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A B S T R A C T

Identifying and understanding the value of citizen science to improve flood modeling is of importance to flood risk
management. However, there are few studies that explore the value of citizen science data, with most studies
focusing on evaluating the accuracy of the data. This research articulates the added value of citizen science data in
flood modeling studies. During flood events, citizen scientists measured river water levels at selected sites along a
main reach of the Big Akaki River in Addis Ababa, Ethiopia. They also provided information to estimate water
discharge of the ungauged tributaries. The data acquired was used to force a one-dimensional (1D) HECRAS flood
model, and to evaluate the model's sensitivity to inputs and parameters. Varying the downstream boundary
condition caused a significant difference in the simulated water level (up to 3.5 km upstream of the downstream
boundary site). Correcting the Digital Elevation Model and consideration of river tributary flows in the model
simulation resulted in an underestimation of the observed stage by 0.08 m. The sensitivity analysis also showed
that results were more sensitive to the Manning roughness values of the channel than that of the floodplain.
Finally, this study identifies future flood modeling data collection priorities (e.g. flow data for the tributary). The
flood modeling of the study area would not have been realized without the citizen science data.
1. Introduction

Citizen science is the participation of public volunteers in collabora-
tion with professional researchers to collect data and monitor the envi-
ronment around them (Montargil and Santos, 2017; Assumpç~ao et al.,
2018). In response to concerns of researchers on data quality, studies
have focused on evaluating the accuracy of citizen science data (e.g.
Strobl et al., 2019; Aceves-bueno et al., 2017). Studies that show added
value of citizen science for solving real world problems are rare and
mainly address rainfall and average conditions in river discharge (Paul
et al., 2020). Even in a well-funded hydrological monitoring network
scenario, citizens can provide additional valuable data to advance the
study of floods (Pandeya et al., 2021). However, the impact and value of
citizen science data for flood risk management has received increased
research attention only recently (Ferri et al., 2020; Wolff et al., 2021).
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Citizen scientists can provide a variety of datasets that can benefit
flood studies. For instance, the review by Assumpç~ao et al. (2018) shows
Citizens can collect water level, flood extent, velocity of the water sur-
face, precipitation, land cover, and river cross-sections. The main chal-
lenge described by the authors was integration of citizen data with other
data sources (gauging and remote sensing). Another challenge is the
adequacy of the volume of data collected by the citizens. Addressing such
challenges requires measuring equipment that is accessible to a large
number of citizens while enabling repeated measurements to be taken
during a flood event. Smartphone devices that are equipped with a LIDAR
sensor offer a viable option to measure river water level with good ac-
curacy (Sermet et al., 2020), although, at present, the majority of citizens
do not own smartphones with such technology. Similarly, Pandeya et al.
(2021) used a low-cost Lidar-based sensor to monitor river water level by
citizen scientists, which was tested for improving community-based flood
ia.
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risk management. The authors reported that the river level data that was
collected by the citizen scientists using the low-cost sensor matched well
with government recorded data. The review by Sy et al. (2019) shows
citizen science can provide complementary approaches and data to
traditional approaches. Citizen scientists can collect basic data for flood
hazard assessment (e.g., rainfall, discharge, topography, and land cover),
key flood hazard characteristics (e.g. flood extent, water depth, flow
velocity, and durations) and provide useful information in scenario
development for flood risk management. This helps to bring increased
spatial and temporal coverage of flood studies and improve knowledge in
areas which are not well covered in the literature.

A few studies reported the applicability and limitations of citizen
science data for flood modeling. In Rollason et al. (2018) , the flood data
collected by the volunteers were the pathways of the flood (including
area of overtopping and flow direction), impacts (maximum flood
inundation extent), and timing of key flooding situations. Starkey et al.
(2017) addressed the limitations associated with using citizen science to
provide event information (duration, magnitude and intensity) for flood
model calibration. They engaged citizens in the collection of both
quantitative (e.g. daily rainfall amount) and qualitative data (e.g. starting
and finishing time of the event). Observations during night-time hours
are often difficult to acquire using citizen science approaches. Bannatyne
et al. (2017) found that volunteers missed flood flow measurements
occurring during night-time; although they were able to record flood
wrack marks left on standing features. Loftis et al. (2019) validated a
flood forecasting model by collecting the maximum flood extent and
geotagged photographs using citizen scientists. Similarly, Fava et al.
(2019) showed that citizen science data can be merged with traditional
data to improve flood forecasts. The authors used the water level data
recorded by citizen scientists to update real time flood forecasts at
gauged and ungauged parts of a catchment.

In hydrodynamic flood modeling in ungauged basins, one of the
major constraints is a lack of stream flow data to define the boundary
conditions that drive the model, as well as calibration and validation of
the model. Several studies have used different approaches to overcome
this constraint but most of them did not explore the role of citizen sci-
ence. For instance; Ruiz-bellet et al. (2017) used a critical depth type
upstream boundary condition to reconstruct a historical flood event;
whereas, Lamichhane and Sharma (2018) used peak-flow frequency
statistics from regional regression equations developed for the USA
(http://streamstats.usgs.gov). However, peak flow statistics alone do not
provide the entire hydrograph of an event. This problem can be overcome
by generating a synthetic triangular discharge hydrograph (Haile and
Rientjes, 2007). Rainfall-runoff models also generate hydrographs for
upstream boundary conditions (Ashok et al., 2018; Natarajan and Rad-
hakrishnan, 2020). Many rainfall-runoff models rely on rainfall inputs
whichmay not be readily available. Tedla et al. (2022) demonstrated that
where coverage of the traditional rain gauge network is not adequate,
citizen scientists can provide data with adequate quality and spatial
coverage. The authors emphasized the need to consider attributes of the
citizen scientists while training and supervising them during data
collection.

