effective stress generates more on the right side (Fig. 6).  As the solid 453 

matrix bears external loading, consolidation happens and displacement occurs on the free left 454 

boundary (Fig. 7). 455 

The pressure difference in the fracture and matrix results in the exchange of water mass. The 456 

exchange rate is shown in Fig. 8. At the early time, the pressure difference between the fracture and 457 

pore is very significant, thus the exchange rate is great. As time goes by, the pressure difference 458 

becomes smaller and smaller, so that the exchange rate decreases. 459 

2. Porosity and permeability 460 

The matrix and fracture porosity distribution along the observation line are presented in Fig. 9 and Fig. 461 

10. The Figs show up to a 5% decrease in matrix porosity and a 8% decrease in fracture porosity. 462 

Since the pressure change and strain change on the right part of the domain are more significant than 463 

those on the left part, and the porosity change shows similar distribution. As the permeability is 464 

related to porosity through equation (67), permeability change has a similar trend with porosity 465 

change, as shown in Fig. 11 and 12. 466 

Sensitivity analysis of fracture spacing  467 

An important part of the double porosity model is the exchange of water from the porous matrix to 468 

fracture. A greater exchange rate will help the porous water pressure change quicker. From equation 469 

(69), the exchange rate is inversely proportional to the fracture spacing L . Different values of  L  470 

( 0.1, 0.5, 1, 5, 10L  ) are chosen to explore the sensitivity dependence of hydraulic and 471 

mechanical behavior on L . The results are presented in Fig. 13-16. 472 
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From Fig. 13, the exchange rate in low L  value is much higher than that in big L  value. A lower L473 

value means a high ‘fracture density’, so that water can be transferred quicker between porous block 474 

and fracture. In the simulated case, at a certain time or space, the matrix pressure is mostly greater 475 

than fracture pressure, so that matrix water flows into the fracture space. The lower L value is, the 476 

quicker matrix water lose to fracture, therefore, the matrix pressure changes quicker (Fig. 14). 477 

Similarly, fracture pressure changes slower with a small L value (Fig. 15). The difference in pressure 478 

change consequently leads to a difference in mechanical behavior (Fig. 16). 479 

Sensitivity analysis of fracture permeability  480 

The hydraulic transport is highly affected by permeability. In this section, the permeability sensitivity 481 

is explored by setting the fracture permeability as 
19 2 18 2 17 25*10 , 5*10 5*10Fw

k m m m
   ，  while 482 

keeping the pore permeability as 
20 25*10Mw

k m
  to represent the permeability difference at 483 

different magnitudes. Other parameters remain the same as those listed in Table 1. 484 

The fracture water pressure under different permeabilities is shown in Fig. 17, from which it is clear 485 

that the fracture water pressure drops much quicker with a higher permeability. Because the water 486 

exchange rate between the fracture and matrix pore depends on the pressure difference, hence, the 487 

exchange rate under high fracture permeability is quicker (Fig. 18), which further promotes the matrix 488 

pore water pressure drop (Fig. 19).  489 

The pressure change trend under different fracture permeability is similar to that in section 6.3, but the 490 

porosity change under different fracture permeability is quite different, as shown in Fig. 20. When 491 

19 25*10Mw
k m

 , the fracture porosity drops most on the right boundary, but when 492 

18 25*10Mw
k m

 , or 
17 25*10Mw

k m
 , the maximum porosity is not at the right boundary but at a 493 

point closed to the right boundary. According to equation (66), the change in fracture porosity 
Fw  494 

comes from three parts: 1. the change of strain 
Fw

ii  ; 2. The change of pore pressure 
Mw

B p ; 3. 495 

The change of fracture pressure 
Fw

Z p . The contribution of the three parts under different 496 

permeabilities is presented in Fig. 21. The consolidation (strain change) and fracture pressure drop 497 

would decrease the fracture porosity while the matrix pressure change trends to increase the fracture 498 
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porosity, leading to the overall decrease of fracture porosity. It can be found that the main difference 499 

among the three permeabilities is the fracture pressure contribution part: under all permeabilities, the 500 

strain and pore pressure changes slow and their contribution to the fracture porosity are similar. 501 

However, when permeability is higher, the fracture pressure drops quickly, leading to a quick and 502 

significant decrease of fracture porosity; when permeability is lower, fracture pressure drops slowly 503 

and fracture porosity changes slowly. The combined influence of the strain, matrix pressure and 504 

fracture pressure results in the dramatic trend in Fig. 20. Owing to the permeability difference, the 505 

matrix porosity also changes in a dramatic trend, as presented in Fig. 22 and Fig. 23. 506 

Conclusion 507 

This paper derives the constitutive equations for double porosity formation under a coupled hydro-508 

mechanical situation by using the Mixture Coupling Theory. The cross-coupling relations between 509 

stress, strain, porous/fracture water pressure and porous/fracture porosity are obtained, allowing us to 510 

explore the Hydro-Mechanical response in a broad way. The final governing equations are formed for 511 

the elastic condition, leading to the same equations developed by other approaches.  512 

The constitutive models are solved by the finite element method, and the results show the hydraulic 513 

and mechanical deformation, as well as the porosity and permeability change. The sensitivity analysis 514 

shows that the smaller fracture spacing greatly increases the exchange rate and facilitates the matrix 515 

water pressure change, the fracture permeability sensitivity analysis shows that the greater 516 

permeability significantly accelerates the pressure change and affects the porosity change. 517 
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