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Abstract—Introducing autonomy is a task of paramount im-
portance and is currently investigated in many areas, especially
for autonomous cars and Unmanned Aerial Vehicles (UAVs).
Most UAVs are still remotely human-controlled. A necessity is
to implement on-board solutions, able to work in all weather
conditions and at any time. Hence, on this topic, we give an
overview of recent advances for vision-based landing of UAVs. A
thorough classification of the main recently developed methods is
introduced with a discussion of their advantages and disadvan-
tages. The paper presents a new solution for autonomous UAV
vision-based landing, focusing on runway detection using a hybrid
approach combining multi-image matching, SIFT and object
tracking. The results are evaluated and validated using simulated
images sampled with the X-Plane 11 flight simulator and real-
world videos collected during automated flights performed by
the ULTRA vehicle, one of the biggest UAVs in the UK [1]. The
statistical analysis from the validation of the proposed approach
shows a high level of accuracy around 94.89% in clear weather
conditions and real-time computational performance.

Keywords— Unmanned Aerial Vehicles (UAVs), Au-

tonomous Landing, Runway Detection, Autonomy, X-Plane 11

flight simulator, Computer Vision, Vision-based landing.

I. MOTIVATION

Unmanned Aerial Vehicles (UAVs) have received increased

attention in research and practice given their potential to

solve economic and social challenges like search and rescue,

wildlife protection, humanitarian aid [2] or other challenging

tasks [1], [3]. Examples of economic and social benefits

of UAVs compared to manned vehicles are, the increase in

efficiency and flexibility of operations, labour cost reduction,

and potentially greater safety. To realise such benefits, UAVs

need to operate at an increased level of independence from

a remote operator, even if they need to fly at an extended

and beyond visual line of sight (EVLOS or BVLOS) [4].

Existing research and industry practice aims to tackle this

problem using automation: Today, some UAVs do not require

the active involvement of a remote pilot who flies and controls

the UAV using remote operations software. Instead, they only

require some degree of human monitoring as they can fly

in an automated way with autopilots using classical airspace

signals (typically from a radar, e.g. from the Automatic

Dependent Surveillance–Broadcast (ADS-B) or the Global

Navigation Satellite System (GNSS)) and human rules defined.

However, such automated systems are not yet autonomous

because they are unable to engage in more intelligent and

self-directed actions in response to unpredictable events such

as the unexpected appearance of another vehicle or the loss

of radar signals. This lack of autonomous response to uncer-

tainty creates safety concerns about using existing automated

solutions in real-world settings [4], [5]. Thus, existing UAV

research has yet to develop systems that provide an enhanced

degree of autonomous intelligence and resilience to events that

are unknown at the time of the system design [5]–[7]. Such

events occur more often during real-world operations rather

than controlled experimental setups in labs, widely used in

today’s UAV research.

Fig. 1: ULTRA [1], one of the biggest UAVs in the UK,

capable of carrying 100 kilograms of payload

The level of autonomy of a UAV can be broadly defined

by its ability to (1) operate at a high level of independence

from human actions, (2) perform complex missions, and

(3) respond to environmental uncertainty that characterises

operations in real-life outside of university labs [5]. The need

for a high level of autonomy is particularly important in

response to unpredictable events that may cause a collision

of a UAV with other vehicles (UAVs and manned vehicles) or

even humans prior to or during landing as such events create

significant safety concerns [7]. Thus, this paper is tackling this

practical need and is proposing and validating a new vision-

based solution for runway detection. That allows for landing

in scenarios where existing automation fails to respond to

unpredictable events during real-world operations. Motivated

by the need to realise a high level of autonomy for a real-time

automated solution.



This research presents results from the case of a large UAV

already operating in an automated way at BVLOS using a

rule-based autopilot. The ULTRA UAV (shown in Figure 1)

designed by Windracers [1] for aid delivery is already op-

erating in real-life conditions that encounters environmental

uncertainty requiring complex mission operations. Using sim-

ulated as well as real-world flight data collected for this and

with this vehicle, this research work proposes and validates

a new method for vision-guided autonomous UAV navigation

that outperforms methods proposed in applied UAV research

or used in real-world applications [8].

The proposed approach for the UAV landing identifies the

target runway using multiple reference images processes cam-

era frames in real-time and provides a decision for proceeding

with the landing or declining it. The analysis is performed in

the image plane and the proposed system is developed for the

purpose of landing monitoring without using a GNSS.