Filling data gaps for calibration and validation of flood models has
been a subject of previous research. Sanyal (2017) showed that infor-
mation extracted from MODIS satellite images acquired during the peak
of the flood events can be used to calibrate a flood model. However,
MODIS images have a low resolution (>250 m) which does not provide
detailed inundation patterns. This can be overcome with the use of
Sentinel-1 images which have a 10 m resolution (e.g. Ezzine et al., 2020).
Still, satellite observations require ground truthing for training the flood
detection algorithms (Bekele et al., 2022). This provides another op-
portunity to engage citizen scientists in filling data gaps for flood studies
although there are only a few published studies exploring this opportu-
nity. An example is the study by Dasgupta et al. (2022) which showed
that distributed flood water level data observed by citizen scientists can
be used to calibrate a flood model.
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The main aim of this study is to demonstrate the usefulness of citizen
science for flood modeling, including an evaluation of model uncertainty
through a sensitivity analysis of input data and parameters. Specifically, a
1D HEC-RAS model is used to simulate inundation on the floodplain of
the Big Akaki River, situated in Addis Ababa, Ethiopia. Unlike many
other studies (Muthusamy et al., 2021; Ferreira et al., 2021; Geravand
et al., 2020), we evaluated the sensitivity of the model to several model
inputs by: (i) integrating field measured cross-section data with the raw
DEM, (ii) considering the effect of boundary conditions (tributary), and
(iii) simulating the flood for a range of combinations of Manning's
roughness coefficient of the river channel and floodplain. This study
provides two main contributions. First, it demonstrates that citizen sci-
entists can provide sub-hourly measurements of water levels if they are
engaged properly. Second, the study shows the value of citizen science
data in evaluating sensitivity of flood models, which is often not per-
formed due to lack of data. In this study we explicitly assess the reliability
of using citizen science data to calibrate flood simulation models for the
prediction of water levels in rivers. The findings of this study are ex-
pected to increase research interest in the application of citizen science to
evaluate the uncertainty of flood models.

2. Materials and methods

2.1. Study area description

The Akaki catchment is a tributary of the Awash River in the central
part of Ethiopia. The catchment hosts Addis Ababa, the capital city of
Ethiopia, and other small towns, which are rapidly growing. Specifically,
the study area starts downstream of the confluence of Kebena and
Bulbula Rivers and stretches along the Big Akaki River down to the
boundary of Addis Ababa in the southerly direction (Fig. 1). Geograph-
ically, the study domain stretches from 8�50042.200 N to 8�56024.3200 N
and 38�440 30.100 E to 38�500 0.7300 E. The domain has a river length of
18.1 km and a model extent that varies from 0.25 km to 5.3 km.

According to Bekele et al. (2022) the Akaki catchment is generally
categorized into seven land use land cover classes (LULC): rainfed agri-
culture, built-up, bare land, forest area, grass land, irrigated and water
body. The largest part of the catchment is covered by rainfed-agriculture
(33.98%) and built-up areas (25.55%). According to Worako (2016) the
LULC of the catchment at different times showed significant changes. The
urban area coverage has increased at the expense of a reduction in
agricultural land.

The Akaki catchment has a main wet season and a secondary one. The
main wet season is called “Kiremt”, which occurs from June to September
and contributes 70% of the total annual rainfall amount. The catchment
experiences a second, less pronounced, seasonal increase in rainfall
during the “Belg” season from mid-February to mid-April. The study area
has an annual average rainfall of 1254 mm yr�1, and the maximum
monthly rainfall varies from 250 mm to 300 mm in July and August. The
25 year, 50 year, and 100 year return periods of daily total rainfall of
Addis Ababa are estimated as 85.7 mm, 94.1 mm, and 102.4 mm
respectively (Ethiopia Roads Authotity, 2013).

Previously, the Big Akaki River was monitored using automatic water
level measurements around the new bridges on Addis Ababa to Adama
Road starting from 1981, but these ceased in 2005 (Asfaw, 2007). The
river has a mean annual flow of 274.3 m3 s�1. The range of yearly
maximum flows recorded from 1981 to 2004 varies from 36.5 m3 s�1 to
693.1 m3 s�1. The largest flow was recorded in August 1999. However,
the automatic recorder came out of service in 2005. Currently, an
observer is collecting the water level manually twice per day. We
observed in the field that the staff gauge is repeatedly damaged by floods.

2.2. Data sets

In this study, primary data (field data) and secondary data (from
global and national archives) were collected to serve as inputs to the
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Fig. 1. Geographic setting and elevation variation of the study area.
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flood model. Citizen scientists who volunteered to collect river water
level data were first identified through a face-to-face meeting between
community members and the research team. The main criteria for
selecting a citizen scientist was the ability to read and write in the local
language. Next, training was provided to the citizen scientists on the use
of the measurement instruments and using the data recording sheet.
Simple instruments were used for the water level measurement. Since the
measurements were taken beneath bridges, citizen scientists were pro-
vided with a rope, stick and measuring tape to measure the distance
between the top of a bridge and the water level. Using the river cross-
section data also acquired in this study, we were able to convert the
citizen science data to river water depth. The water level measurements
were taken during heavy rainfall events in the upstream parts of the
catchment. They conducted the measurements over the duration of each
selected event at 15–30 min time interval, depending on the rate of
change of the water level.

