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Abstract

Purpose of Review The right ventricle (RV) has a complex geometry and physiology which is distinct from the left. RV 
dysfunction and failure can be the aftermath of volume- and/or pressure-loading conditions, as well as myocardial and 
pericardial diseases.
Recent Findings Echocardiography, magnetic resonance imaging and right heart catheterisation can assess RV function by 
using several qualitative and quantitative parameters. In pulmonary hypertension (PH) in particular, RV function can be 
impaired and is related to survival.
Summary An accurate assessment of RV function is crucial for the early diagnosis and management of these patients. This 
review focuses on the different modalities and indices used for the evaluation of RV function with an emphasis on PH.

Keywords Right ventricular function · Pulmonary hypertension · Right ventricular ejection fraction · Right ventricular-
pulmonary arterial coupling · Right heart catheterisation

Introduction

Anatomy of the Right Ventricle

The right ventricle (RV) has a very distinct anatomy com-
pared to the left (LV). It consists of 3 segments as follows: 
the inlet which includes the tricuspid valve (TV), the outlet 
or infundibulum with the pulmonary valve and a trabecu-
lated apex [1]. The RV has at least 3 papillary muscles, a 
moderator band which incorporates the right bundle branch 
[2] and a myocardial fold called crista supraventricularis. 
RV myocardial fibres are arranged circumferentially in the 
superficial and longitudinally in the deep layers leading 
to a contraction from inlet to outlet and from the free wall 
to the septum. RV contraction relies more on longitudinal 

shortening than twisting and rotational movements as in the 
LV [3]. Normal coronary perfusion to the RV occurs during 
both systole and diastole in contrast with the LV which is 
perfused mainly in diastole. In utero RV and LV wall thick-
ness are equal, however, once the umbilical cord is clamped 
at birth pulmonary vascular resistance (PVR) reduces rap-
idly and RV wall thickness reverses [4, 5]. Hence, the RV is 
a thin-walled and crescent-shaped ventricle compared to a 
thick-walled and bullet-shaped LV [6]. This feature makes 
the RV respond better to volume overload but worse to pres-
sure loading, unlike the LV. Both ventricles share the septum 
(IVS) and are contained within the same pericardium; these 
commonalities determine their interdependence [7].

Physiology

RV function should be examined along with pulmonary arte-
rial (PA) function [8•]. RV and PA form a cardiopulmonary 
unit the function of which is characterised by two compo-
nents: RV contractility and PA load, which is also known 
as RV afterload. In a normal-functioning RV, these two 
components are ‘coupled’. This ‘RV-PA coupling’ secures 
an efficient energy transfer of RV load to arterial load. The 
gold-standard metric to express RV contractility is end-
systolic elastance (Ees). Elastance describes the change in 
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pressure for a given change in volume and is a property of 
elastic chambers. Ees is load-independent and is determined 
by the contractile force of the myocyte and cardiac muscle 
hypertrophy [9].

PA load consists of two elements as follows: a steady 
and a pulsatile load. PVR is an expression of the steady 
load and pulmonary artery compliance (PAC) of the pul-
satile load. PVR and PAC are inversely related [10]. PAC 
is a measure of PA distensibility and may be more sensi-
tive to early disease [11, 12]. The calculation of a total PA 
load incorporating all components is challenging but is best 
represented by effective arterial elastance (Ea). There are 
different ways to calculate Ees, PVR, PAC, Ea and RV-PA 
coupling, which are described under ‘Invasive Haemody-
namics’ in this review.

Pathophysiological Changes in a Pressure‑Loaded 
RV

This review will focus on the assessment of RV function in 
pulmonary arterial hypertension (PAH) which is the arche-
typical example of a pressure-loaded RV. In PAH, the pro-
liferative changes in the small pulmonary arteries may lead 
to a decrease in PAC and a subsequent increase in PVR. The 

RV adapts to the increased afterload by concentric hyper-
trophy which can raise its contractility 4 to 5-fold, and thus 
‘RV-PA coupling’ will be maintained [13]. However, as PAH 
advances and further RV hypertrophy is not feasible, the 
RV starts dilating as this is the only way to maintain stroke 
volume (SV) via the Frank-Starling mechanism [14•]. RV 
dilatation increases wall stress and oxygen consumption and 
triggers ischaemia via two mechanisms as follows: elevated 
oxygen demands and reduced perfusion in the context of 
increased intramural pressure [15, 16]. Another consequence 
of RV dilatation is the development of functional tricuspid 
regurgitation (TR) via TV annulus stretching, which causes 
RV volume loading and further dilatation. In addition, IVS 
shifts towards the LV in systole leading to interventricular 
dyssynchrony, LV underfilling and myocardial cell atrophy 
[17]. Thus, in PH it is more accurate to refer to biventricular 
rather than solely RV dysfunction and failure.