A. Contributions

The main contributions of this paper are the following:

1) Recent advances in the area of UAV vision-based navigation

are discussed, 2) A new practical Computer Vision approach is

proposed which is able to achieve real-time performance. The

vision-based system works with optical video data, includes

the scale-invariant feature transform (SIFT) [9] and recognises

remotely the runway during the landing approach. 3) A thor-

ough validation of the approach is performed over simulated

and real video data. The real video data are from flights of the

ULRA UAV [1] which is one of the biggest fixed-wing UAV

built so far in the UK.

The rest of this paper is organised as follows. Section II

refers to the related work, that exists on Computer Vision

and deep learning methods for identifying a runway from

a distance and assisting tools for the landing of a UAV.

Moreover, a discussion of the pros and cons of deep learning

methods and traditional vision methods is presented. Sec-

tion III, discusses the potential of Computer Vision methods of

providing a solution for identifying a runway during the land-

ing approach of the UAV, including feature-based methods for

object detection, classification and object tracking. Section IV

present the proposed architecture for runway identification

and the experiments that were conducted using simulation

tools alongside the results obtained. Detailed evaluation and

validation of the proposed architecture are given in Section V.

Section VI, summarises the main results from the proposed

system.

II. RELATED WORK

A. Runway Detection Systems

Previous related work [10], [11] assumes that GNSS is

currently installed on the majority of manned aircraft as well as

UAVs. GNSS precision is dependent on local electromagnetic

conditions, terrain and other temporal factors such as satellite

availability. This paper is proposing an algorithm for runway

detection using Computer Vision methodologies to enable

error identification on the positioning of the UAV with respect

to the runway and abort the landing. The paper explores the

different conditions that the aircraft needs to land, such as

low visibility, good, rainy weather and extreme weather such

as wind.

Being able to detect the runway efficiently and precisely is

considered a key step of automatic landing, which can trigger

a warning to the UAV operator, trigger an automatic mission

abort, or trigger an autonomous landing correction. Therefore,

developing a suitable runway detection algorithm is crucial.

In Akbar’s paper [12], the author categorises approaches,

template matching, Hough transform [13], Active Contours,

and Machine Learning algorithms, into two main categories:

template based and feature-based.

A real-time sensor-guided runway detecting system was put

out by Wang [14]. In the beginning, a search region was estab-

lished and a runway template was created using topographical

data and sensor data from the “Synthetic Vision System”

(SVS) and ”Enhanced Vision System” (EVS). Following on

from the query image, the original search region was used to

apply the lines extraction approach. The final step involved

matching the template and query images in order to identify

the precise runway area.

An approach to quick detection of the airport runway in

remote sensing photos is proposed by Yang [15]. The runway

is extracted using the Otsu method [16], fractional differential

gradient operator, and “Hough transform” (HT) [13]. The

proposed method’s ability to operate quickly and produce

positive test results for significant increases in computing

speed and decreased data operations were both demonstrated.

Autonomous landing for an unmanned aircraft platform

depends on the quick and precise identification of its land-

ing runway. Using an airborne camera to capture photos of

the landing runway, Nazir et al. [17] used edge detection

algorithms to determine the runway’s precise location. The

evaluation method proposed is based on the classification

and identification of the runway as a class and the average

processing time of the system.

B. Comparison Between Traditional Computer Vision and

Deep Learning

In recent years, there has been a significant shift in the field

towards the use of deep learning methods. In [18], a Faster

R-CNN [19] approach was used for airport region detection.

A convolutional neural network (CNN) is used to identify

prospective airports, and a second CNN is detecting airports

based on improved runway features. Line-segment detector

(LSD) [20] is used for potential airport regions as described

in [21]. The model that was used for classification over the

regions is AlexNet [22].

A two-stage system was developed by Akbar et al. [12],

that is extracting features on images using CNN and performs

classification using a softmax classifier, on classes such as

roads, forests, and runways. The next step of the approach

is using Hough transform [13], line segmentation, to perform

runway segmentation, for localisation purposes.



Traditional Computer Vision methods rely on hand-crafted

features and rule-based systems to analyse images and videos.

These methods often require a significant amount of domain

knowledge and can be prone to errors in certain scenarios [23].