Those events that started early in the morning or lasted beyond 19:00
h were not measured as it was not safe for the citizen scientists to stay at
the measuring site. As a result, they captured data of only a few, but very
important, events that can help understand the flood characteristics of
the area and set-up of a flood model of the study area. Nine events were
captured in 2020 and four events were captured in 2021. However, only
four of the events (September 04, 2020; July 10, 2021; July 17, 2021 and
September 08, 2021 that have maximum water depth at Akaki bridge
5.15 m, 3.18 m, 3.10, and 5.35 m respectively) were found useful for
further analysis, as the water level data was concurrently captured for the
entire duration of the events at multiple sites. However, if we considered
those events that were not concurrently captured for the entire duration
as official historical flood, we should go back to the field and use different
method of hydraulic measurements for obtaining the flow and other
hydraulic parameters. This can be supported with observation of the
flood marks and consultation of the community.

The water level measurements were converted to flow rate data by
developing rating curves at measuring sites (upstream of study area and
Akaki new bridge). A rating curve was developed by using a power law
function. The calibration parameter was estimated by using nonlinear
least square methods; the rating paired measurements of depth and ve-
locity is converted to discharge using river cross-sections (continuity
equation). In this study uncertainty analysis on the water level mea-
surements recorded during the rainfall events is carried out at two sta-
tions. The error metrics that we applied are mean absolute percentage
error (MAPE), mean absolute error (MAE), and root mean square error
(RMSE).
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The digital elevation model (DEM) is one of the most important
datasets for flood modeling as it represents the geometry of the channel
and floodplain. In this study, a 5m resolution DEMwas obtained from the
Ethiopian Geospatial Information Institute (EGII). The DEM was devel-
oped using photogrammetry in 2017 with an object point of 0.02 m plan
metric and 0.04 m height. In this study, off-terrain objects (e.g. houses)
were not removed from the DEM as these were scattered and considered
not to create big issue in the model domain.

The field data collection involved river cross-section surveys. This
entailed measurement of paired horizontal coordinates and the depth to
the channel bed to describe the river cross-section geometry perpendic-
ular to the river channel. Horizontal coordinates were recorded using a
combination of handheld global positioning system which typically have
a �3 m horizontal accuracy and measuring tape. The beginning and end
points of the cross-section were geolocated and the intermediate points'
positions were recorded from the (more accurate) tape measure distance.
A measuring tape of 30 m was stretched between two reference stakes on
top of the two banks of the river channel. The horizontal distance was
measured along with the stretched measuring tape whereas depth was
measured from the measuring tape to the channel bed. A spirit level was
used to maintain consistent levels along the vertical and horizontal of
each measurement site. For this study, 15 river cross-sections were
measured before the rainy season of 2020. The cross-section interval
along the river ranged from 0.25 km to 2.2 km depending on the varia-
tion in cross-sectional channel geometry and site accessibility. The citi-
zen scientists supported the cross-section survey.

Locations of cross-sections can have a very significant effect on flood
modeling. In this study, a set of criteria were identified and followed to
select the measurement location of cross-sections. First, the measure-
ments were taken where there is a change in river channel or floodplain
geometry (width, depth, and roughness of the channel and floodplains).
Secondly, cross-sections were measured at bridges where there is sig-
nificant obstruction of river flow. Finally, accessibility of the site for
measurement was considered.

Manning's roughness coefficient (n) represents a surface's resistance
to water flow in the channel and floodplain. Estimation of its value re-
quires information on land cover, channel bed conditions, and channel
alignment. During the field survey, photos of the channel bed material,
channel alignment, and land cover were captured. Since the photos of the
channel bed material was invisible during the flood season, photos were
taken during dry periods where most parts of the channel bed were dry
due to low flow conditions. However, parts of the riverbed were not
visible at some sites because they remained submerged. For those sites,
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we took grab samples of the bed material and compared it against stan-
dard photos of features with known roughness. For the river channel, the
photos were compared against standard photos of features with known
roughness to estimate the roughness based on tabulated values in hy-
draulics books of Chow (1959) and Arcement and Schneider (1989).

An LULC map was used to estimate flooded areas under different land
classes and to assign Manning roughness values for the floodplain. The
LULC was prepared by Bekele et al. (2022) using Sentinel-2 images. Road
data was used to estimate flood affected road types and length. The road
data of the study area was collected from freely available OpenStreetMap
data using the BBBike Extract Service (https://extract.bbbike.org/). To
determine the length of flood affected road types, the flood map was
intersected with the road types using an overlay analysis in Arc GIS.