Aetiology of Right Heart Failure

Right heart failure (HF) is a syndrome characterised by 
alteration in structure and/or function of the RV-PA unit 
leading to suboptimal blood flow to the pulmonary circula-
tion [18, 19]. Its causes are summarised in Table 1. It is not 

Table 1  Causes of right heart failure

PE pulmonary embolism, PH pulmonary hypertension, PA pulmonary artery, PV pulmonary valve, TR tricuspid regurgitation, AF atrial fibrilla-
tion, PR pulmonary regurgitation, ASD atrial septal defect, PAPVD partial anomalous pulmonary vein drainage, RV right ventricular

Aetiology of right heart failure

    1. Pressure overload

    i) Acute: PE
    ii) Chronic: PH, PA or PV stenosis [20]

    2. Volume overload

    i) TR: structural (e.g. Ebstein’s anomaly [21], carcinoid, endocarditis, and flail valve) and functional (e.g. PH and chronic AF)
    ii) PR: structural (e.g. carcinoid and endocarditis) and functional (e.g. PA dilatation)
    iii) Left-right shunt (ASD and PAPVD)
    iv) High output status (e.g. anaemia, thyrotoxicosis, liver cirrhosis, and Paget’s)

    3. Myocardial disease

    i) RV myocardial infarction [22]
    ii) Arrhythmogenic RV cardiomyopathy [23]
    iii) Myocarditis [24]
    iv) Dilated cardiomyopathy
    v) Takotsubo cardiomyopathy
    vi) Post-surgery [25, 26]
    vii) Uhl’s anomaly (aplasia or hypoplasia of RV myocardium) [27]
    viii) Endomyocardial fibrosis [28]
    ix) Amyloidosis [29]
    x) Chagas disease

    4. Pericardial disease

    i) Constriction
    ii) Tamponade

    5. Iatrogenic (via volume or pressure overload)

    Excessive volume loading, mechanical ventilation

    6. Mixed (e.g. pressure and volume overload)
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uncommon for more than one pathology or mechanisms to 
be present.

Assessment of RV Function

Echocardiography

Echocardiography is an established tool for the evaluation 
of cardiac structure and function and can be used for diag-
nosis, monitoring and treatment guidance. Its widespread 
availability, versatility and relative ease of use makes it a 
fundamental investigation. Its limitations include incomplete 
visualisation of all aspects of the RV, poor echogenicity in 
some subjects and a lower repeatability than cardiac MRI. 
In addition, loading conditions (e.g. high cardiac output sta-
tus and significant TR), ventilatory failure and the use of 
inotropes or invasive ventilation may influence RV function 
and should be considered during its evaluation. Echocar-
diography can provide qualitative and quantitative assess-
ment of RV function. 2D imaging, M-mode, Doppler, Tis-
sue Doppler Imaging (TDI) and colour flow mapping are 
standard approaches, whilst strain and 3D echocardiography 
have garnered a significant evidence base for diagnosis and 
prognostication. Often no single parameter is sufficient, and 
a holistic approach [20] is required, whilst protocols and 
datasets for RV assessment have been published [21–24].

The complex geometry of the RV and its retrosternal 
position make its imaging challenging. In standard 2D imag-
ing, the RV focused apical 4-chamber view (RVf4C) rather 
than the conventional 4-chamber view should be used as 

the standard tomographic plane to measure linear metrics 
of RV size and function [21, 24–26]. In this view, RV size is 
systematically larger with lower variability, compared to the 
conventional view [26]. A basal RV diameter > 42 mm and/
or RV:LV ratio > 1 indicate RV dilatation. More recent data 
support a normal basal RV size > 47 mm in males and 43 
mm in females [21•]. Metrics of RV function are discussed 
below. Although not discussed in this review, continuous 
wave (CW) Doppler of tricuspid and pulmonary regurgi-
tant velocities allow estimation of PA pressures and form an 
essential part of RV assessment. Furthermore, pulse wave 
(PW) Doppler of the RVOT can allow detection of a raised 
PVR; short PA acceleration time and mid-systolic notch-
ing are indicative of increased wave reflection [2722•, ]. 
In a comprehensive RV assessment, it is also important for 
the compartments proximal (right atrium (RA)) and distal 
(PA) to the RV to be evaluated, as well as the left heart and 
pericardium.