For example, traditional Computer Vision algorithms designed

to recognise objects in images can fail when presented with

images taken from different angles or under different lighting

conditions [24]. Additionally, deep learning methods [23] open

new avenues through their abilities to process big data and

learn from them. Deep learning-based Computer Vision learn

features and patterns from the data [24]. These models are

able to handle a wide range of images and videos and can

often achieve higher accuracy than traditional methods. For

example, state of art performance was achieved from deep

learning-based object detection algorithms on benchmark data

sets such as COCO [25] and PASCAL VOC [26]. Additionally,

deep learning methods will continue improving as they have

access to more data, making them more adaptable to new

scenarios [27], [28].

One major disadvantage of deep learning-based Computer

Vision is the large amounts of labelled data and computational

resources needed for training [29]. This a difficulty researchers

and practitioners face when developing and deploying deep

learning-based Computer Vision systems, especially in scenar-

ios where there are limited data or computational resources

[28]. Additionally, deep learning models can be difficult to

interpret and understand, making it challenging to understand

why a particular model is making a certain prediction [24].

In conclusion, both methodologies enclose advantages and

disadvantages. Traditional methods may be more interpretable

and require less data and computational power, but errors

can be pruned and may not be able to handle a wide range

of images and videos. On the other hand, deep learning-

based Computer Vision can achieve higher accuracy and can

continue to improve as they are exposed to more data, but

they require large amounts of labelled data and computational

resources to train. The choice of which approach to use will

depend on the specific scenario and the available resources.

III. METHODS

A. Data Collection Approaches

For the purpose of data collection for the task of runway

detection, the available data sets are based on aerial or satellite

images to train a network [12]. The ground truth of the

runways is manually annotated in such data sets. However,

Krajacic T. [30], used X-Plane 11 simulator as a visual system

for research. The simulator can generate numerous scenarios

of a flight such as different weather conditions. Day, night,

strong winds, fog, rain, and ideal conditions can be simulated

using X-Plane 11, which are realistic scenarios that a pilot and

a plane can face during a flight. Bittar et al. [31] proposed the

software in the loop software using the X-Plane and Simulink.

B. Feature-Based Approaches

Feature-based approaches are not based on a specific model

that is detecting and tracks features like corners, edges, and

other easily localised features [32] as shown in Figures 2a

and 2b. Compared to template-based approaches, this approach

can reduce the cost of creating a model. This approach might

still be able to detect and localise runways, even if the poor

weather condition blocks some of the runway features [10].

Especially, in poor weather conditions, snow and fog might

block some necessary markings that may result in detection

incorrectly, as shown in Figure 3a and 3b. There are feature-

based approaches that have proven their advantages, such

as the Scale Invariant Feature Transform ( SIFT) [32], the

Speeded-Up Robust Features Transform (SURF) [33] and edge

detection approaches [34].

(a) (b)

Fig. 2: Runways with edges lines, centerline, landing desig-

nator and threshold

(a) (b)

Fig. 3: Runways during fog and snow weather conditions

Lowe’s paper [32] proposed a machine learning algorithm

named SIFT to match the object even if rotation, distortion,

the addition of noise, and change in illumination. According

to Lowe [32], SIFT can process images with near real-time

performance, Hu [35] and Zhang [36] use it to match objects

and register images, because of its robustness and perfor-

mance. However, Daixian [9] analyses that the computational

time and matching accuracy of the original SIFT are not

good enough, therefore, an improved SIFT was proposed,

and the enhancement of Real-time quality and stability of

the algorithm is verified. As for the research on landing on

a runway, Miller [37] used SIFT to detect the terrain as visual

information, which can steer the UAV to the runway, before

the runway is visible.

The main steps that are used for feature detection and

matching in SIFT as in [38] are represented with the following

expressions for each pixel coordinates x and y:

G(x, y, σ) =
1

2πσ2
e−

x
2+y

2

2σ2
∗ I(x, y), (1)



where, G(x, y, σ) is the Gaussian kernel with standard devia-

tion σ, ∗ denotes convolution and I(x, y) is the original image.