To simulate hydrodynamics, HEC-RAS requires specification of initial
conditions along with upstream and downstream boundary conditions.
The water level measurements acquired by citizen scientists provided an
upstream boundary condition. Specifically, stage data at the upstream
boundary was measured for many days during the rainy season of 2020.
It was difficult to capture event peaks since the peaks repeatedly occurred
during night, which was an unsafe time for the observers to be at the
measuring site. However, the rising and falling limbs of the stage
hydrographs and the peak were captured on September 04, 2020 and
hence the stage hydrograph data of this date served as the boundary
condition. In addition, the water level of the same event was measured at
the middle part of the model domain and served as reference data for
evaluation of the simulated water levels.
2.3. Methodology

2.3.1. Integrating field measured cross-section data with DEM
In this study, a 5 m resolution DEM was used, which was found to

have some limitations in accurately capturing the bathymetry below the
water level. Considering the river width is not large (mostly <40 m), the
5-m DEM may smooth the riverbed elevation missing important details.
As a result, it was found necessary to correct the DEM using field data of
the channel cross-section. Before integrating the raw DEM data and field
cross-section data, it was necessary to match the spatial reference system
of the DEM and field-collected cross-sections. The DEM which was
collected from the Geospatial Information Institute (GII) was prepared
using Adindan coordinate system (projected coordinate system for
Ethiopia, Eritrea and Sudan) whereas field data was collected using the
WGS84 UTM zone 37 N coordinate system. Hence, the coordinate system
of the DEM was converted to WGS84 UTM zone 37 N coordinate system.
Fig. 2a shows that noticeable difference between the maximum depth
and shape of the channel cross-sections obtained from the DEM and field
survey. Hence it was not possible to perfectly correct all aspects of the
cross-section, but the corrected cross-section is still acceptable to serve as
the model input. In Fig. 2b, there is similarity between the shape, width,
and depth of the cross-sections from the two sources. The main difference
between the two cross-sections was a horizontal shift. Therefore, we were
able to perfectly correct the cross-section to the extent that the difference
Fig. 2. The river cross-section profile at different locat
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between the corrected and field cross-sections is not visible.
One of the main challenges in flood modeling is the inability of the

terrain data to capture the riverbed elevation. In this case modification or
correction of the terrain data is needed and we used the method
commonly known as “burning the channel into the DEM”. In this study,
the RAS Mapper tool was used to modify the original DEM data using our
field elevation data that was measured using a simple technique (GPS,
rope and measuring tape) with 1 cm accuracy. For the DEMmodification,
RAS Mapper is an interface that is used to process geospatial data and
allow modification of geometric data and visualization of HEC-RAS
simulation results. RAS Mapper has the ability to create new terrain
using cross-section data from the HEC-RAS model and from interpolated
surface cross-section sub layers (Brunner, 2016). To obtain the corrected
cross-section at selected sections, the original cross-section from the DEM
was first corrected with our field collected cross-section in MS excel. The
RAS terrain tool was used to integrate the corrected cross-section at
selected sites with the entire DEM. The integration technique uses the
shape, depth, and width of cross-section as input for matching. First, the
width of the two datasets was matched by correcting the DEM channel
depth either on the left or right side (Fig. 2). This is followed by matching
the channel depth from the two datasets at the other parts of the
cross-section. Finally, the three cross-section plots (uncorrected, field and
corrected) were compared to visually inspect the results of the
cross-section integration (Fig. 2).
2.4. HEC-RAS model

HEC-GeoRAS 10.4 is an auxiliary ArcGIS tool to HEC RAS and it is
used for the processing of geospatial data and analysis of water surface
profile results. In this study, it was used to extract geometric data like
river centerline, banks of the river, the flow path of the river, and cross-
section cut lines as required for input to the HEC-RASmodel. The left and
right banks and center lines of the river were digitized in Google Earth
and imported to Arc-GIS for projection, to aid the preprocessing and
preparation of input data of the model. For further analysis, the coordi-
nate system of the digitized data was transformed to WGS84 UTM zone
37 N coordinate system. Finally, the extracted cross-sectional data was
exported to HEC-RAS as a model input to simulate flooding (Fig. 3).

In this study, HEC-RAS was used to simulate river and floodplain
hydrodynamics. The one-dimensional (1D) module of the HEC-RAS
model computes water surface elevation for each cross-section cut line
by solving the flow governing equation of momentum and mass conser-
vation (Kane et al., 2017). The main inputs of the HEC-RAS model are
river and flood geometric data, Manning's roughness coefficient ‘n’ value
for the river and the floodplain area, upstream and downstream bound-
ary conditions, and initial conditions. A stage hydrograph was used for
the upstream boundary condition, and a normal depth or friction slope
(value of 0.01) was specified for the downstream boundary condition
after sensitivity analysis. The event water level data that was observed on
September 4, 2020 served as the upstream boundary condition for actual
simulation of the main river. The simulation period has a length of 24 h
ion for the uncorrected, field and corrected DEM.

https://extract.bbbike.org/


Fig. 3. Schematic view of the pseudo-3D terrain model of the study area with cross-section cutline.

Table 1
Summary table on the number of tests or model runs.

No. Type of model uncertainity test No. Of runs in each tests

1. Crosssection correction 2
2. River tributaries 2
3. Manning roughness 32
4. Downstream BC 5
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stretching from 00:00 to 24:00 h.
HEC-RAS requires initialization to capture the water level before the

actual simulation period. The model can be unstable for poorly defined
initial condition data (Brunner, 2016). In this study, a one-week period
(from August 28, 2020 to September 03, 2020) was used for initializing
the HEC-RAS model of the study area. Twice per day measurements of
water levels for model initialization were conducted with the engage-
ment of citizen scientists.