Assessment of Regional RV Function

TAPSE

Tricuspid annular systolic plane excursion (TAPSE) is 
defined as the displacement (distance usually expressed in 
mm) of the lateral TV annulus during systole with M-mode 
echocardiography (Fig. 1). It is simple and reproducible but 
is load- and angle-dependent. It is measured from edge to 
edge with a high sweep speed (100 mm/s). In the setting of 
TR, it can become pseudo-normalised due to volume load-
ing, and other indices such as strain [28, 29] or RV ejection 

Fig. 1  Echocardiographic 
parameters for the quantitative 
assessment of RV function. 
A Tricuspid annular plane 
systolic excursion (TAPSE), 
B right ventricular systolic 
wave velocity measured with 
Tissue Doppler Imaging (RV 
S′), C right ventricular ejection 
fraction measured by 3D-echo-
cardiography (3DE RVEF), D 
fractional area change (FAC), E 
2D right ventricular global lon-
gitudinal strain (GLS). Original 

image republished without need 

for permission under a Creative 

Commons Attribution-Non-

Commercial-No Derivatives 

4.0 International License from 

Rana et al. [37]
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fraction (RVEF) [30, 31] are recommended. An abnormal 
TAPSE is defined as < 17 mm. In our experience, TAPSE 
is often the last metric of RV function to worsen in PH, 
despite a severe reduction in radial function which usually 
precedes. TAPSE has been shown to correlate closely with 
RVEF determined by radionucleotide ventriculography [32] 
and MRI [33], and it is a strong prognostic marker in PH and 
other cardiovascular diseases [34–36]. However, it can only 
assess the longitudinal function of the basal RV free wall and 
not global RV function.

RV Systolic Wave Velocity (S′)

S′ is the peak systolic velocity of the lateral TV annulus 
(Fig. 1). It is measured with PW-TDI. It is angle- and load-
dependent like TAPSE, and the ultrasound beam should 
align with the lateral TV annulus. It is a measure of the 
longitudinal function of the RV base. It has been shown to 
moderately correlate with MRI-derived RVEF [33] and has 
prognostic value. An abnormal S′ is defined as < 9.5 cm/s.

Assessment of Global RV Function

RV FAC

RV FAC is evaluated in the RVf4C view. It requires manual 
tracings of RV endocardial area at end-systole and end-
diastole (Fig. 1). It should include the papillary muscles, 
trabeculations and moderator band. FAC is defined as 
(end−diastolic area)−(end−systolic area)

end−diastolic area
 and is expressed as a percent-

age. An abnormal FAC is defined as < 35% [24•], whereas 
British guidelines stipulate abnormal as < 30% in males and 
< 35% in females [21•].

RVLS

Strain is a dimensionless measure of myocardial deforma-
tion. RV longitudinal strain (RVLS) is the longitudinal 
shortening of fibres between the base and apex of the RV 
in systole and is expressed as a negative percentage [38]. 
It is measured by using 2D speckle tracking. It depends 
heavily on the imaging quality of the endocardial/myocar-
dial borders and should be measured in the RVf4C view 
with a high frame rate. A standardised protocol for acquisi-
tion has been published [21, 25, 39]. Global RVLS can be 
measured by using either three segments (RV free wall) or 
six segments (free wall and IVS), as these are more stand-
ardised than segmental values. RVLS is less angle- and 
load-dependent, less affected by translational motion and 
more reproducible than TAPSE and S′, whilst it can iden-
tify subclinical dysfunction and has established prognostic 
utility [20, 25]. However, it neglects the contribution of the 
RVOT, and values are affected by vendor specific software. 