A difference of Gaussians (DoG) is calculated as follows:

D(x, y, σ) = G(x, y, kσ)−G(x, y, σ), (2)

where k is a constant factor that determines the ratio of scales

between adjacent levels of the scale-space

D(x) = D +
1

2

∂DT

∂x
x+

1

2
xT ∂2D

∂x2
x, (3)

where D(x) is the Taylor expansion of the DoG function at the

key-point location x. The first derivative and Hessian matrix

of the DoG function are computed at x to obtain the expansion

coefficients [39], magnitude m(x, y) and orientation θ(x, y)

m(x, y) =
√

L2
x + L2

y, θ(x, y) = tan−1
Ly

Lx

. (4)

Here, Lx and Ly are respectively the horizontal and vertical

components of the local image gradient at point (x, y). The

magnitude and orientation of the gradient are computed to

construct the gradient orientation histogram.

The i-th element of the SIFT descriptor vector, which

consists of 128 elements and is denoted as di and can be

expressed as

di =
∑

x,y

ω(x, y)hi(x, y), (5)

with hi(x, y) being the histogram of gradient orientations

within a sub-region centred on the key point. The ω(x, y)
weighting function gives high weight to gradients close to the

key-point centre.

Speeded-up robust features (SURF) were presented in Bay’s

paper [40]. The author of that paper proposes a new descriptor

that is superior to methods that are considered to be state-

of-the-art. This descriptor is based on sums of Haar wavelet

components, and the author believes that it is a scale and

rotation-invariant interest point detector and descriptor that is

both quick and effective. In addition to this, the description

has superior performance to the histogram-based techniques

that are utilised in the SIFT method.

The basic processes of SURF are roughly the same as SIFT

[32]. In Bay’s paper [33], there are three major processes to

finding discrete image point correspondences. The first step is

selecting the ’interest points like corner and T-junction, then

calculating a feature vector to represent the neighbourhood of

every selected interest point. Finally, the feature vectors of

different images are matched.

Unlike SIFT, which is based on integral images for image

convolutions, SURF, which is provided in Bay’s article [33],

employs a detector that is based on the Hessian filter rather

than a detector that is based on a histogram of locally oriented

gradients near the key point. Because box filters and integral

pictures are being used, the filter size is being scaled up

rather than scaled down while moving between different scale-

spaces. This is done in place of the SIFT technique of down-

sampling. Bay [33] is of the opinion that this adjustment might

result in an increase in the computational output.

SURF is more efficient with respect to performance match-

ing speed in comparison to SIFT [33]. In the area of matching

images, therefore, Liu [41], Verma [42] and Vardhan [43] used

SURF and verified that this approach has high performance

and robustness. In regard to the performance of distorted image

matching, Karami [44] compares the performance of SURF

and SIFT, and the author denotes that SIFT has a higher

matching rate in most rotation angles than SURF. Fields that

SURF can be used based on the computation performance that

offers are, the SAR image matching [41], image registration

[45], visual tracking [46] and face recognition [47].

C. Object Tracking

Every frame is processed with SIFT algorithm for determin-

ing the matching key points between the prior knowledge and

the current frame. This can lead to higher computation time.

The usage of tracking algorithms on the region of interest that

was detected is used to reduce the computation. The object of

interest is often detected and the region of interest is defined

as a bounding box. The object of interest can be detected

manually, by a human operator or automatically, and it is often

a UAV, a wild animal or anything else in a series of frames.

This paper proposes two methods for runway detection

which include two parts - first runway shape detection with

the SIFT algorithm by detecting key points and next using

the Channel and Spatial Reliability Tracker (CSRT) algorithm

[48] that uses pixel speed in the image plane and detects the

bounding box in the consecutive video frames.

The tracking models are described as the motion model

which tracks the speed and the direction of the object move-

ment and the appearance model which is the object in the

frame [49]. The library that is being used for deriving the

tracking algorithms is OpenCV. The package consists of built-

in functions for object tracking, and different trackers are

available to be used as proposed by Rublee et al. [50]. The

algorithm that is chosen to be used for the tracking application

is the CSRT tracker as it is accurate for the purpose of runway

tracking after detecting the region of interest. Alternative track-

ers are the Boosting Tracker [51] and Kernelized Correlation

Filters [52].

A comparative study was presented in [53], analysing the

different available tracking algorithms and denoting the effi-

ciency of the CSRT tracker that was used for the development

of the system.

The next Section IV describes the developed methodology

followed for runway identification.