2.5. Model evaluation criteria

Mean absolute deviation (MAD), mean square error (MSE), and root
mean square error (RMSE) were used to evaluate the accuracy of the
simulated water level. According to Lee et al. (2018), these accuracy
measurements are appropriate since they show errors in the units or
square error of the component of interest. Zero values of MAD, MSE, and
RMSE indicate that the observed and simulated water levels show a
perfect fit. In reverse, large values of these criteria show large mis-
matches between the observed and simulated water levels. The equations
of the criteria reads as follows:

MAD¼ 1
n

Xn

i¼1

absðWLi;sim �WLi;obsÞ (1)

MSE¼ 1
n

Xn

i¼1

ðWLi;sim �WLi;obsÞ2 (2)
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RMSE¼ 1

,
n
Xn

ðWLi;sim �WLi;obsÞ2
uut (3)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
i¼1

v

where: WL refers to the water level (m), the subscript i indicates time
step, the subscripts sim and obs indicate simulated and observed quan-
tities respectively and n refers to the total sample size.
2.6. Assessment of model uncertainty using sensitivity analyses

The sensitivity analyses included an analysis of the effect of model
inputs, tributaries, parameters, and boundary conditions. This required a
total of 41 model runs (Table 1). Most of the model runs were conducted
to test the model sensitivity to its main parameter which is the Manning
roughness coefficient.

First, the flood model was developed by using cross-sections from the
original raw DEM without any corrections. Then, the model was set up
for the cross-sections which were extracted from the DEM and corrected
using the field-collected cross-section data. Finally, the simulated water
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levels for the two conditions were graphically presented for comparison
(Fig. 5a).

Further sensitivity tests were conducted to evaluate the effect of in-
flows from two minor tributaries on the flood simulation. The effect of
stream flow of tributaries on flood simulation was assessed by setting up
the flood model for three situations. First, the model was set up only for
the upstream boundary condition without considering tributaries. Next,
the model was set up for the upstream boundary condition and specifying
a boundary condition for the larger tributary. Finally, both tributaries
and the upstream boundary conditions were considered in the model.

For the tributary rivers, a discharge hydrograph was developed based
on community consultation and measurement of channel cross-section
and velocity. Selected community members (residents) were consulted
to estimate the maximum water level and wetted cross-section. Then we
measured the river width and depth at different locations of the cross-
section. Velocity was measured for normal flows during our field visit,
and was extrapolated based on our own experience of measuring velocity
of peak flow in other gauging sites in the same river. The aim of our study
is to evaluate the sensitivity of the model's response to inputs. However,
future studies that aim to map the actual flooding map should measure
the actual velocity at a range of water levels. To estimate the discharge
(upstream boundary condition of the tributaries), the measured river
cross-section was multiplied with the velocity. Maximum flows of 39.8
m3/s and 10.04 m3/s were estimated based on the wetted cross-section
for the maximum water level and flow velocity for tributary 1 and trib-
utary 2 rivers respectively, by assuming a channel velocity of 1 m/s. This
translates to 10.13 and 40.15% of the peak stream flow at the upstream
boundary site as observed by the citizen scientist on September 04, 2020.
In addition, to calculate the minimum or base flow for the tributaries,
field observations of the river flow were acquired. These observations
yieldedminimum flow estimates of 1.01m3/s and 1.04m3/s for tributary
1 and tributary 2, respectively. The significance of the flood contribution
of the tributaries was then evaluated by comparing the simulated water
levels with and without including the tributaries (Fig. 5b).

The effect of Manning's roughness coefficient on flood simulation was
evaluated with four cases. The first case involved fixing the roughness
value in the floodplains but changing the roughness value in the channel
section. For cases 2 and 3, the roughness values of the left and right
floodplains were changed respectively while keeping the roughness of
the channel constant. Finally, roughness values of both the channel and
floodplains were changed simultaneously. The reference Manning's
values that were adopted for this study are presented in Table 2.

The effect of boundary condition uncertainty was minimized by
locating the model downstream boundary far away from the area of in-
terest. In addition, different downstream boundary conditions were
compared to assess sensitivity to the uncertainty: normal depth using
friction slope, normal depth at 900 m distance from the actual down-
stream end of the model domain, and constant water level at 2052, 2053,
and 2053.5 m at the downstream end. The main objective was to
investigate how far the effect of uncertain boundary conditions propa-
gates upstream along the channel so as to avoid the extra cost of
measuring flows at the downstream end of the model domain. In this
study, the channel at the downstream section has small conveyance ca-
pacity which results in frequent water overflow that makes flow mea-
surement difficult.

3. Results and discussion

3.1. Base line model result

The maximum flood depth and extent map for the baseline model of
the study domain was simulated by considering two river tributaries and
cross-sections from the corrected DEM (Fig. 4). The study area has a 90th
percentile flood depth and flood extent (area affected by flood) of 9.21 m
and 2.95 km2 respectively. The flood has high depth near the river
400
channel and when it overflows upstream of the Akaki bridge. There is a
very distinct difference between the flood depth and pattern upstream
and downstream of the Akaki Bridge. The area downstream of the Akaki
Bridge has a relatively widespread flood extent which has relatively small
depth as compared to the upstream area. However, the flood depth is
large enough to cause serious damage to people and property.
3.2. Effect of cross-section correction on simulated hydrograph

In this study, we first evaluated the effect of integrating channel cross-
sections from a high-resolution DEM and field survey. The observed and
simulated stage hydrographs are presented in Fig. 5a for comparison
using September 4, 2020 event water level data. The overall pattern of
the observed hydrograph is captured by the model by using the cross-
section from the DEM and corrected DEM and field data. The slopes of
the observed rising and falling limbs are satisfactorily captured. How-
ever, there are two major mismatches between the observed and simu-
lated hydrographs (i) a large mismatch between the peak magnitudes,
and (ii) a mismatch between times to peak.