At present, there is no universally agreed reference range 
[25, 40–43]; however, RVFWLS > −20% can be regarded 
as abnormal with values > −15% identifying those with 
severe reduction [25•]. RVLS is the best echocardiographic 
correlate of MRI-derived RVEF [44–46]. RVLS has dem-
onstrated diagnostic and prognostic roles in heart failure 
[25, 47, 48], PH [49–56], congenital heart disease, cardio-
myopathies and tricuspid regurgitation [57–60]. 3D RV 
strain imaging is conceptually appealing [61–63], but its 
clinical utility is less well established.

3DE

Over the past decade improvements in 3D echocardiogra-
phy (3DE) have led to its incorporation in the assessment 
of the left heart [64]. This has also led to a growing dataset 
establishing 3DE as a promising novel way of RV imaging 
[20, 65]. 3DE can circumvent most of the limitations of 2D 
parameters and calculate RVEF which is the best measure of 
global RV function [66–68]. 3DE has the unique advantages 
of simultaneously allowing assessment of several aspects of 
the right heart including volumes, function, ejection fraction 
and TV morphology. 3DE-derived RVEF closely correlates 
with MRI [69, 70]. In PH, 3DE has characterised RV geom-
etry [70], patterns of RV remodelling [63], haemodynamics 
[71] and RV-PA coupling [72] and has been correlated with 
outcomes [73–75]. Limitations of 3DE include its depend-
ency on good image quality (up to 25% cases are not feasi-
ble), regular heart rates, need for specific expensive hard-
ware and software, time and expertise [20, 65, 76].

Other indices

The myocardial performance index (MPI) has generally 
fallen out of favour for TAPSE, S′ and FAC but is still used 
in some institutions. It should be measured with PW-TDI on 
the lateral TV annulus. It is defined as the ratio of isovolu-
mic time (contraction and relaxation) to ejection time and an 
abnormal value is > 0.55. It is load-dependent and invalid 
in high RA pressures [21, 23]. Assessment of diastolic RV 
function is less well validated but includes inferior vena cava 
(IVC) profile, RA size and function (area and strain), PW 
Doppler of RV inflow, hepatic vein flow and PW-TDI of the 
TV annulus [21, 24].

Echocardiographic Assessment of RV‑PA Coupling

TAPSE:PASP Ratio

This ratio was first proposed and evaluated as a surrogate of 
RV-PA coupling in a series of patients with HF and showed 
a prognostic role independent of the severity of LV dys-
function [77–79]. .TAPSE:PASP ratio has also been tested 
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in pre-capillary PH where it correlated with haemodynam-
ics and was an independent predictor of survival [80, 81]. 
TAPSE:PASP has been validated with invasive RV pres-
sure-volume (P-V) analysis in a small group of patients 
with severe PAH [82]. Consequently, TAPSE:PASP ratio 
has been incorporated into the risk assessment algorithm of 
the 2022 ESC/ERS PH Guidelines [83•] and has a potential 
role in suspected PH in patients with systemic sclerosis [84]. 
Its limitations relate to incomplete/inaccurate estimation of 
PASP from TR jet velocity and IVC profile.

RVFWLS:PASP Ratio

A recent study has highlighted an independent prognos-
tic role for the baseline RV free wall longitudinal strain 
RVFWLS:PASP ratio in treatment-naive patients with pre-
capillary PH [85]. A preliminary analysis by an independ-
ent group has offered some retrospective validation for this 
parameter in a small cohort using invasive P-V loop analysis 
[86].

Stress Echocardiography

All of the metrics described above can be evaluated at rest 
and after peak stress (exercise or with dobutamine). Most of 
the data so far have been derived from healthy volunteers, 
but there are several small to medium-sized studies which 
have evaluated the prognostic role of RV contractile reserve 
in patients with PH, valve disease and HF [87].

MRI

Cine Cardiac MRI

In PH, RV failure is the main determinant of death [83, 88]. 
MRI is considered the gold-standard for the assessment of 
RV size and function. The best index of global RV function 
is RVEF [89]. The volume of the cardiac chambers is built 
up using multiple slice positions in the short axis orienta-
tion with area measurements extrapolated to volume, mass 
and function measurements. The sequence used is balanced 
steady state free precession imaging [90]. RV volume and 
mass can be measured using the Simpson’s method, which 
involves tracing the RV endocardial border in multiple slices 
and calculating the total volume by summation. There are 
different cine views used in PH assessment, including but 
not limited to the 4-chamber view, short-axis view and 
axial views. In PH, cine MRI can detect RV dilatation and 
hypertrophy [91–94], IVS deviation towards the LV [95, 96] 
(Fig. 2) and PA dilatation and flow abnormalities [97–99]. 
Models combining these parameters have proven of value 
to diagnose PH at a tertiary referral setting [100, 101] and 
using modelling approaches [102]. A recent meta-analysis 

showed the prognostic power of MRI-derived RV parameters 
in PAH [103]. Adaptation of the RV to elevated afterload 
has been assessed by estimation of PA elastance and RV-PA 
coupling and predicts mortality [104–107]. Patients with RV 
dilatation without associated hypertrophy have a worse out-
come than patients with hypertrophy [108, 109].

4D Flow

Four-dimensional flow (4D) flow is an MRI technology that 
overcomes limitations of traditional 2D flow imaging in the 
evaluation of PH. Unlike conventional imaging, 4D flow pro-
vides a 3D visualisation of vascular flow and enables accu-
rate assessment of vessel, transvalvular or intra-cavity flow, 
providing a more comprehensive description of complex 
flow changes in the pulmonary circulation. In the context 
of PH, 4D flow has been utilised to identify abnormal flow 
patterns in the main PA [110, 111], which are correlated 
with mean PA pressure (mPAP) [112] making its estimation 
possible. Furthermore, 4D flow allows the characterisation 
of other physiological vascular parameters, such as main PA 
wall shear stress, which can affect vascular remodelling and 
is typically reduced in PH [113]. Further studies are needed 
to determine the incremental role of 4D flow MRI assess-
ment in PH management.

Fig. 2  Cardiac MRI cine images (short-axis: left, four chamber: 
right). Top row: normal MRI. RV; right ventricle, LV; left ventricle, 
IVS; interventricular septum, RA; right atrium, LA; left atrium. Bot-

tom row: pulmonary arterial hypertension features including a hyper-
trophied RV myocardium (blue), dilated RV chamber (yellow), IVS 
straightening (green), RA enlargement (orange) and tricuspid regur-
gitation jet (arrow)
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RV Strain Imaging

The quantification of myocardial deformation strain is an 
established MRI technique [114]. One method of strain 
analysis, called “feature tracking”, follows cardiac borders 
throughout the cardiac cycle on cine images [115, 116]. 
Biventricular strain impairment in PH can assist in the early 
detection of right and left heart dysfunction [117–119]. Fea-
ture tracking has been used to predict outcomes in patients 
with PH whilst reduced RV circumferential and longitudinal 
strain rates are associated with an impaired RVEF [120]. 
Reduced RA strain and phasic function are markers of dis-
ease severity, with decreased RA strain to be associated with 
decompensated RV function and stiffness [121, 122].

LGE

Late gadolinium enhancement (LGE) is an MRI technique 
that uses gadolinium’s paramagnetic properties to identify 
areas of myocardial fibrosis [123]. LGE is associated with 
poor outcomes and increased mortality in cardiomyopathies 
[124]. However, in PH LGE, particularly at the RV inser-
tion points or IVS, appears to be a consequence of increased 
mechanical stress and RV remodelling rather than a sign of 
RV decompensation and poor prognosis [125, 126].

Myocardial T1 and ECV Mapping

Native myocardial T1 mapping is a pixel-by-pixel repre-
sentation of the longitudinal relaxation times within a tis-
sue, providing surrogate tissue characterisation data that 
are measured on a standardized scale [127–129]. T1 val-
ues post-gadolinium can be used to estimate extracellular 
volume (ECV), which is calculated by subtracting the T1 
values of the myocardium and blood pool pre- and post-
contrast, corrected for the haematocrit level [127]. Elevated 
T1 mapping values and ECV can indicate areas of oedema 
and fibrosis in the myocardium [140, 141]. Recent studies 
have investigated their clinical application in PH [142–147]. 
T1-times are elevated in PH, particularly at the RV insertion 
points, and are associated with an increased IVS angle and 
LV eccentricity [142, 145]. However, the diagnostic applica-
tion of T1 mapping in PH remains limited [142, 144, 148].