The peak of the simulated stage for the raw DEM and corrected DEM
are 2060.94 m and 2061.52 m respectively. This shows a large under-
estimation of the observed stage (2062.49 m) by 1.55 m and 0.97 m for
the raw and corrected DEM, respectively. Hence, integrating field-
collected cross-section data in the original cross-section data from the
DEM results in a significant improvement in the model performance.
Here, unlike the study of Muthusamy et al. (2021), the correction of the
DEM with cross-section data led to increased inundation area. This is
because of the difference in data collection time of the raw DEM and field
cross-section data. The DEM was generated in 2017 whereas the field
data was collected in 2019. During this time interval, the Akaki River has
undergone rapid changes due to sedimentation and erosion in addition to
other human interference e.g. there is a crusher site that dumps materials
into the river; and there is ongoing construction of a bridge upstream of
this site that is disturbing the channel cross-section. The time of the peak
flow for both the raw DEM and corrected DEM model simulations was
11:00 h, but the peak was observed at 08:50 h. These results imply that
the simulated time of the peak is delayed by 2:10 h for both the raw and
corrected DEM, and that the channel and floodplain storage capacity has
significantly changed since the DEM was generated, indicating the
importance of correcting the cross-section data.
3.3. Effect of river tributaries on stage hydrograph

The HEC-RAS model of the study domain was run by considering two
selected river tributaries using the corrected cross-section DEM version of
the model. The two tributaries have a total watershed area of 31.11 km2.
For comparison, the observed and simulated stage hydrographs are
presented in Fig. 5b. The overall pattern of the observed hydrograph is
captured by the model. The slopes of the observed rising and falling limbs
are well captured.

Fig. 5b shows slight differences in the simulated peak flowmagnitude
when one and two tributaries were considered. The peak of the simulated
stage is 2062.33 m and 2062.41 m when considering the contribution of
one tributary (the larger tributary) and two tributaries, respectively. This
shows a small underestimation of the observed stage by 0.16 m and 0.08
m respectively. As discussed previously (Section 3.2), specifying the
boundary condition only at the major river and using the corrected DEM
underestimated the observed peak by 0.95 m. This indicates consider-
ation of river tributaries in the model simulation results in a reduction of
the difference in the observed and simulated peak river stages. However,
the results show that only the larger of the two tributaries needs to be
monitored for a significant improvement in accuracy to be realized,
which is pertinent in the context of budgetary constraints. The time of the
peak flow was not changed by considering any of the tributaries.



Fig. 4. Baseline model result of flood depth and extent.
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3.4. Sensitivity to Manning's roughness values

The effect of Manning's roughness coefficient on flood simulation was
evaluated with four cases. First, we ran the model by adding and sub-
tracting various values to the reference Manning's value. The results of
the preliminary model run showed that some level of sensitivity to in-
crements/decrements of the Manning roughness by 0.004. This interval
was also selected since it is smaller than the difference in Manning
roughness values of various land cover classes. For illustration, Fig. 6
shows some hydrograph plots of the model run using the reference sur-
face roughness, adding 0.004, and subtracting 0.004 from reference
Manning's value of channel and floodplains. Increasing Manning
401
roughness values by 0.004 resulted in underestimation of water level
data by 1.53 m. It also resulted in earlier occurrence of the peak (i.e. 1:00
h earlier than the reference time of the peak). In contrast, subtracting
0.004 from the Manning's reference value resulted in overestimation of
water level by 1.34 m and delay of time of peak by 1:00 as compared to
the reference time of the peak.

In Fig. 7, the results of the sensitivity analysis are presented in terms
of RMSE of the simulated water level as compared to the reference water
level. The first case is by using the reference roughness value in the
floodplains but changing the roughness value in the channel section
(referred to ‘channel’ in Fig. 7). In this case, the RMSE rapidly increased
when the roughness value was increased. The increment of the RMSE



Fig. 5. (A) Effect of cross-section correction on the simulated stage (water level) hydrograph (b) Effect of considering river tributary on stage hydrograph.

Table 2
Reference Manning's roughness values for the channel and floodplain.

No Type of river material and LULC Manning's roughness value (n)

1 Cobbles with large boulders 0.05
2 Gravels, cobbles, and few boulders 0.04
3 Gravel 0.035
4 Coarse sand 0.031
5 Firm soil 0.0285
6 Bare land 0.03
7 Agricultural land 0.035
8 Forest Land 0.2
9 Grass- Land 0.035
10 Urban Land 0.11
11 Irrigated land 0.035
12 Water body 0.03
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reached up to 1.32 m showing large deviation from the RMSE using the
reference roughness, i.e. 0.72 m. This result implies that the simulated
water level is highly sensitive to the roughness of the channel section.