Strengths, Limitations, and Future Perspectives

A major strength of MRI is its high repeatability with 
a great value in the assessment of cardiac changes in 
response to PAH therapy [149]. The 2022 ESC/ERS guide-
lines [93•] have included thresholds for key RV parameters 
for mortality prediction. MRI limitations include its high 
cost and reduced availability compared to echocardiogra-
phy. The future of image acquisition and analysis is bright 

with the revolution in machine learning which has offered 
the potential to improve the speed of image acquisition 
[150], image quality [151] and automation of RV meas-
urements and their conversion into text reports via natural 
language processing. Progress has also been made in PH 
with artificial intelligence (AI), which has demonstrated 
higher repeatability in measurements, closer correlations 
with invasive haemodynamics and better survival predic-
tion [152, 153].

Invasive Haemodynamics

Direct measurement of four pulmonary haemodynamic 
parameters — RA pressure (RAP), PAP, PA wedge pressure 
(PAWP) and cardiac output (CO) — via right heart catheteri-
sation (RHC) allows assessment of RV preload, afterload, 
function and PAC (Table 2). RHC with a fluid-filled Swan-
Ganz catheter is most commonly performed via the internal 
jugular vein but may also be performed via the brachial or 
femoral veins [154].

RAP

RAP reflects central venous pressure but can also be 
increased in severe TR and impaired RV and RA compli-
ance [155]. In the context of PAH, RV pressure and volume 
overload results in impaired filling leading to elevated RAP. 
In PAH, PAWP is higher than RAP until RV failure occurs at 
which point the RAP:PAWP will rise above 1. This ratio has 
been identified as a strong prognostic marker, outperforming 
RAP and several other haemodynamic parameters in two 
large cohorts of PAH patients [156].

Table 2  Haemodynamic parameters derived from standard right heart 
catheterisation

RAP right atrial pressure, PAWP pulmonary arterial wedge pressure, 
mPAP mean pulmonary arterial pressure, CO cardiac output, CI car-
diac index, SV stroke volume, PASP pulmonary arterial systolic pres-
sure, PADP pulmonary arterial diastolic pressure, PAP pulmonary 
arterial pressure, RV right ventricular

Parameter Definition

RAP/PAWP ratio RAP

PAWP
 

Pulmonary vascular resistance (PVR) mPAP−PAWP

CO
 

Total pulmonary resistance (TPR) mPAP

CO
 

Stroke volume (SV) CO

HR
 

Stroke volume index (SVi) CI

HR
 

PA compliance SV

PASP−PADP
 

RV stroke work index (RVSWi) (mPAP−RAP) × CI × 0.0136

HR
 

PA pulsatility index (PAPi) PASP−PADP

RAP
 



200 Current Heart Failure Reports (2023) 20:194–207

1 3

CO

CO may be assessed via RHC by thermodilution (TD), the 
direct Fick (DF) or indirect Fick (IF) technique [157•]. TD 
involves injection of cooled saline into the proximal port 
of the Swan-Ganz catheter. The decrease in temperature 
between the RA and the distal thermistor produces a TD 
curve from which CO is computer-generated. DF and IF 
methods rely on the Fick equation:

where  VO2 = oxygen consumption; Ca = arterial oxygen 
content = systemic oxygen saturation  (SaO2, %) × haemo-
globin (g/dL) × 1.34/100 and Cv = mixed venous oxygen 
content = mixed venous saturation  (SvO2, %) × haemoglo-
bin (g/dL) × 1.34/100. The DF method is recognised as the 
gold-standard method but relies on direct measurement of 
 VO2 which requires specialised equipment in the catheter 
suite which is not widely available. The TD method has 
been shown to be a reliable method of measuring CO when 
compared with DF, even in patients with TR or low outputs 
[158, 159]. The IF method has poor accuracy and precision 
when compared to DF [159]. Current ESC/ERS guidelines 
recommend the use of either DF or TD techniques apart 
from patients with intra-cardiac shunts where TD is inac-
curate [93•].

RV SV can simply be calculated by dividing CO by heart 
rate (HR). SV indexed for body surface area ( SVi =

CI

HR
 ) 

has been found to outperform standard haemodynamics in 
large cohorts of PAH patients [160]. RV stroke work index 
(RVSWI) is a further derived parameter (RVSWI = 0.0136 
× SVi × (mPAP-RAP)), which aims to reflect effective work 
performed by the RV in every cardiac cycle but has limited 
supportive data in PAH [161]. PA pulsatility index (PAPi) 
calculated by the equation PAP

i
=

PASP−PADP

RAP
 , where PADP 

is PA diastolic pressure, relates the ability of the RV to pro-
duce SV to its filling pressure and has been shown to be 
strongly predictive of survival in patients with advanced HF, 
but its role in PAH is less clear [162].