For cases 2 and 3, the roughness values of the left and right flood-
plains were changed respectively while keeping the roughness constant
for the channel and one of the floodplains (referred to ‘left and right’ in
Fig. 7). Fig. 7 shows that the simulated flood level was not significantly
sensitive to the roughness of the floodplains. In case 4, the roughness of
Fig. 6. Hydrograph plot for RM (Reference Manning
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the channel and floodplains was changed simultaneously (referred to
‘All’ in Fig. 7), the maximum RMSE was 1.32 m indicating a large devi-
ation from the RMSE when changing the channel roughness, i.e. 0.72 m.
This indicated that the effect of the floodplain roughness is relatively
small at least for the considered river reach and flood event. Our finding
is similar to that of Lamichhane and Sharma (2018) and Haile and
Rientjes (2007) who reported that the simulated flood extent and water
level are more sensitive to the Manning's roughness values of the channel
than those of the floodplain.
3.5. Sensitivity to the downstream boundary condition

The result shows the effect of the downstream boundary condition
appears only near the downstream end of the river and it disappears at
3.5 km upstream of the downstream boundary (Fig. 8). Hence, the
simulated flood characteristics within this distance were not used for
further analysis. Though not used in this study, it was also possible to
extend the model domain with artificial river reaches (e.g. as copy of the
final stretch of the river). Here, the constant water level causes higher
water depth at the downstream end than the other boundary conditions.
Whereas, specifying a normal depth at 900 m upstream from the down-
stream end causes lower water depth than that of other boundary con-
ditions. The large difference in water level due to the remaining three
downstream boundary conditions was sustained only up to 1.5 km
's value) and some of the extreme values tested.



Fig. 7. Sensitivity of the model simulated water level in terms of RMSE by 4 cases of Manning's roughness values of the floodplain and river channel.

Fig. 8. Effect of various downstream boundary conditions on the simulated water level.
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upstream of the downstream boundary of the model domain.
3.6. Attenuation and translation of the observed hydrograph

The flow hydrographs based on citizen science data were compared
for two sites on the Big Akaki River (Fig. 9). These sites are situated
downstream of the confluence of the Bulbula and Akaki Rivers (i.e. up-
stream of the studied river reach) and at the new bridge on the Akaki near
Tirunesh Beijing hospital. In terms of pattern, the hydrographs at the two
sites are somewhat similar. However, the hydrographs at the two sites
have a mismatch in terms of peak flow due to attenuation effects. The
peak flow was attenuated by 100.45 m3 s�1 and 64.93 m3 s�1 over the
9.7 km distance between the two sites on September 09, 2020 and July
17, 2021, respectively. Time to peak also shows a translation: the
hydrograph was translated by 35 min and 70 min on September 09, 2020
and July 17, 2021 respectively.

The error statistics result for the rating curves at two stations are
presented below in Table 3 below. The mean absolute percentage error
(MAPE) for the Akaki new Bridge station and the Worku village station
are 12.09% and 29.22% respectively. This implies the Worku village
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station (the station at upstream boundary condition) is more likely to
have a high percentage error than the Akaki new bridge stations. In
addition, stage discharge relationships derived from measured values are
presented in Fig. 10 below. The Worku village station measurements
show greater deviation from the derived rating curve than the Akaki new
Bridge station measurements. Note this error does not have an effect in
this study since stage data was specified as an upstream boundary
condition.
3.7. Objective evaluation of the simulated water level

Table 4 summarizes the error statistics for model simulations using
different DEM and tributary combinations. The mean absolute deviation
from the observed water level was large (1.65 m) when the uncorrected
DEMwas used and the contribution of the tributaries was not considered.
This significantly reduced to 0.84 m when the DEM was corrected using
field measured cross-section data and dropped to 0.36 m when the
contribution of one tributary was considered. Considering the second
tributary had little effect on mean absolute error (there was actually a
small increase in MAE). From all combinations, consideration of one



Table-3
Error statistics for Rating curve at two stations.

Error type Akaki new Bridge
station

Worku village
station

Mean absolute percentage error
(MAPE)

12.09 29.22

Mean absolute error (MAE) 3.55 5.07
Root mean square error (RMSE) 7.45 8.22

Table 4
Summary of the error statistic for different model inputs.

Error Type (MAD, MSE &
RMSE)

Mean absolute
deviation (m)

Mean square
error (m2)

Root mean
square error
(m)

Uncorrected DEM 1.65 3.05 1.75
Corrected DEM 0.84 0.86 0.93
Corrected DEM by
considering one
tributary

0.36 0.48 0.69

Corrected DEM by
considering two
tributaries

0.43 0.50 0.72

Table 5
Summary of flooding map output as DEM and tributary information changes.

Flooding map output Flood extent (area) km2

Fig. 9. Attenuation and translation of observed hydrograph in different seasons.
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tributary combined with the corrected cross-section input produces the
smallest mean square error (MSE) and root mean square error (RMSE) of
0.48 m and 0.69 m respectively. The uncorrected DEM (without
considering the tributaries) has a very high MSE and RMSE of 3.05 and
1.75 respectively. We note that the smallest mean absolute deviation
(0.36 m) is still a considerable magnitude, as it may cause significant loss
of life and property damage.
Uncorrected DEM 2.74
Corrected DEM 2.87
Corrected DEM by considering one tributary 2.91
Corrected DEM by considering two tributary 2.95
3.8. Flood map

Table 5 shows the summary of simulated flood extent in the model
domain for different DEM and tributary information. We find that the
inundation area increased when the DEM was corrected for the channel
cross-sections and the tributaries were considered. For example, the
simulation using the uncorrected DEM results in the smallest flood
inundation extent (2.74 km2) whereas consideration of the two tribu-
taries has the highest flood extent (2.95 km2). Overall, the difference of
the input data source results in up to 0.21 km2 difference in the simulated
flood extent.

Fig. 11 shows the inundation areas under each flood depth class for
each input condition. The effect of the input data source is very distinct
for flood depths less than 1.5 m. For low flood depths (<1.5 m), the
uncorrected DEM resulted in a larger flood extent, which decreased as
Fig. 10. Rating curve for Akaki New Bridge (
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corrections were added to the DEM and tributary information was added.
For high flood depths, the uncorrected DEM resulted in the smallest flood
extent. Most of the inundated area of the study area falls in the flood
depth class of 1.0 m–1.5 m. The first flood depth class (0.0 m–0.1 m) has
the smallest flooded area of all flood depth classes. In addition, flood
depth classes less than 2 m (i.e. 0.0 m–2.0 m) constitutes 66.7% of the
total inundated area. All flood depth classes less than 3 m (i.e. 0.0 m–3.0
m) constitutes 81.3% of the total inundated area.

In this study, land cover was overlaid (intersected) with the floodmap
to determine the extent or area of affected land cover type. Table 6 shows
the inundated area of different land cover classes. The irrigated, grass
left) station Worku village station (right).



Fig. 11. Summaries of inundated areas (km2) under each flood depth class.

Table 6
Flooding map area under different land cover type.

No. Land cover type Inundated area (km2) Inundated area (%)

1 Forest 0.332 11.26
2 Bare land 0.147 4.97
3 Grass land 0.345 11.70
4 Irrigated 1.531 51.90
5 Rain fed 0.260 8.81
6 Urban 0.327 11.08
7 Water body 0.008 0.28

Table 7
Length of road inundated, split by road type.

No. Road Type Length (m)

1. Primary 66.74
2. Primary link 145.64
3. Secondary 4683
4. Tertiary 505.6
5. Residential 841.42
6. Unclassified 101.9
7. Service 101.93
8. Track 92.87
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land, and forest classes are the most affected with 1.531 km2, 0.345 km2

and 0.332 km2 inundation area extent, respectively. About half of the
inundated area is irrigated land.

Table 7 shows different road types which were inundated in the study
area. The road was classified into eight classes. The results show that
secondary link is the most affected road type with 4683 m of road length.
The residential, track and service road types are also affected with
inundated length of 841.42 m, 92.87 m and 101.93 m respectively.

To determine the variation in flood extent due to different input data,
the inundation area map for the uncorrected DEM and corrected DEM are
overlaid or intersected with each other and are shown in Fig. 12. Most of
the inundated area (2.743 km2) was simulated by using both the cor-
rected and uncorrected DEMs (the flood extents match). The inundation
area which was simulated only by using the uncorrected DEM and cor-
rected DEM is 0.002 km2 and 0.127 km2 respectively. This shows that the
choice between the raw or corrected DEM has only a small impact on
model results in flood extent terms.
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4. Conclusion

This study contributes to the limited literature on the value of citizen
science data for characterizing and simulating floods using a hydrody-
namic flood model. A key limitation of the citizen science method used
was the inability to capture floods occurring in the evening and night-
time. Nevertheless, the citizen science data was found adequate to
specify the upstream boundary condition and provide data for evaluating
the performance of the model for different data sets. The data also en-
ables us to evaluate the model sensitivity to input data including cor-
rected and uncorrected versions of the DEM, with and without
incorporating tributary information, and the hydraulic roughness
parameter.

DEM correction using 15 field-collected river channel cross-sections
was found to substantially improve the accuracy of the simulated water
level. Further, the sensitivity analysis indicated that (i) monitoring the
water level of only the larger of the two minor tributaries is adequate
enough for simulation of the flood level, (ii) the simulated water level is
affected more by the Manning's roughness coefficient of the river channel
than that of the floodplain, and (iii) the downstream extent of the model
domain should be determined based on sensitivity analysis of the
downstream boundary condition effect.

The study is conducted in the kind of data scarce environment that
prevails in most lower- andmiddle-income countries. The scarcity of data
led us to rely on citizen science data to evaluate model sensitivity. Citizen
scientists were not able to record nighttime water level hydrographs with
the measurement technique we adopted. Future studies can explore
appropriate techniques that enable citizen scientists to record nighttime
hydrographs.

Our study showed that data gaps in flood modeling can be filled by
engaging citizen scientists for a relatively short period of time. However,
additional benefits can be obtained by sustaining the engagement of
citizen scientists for a longer term. Therefore, we suggest future studies to
explore mechanisms to sustain engagement of citizen scientists in flood
monitoring, and also explore ways of engaging them beyond flood haz-
ard, e.g. knowledge co-production to study flood exposure and vulnera-
bility. Finally, we recommend future studies consider different sources of
error in order to improve model performance.
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Fig. 12. A. Flood map using uncorrected DEM, corrected DEM and match (both) b. Land cover overlaid on flood map.
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