RV Contractility

CO and derived haemodynamic parameters such as SVi 
and RVSWI as well as imaging-derived markers of RV 
systolic function such as TAPSE, FAC and RVEF are all 
load-dependent. In addition to preload and afterload, RV 
function is also determined by intrinsic contractility which 
relates to myocardial shortening and will be impacted posi-
tively or negatively by processes such as compensatory 
hypertrophy or diffuse fibrosis. Ees is the gold-standard 
measure for RV contractility but cannot be assessed via 

VO
2
= CO × (Ca–Cv)

standard RHC [155, 163]. Instead, P-V loop assessment is 
performed which requires the use of a conductance catheter 
which measures both pressure and volume within the RV. 
Ees is calculated by performing multiple P-V loops at dif-
ferent preloads (achieved by progressive IVC compression 
with an intravenous balloon or Valsalva). The gradient of the 
line connecting the different end-systolic points (end systolic 
pressure-volume relationship) is Ees [164]. This multi-point 
technique is technically challenging and so a single-beat 
method has been developed [165]. Although the single-beat 
method is technically less challenging, it has poor repro-
ducibility and prognostic capability in PH [166]. Instead of 
using a conductance catheter, Ees can also be obtained by 
combining RHC (to measure pressure) and CMR (to meas-
ure volumes) based on the equation: Ees =

mPAP

ESV
, where ESV 

is end-systolic volume [167].

RV Afterload

RV afterload consists of PVR and PAC. Total RV afterload 
can be described by Ea which can be derived from P-V 
loops: Ea =

end−systolic pressure

SV
 [165].

The relationship between RV load-independent func-
tion and RV afterload (RV-PA coupling) can therefore be 
described as the ratio between Ees and Ea. Ees:Ea should 
ideally be between 1 and 2. A recent study comparing RHC-
derived Ees:Ea with CMR parameters demonstrated that 
Ees:Ea of < 0.8 was the best threshold indicating RV fail-
ure [168]. Interestingly a non-invasive CMR surrogate for 
RV-PA coupling, SV

ESV
 was at least as useful in identifying 

impending RV failure [168].
PVR, which accounts for ≈75% of RV afterload, is cal-

culated using the equation PVR =
mPAP−PAWP

CO
 . This therefore 

relies on accurate measurement of both mPAP and PAWP. 
These should ideally be measured at end-expiration (func-
tional residual capacity) when intra- and extra-thoracic pres-
sures should be equivalent [157•]. Large respiratory swings 
in obesity, at exercise or in the presence of significant lung 
disease can make this difficult and in these situations, it is 
recommended that a computerised average is used [93•].

PAC may be calculated using the 2-element Windkessel 
model; however, the simplest way of estimating it is by using 
the equation = SV

PP
 , where PP is pulse pressure i.e. PASP-

PADP [169, 170]. Increased PAC leads to greater pulse 
wave reflection during systole which results in higher PASP 
requirements and hence higher RV energy requirements to 
create the same ejection.

The relationship between PVR and PAC (the resistance-
compliance or RC time) represents the diastolic decay con-
stant of PAP and in most conditions is constant, suggesting 
that most of both resistance and compliance occurs in the 
more distal vasculature [171].
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Conclusions

A systematic evaluation of RV size and function requires the 
use of several parameters derived from different invasive and 
non-invasive modalities. 2DE and 3DE as well as speckle 
tracking can provide a quantitative assessment of RV systolic 
performance. MRI-derived RVEF remains the gold-standard 
metric of RV global function and can be used in a serial man-
ner to assess response to treatment and disease progression in 
PH. RHC is not only the gold-standard method for the diag-
nosis of PH, but it can also estimate CO, RV contractility and 
RV-PA coupling. It is imperative for the clinician to know the 
strengths and weaknesses of its test and use them in a comple-
mentary fashion accordingly (Fig. 3). Machine learning and 
AI methods may in the future help us to overcome the obsta-
cles of RV complex shape and physiology and offer a more 
accurate and reproducible assessment of its global function.
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