IV. METHODOLOGY

A. Proposed Architecture

The methodology that is at the core of the proposed real-

time approach is based on the SIFT and SURF feature de-

tectors and matching [33] that is presented in Section III.

The developed system is a combination of feature matching

between the current frame from the simulation environment

and tracking of the detected box as described in section III.



For the data generation of the flight scenarios, the X-Plane

11 simulator was used. The simulation environment allows the

user to control the plane from take-off to landing. However, for

the purpose of the experiments for the automatic landing using

a vision-based system, an autopilot was used, in order to set

the mission of the plane that is taking off from the airport,

executing a circle around and landing at the airport. This

makes video processing efficient and reduces computational

time.

The network constructed is using a host machine that is

acting as the UAV (flight simulator), with the autopilot module

and the mission. A recording script was developed to extract

the frames from the simulator window and transmit the data to

the processing unit for image processing. Flight information is

made available to the processing unit by Distributed Avionics’

Distributed Control software [54]. All flight information such

as position, poise, mission plan and current waypoint is

available this way. Those data enable the initiation of the

algorithm on the landing approach. The post-processing data

(runway detection) and the landing decision are visualised for

the user.

When the landing procedure is initiated by the autopilot

the Computer Vision system is notified to start the runway

identification. To determine if a static point is inside a bound-

ing box, a comparison between the point coordinates with the

boundaries of the box is performed to check if they fall within

the x and y ranges of the box. After the examination, a flag

is increased, if the point is inside the bounding box, and the

flag is decreased, if the point is outside the bounding box and

heading off-track.

The static point is a result of the fixed camera location on

the plane. The trajectory of the plane in order to land needs

to be a straight line. This point is representing a point of the

straight line in the image plane. Based on the flag value the

decision of landing or abort is sent to the autopilot.

In order to reduce the computation time of the overall

system, a tracking algorithm (CSRT) is used, that is tracking

the speed and the direction of the detected runway in the

next frames. After some amount of frames that the tracking

algorithm used, a refinement of SIFT detection is executed.

B. Software-In-The-Loop Simulation

This section describes the operation of the software in the

loop in order to enable the autopilot module to communicate

with the X-Plane 11 simulator for navigating the plane in the

simulation environment. The main processes of software in the

loop system (SITL) are shown in Figure 4. After the mission is

uploaded to the autopilot module the flight path is loaded and

the plane is automatically executing the mission. A network

is contracted using SITL for extracting and processing the

images from the flight in-real time.

The advantage of using SITL for experimental purposes is

testing and deployment. SITL is easy to deploy on a host

machine and there is no need for other hardware equipment

such as a real UAV or control system. Preliminary tests are

run in different weather scenarios such as rain, wind, and fog.

Fig. 4: Software-In-The-Loop (SITL) block diagram

C. Feature Matching Results

The proposed system is based on, feature matching using

SIFT algorithm. SIFT is robust to affine distortion, changes

in illumination, and moderate changes in viewpoint, making

it a powerful tool for object detection in various scenarios.

The Computer Vision algorithm is enabled when the autopilot

sends the information about the current way-point being the

landing way-point. When the landing way-point information

is received the system enables the vision-based module. The

module is searching for the runway using reference images

from prior knowledge.

The prior knowledge is extracted by using prior flight

footage. The user of the Computer Vision system is extracting

the runway images from the prior knowledge and saves the

reference images to a directory to be used by the vision-based

system.

The prior knowledge is enabling the identification of the

runway in the current frame. The key points and the descriptors

of the reference images are extracted before the module starts.

The reference image that is being used for feature matching

is selected based on the number of matches found between

the current frame and reference. The reference image used for

bounding box extraction is selected based on the highest rate

of matches between the reference and the current frame.

The resultant bounding box of the runway is used as input

for the tracker algorithm. The tracking algorithms have less

computation time than the feature detection and matching

between the reference and the current frame. The algorithm

is then used for a certain amount of frames to be executed

on. A refinement of detection and matching is executed after

the algorithm tracked the bounding box in a fixed number of

frames, in order to provide accurate results.

The decision for landing or abort is taken by the system after

the execution of feature matching and tracking. The decision-

making is based on counters that are monitoring that the static

point is enclosed in the bounding box detected. When the static

point counter is negative, the decision is aborted as the UAV

is heading off-track.

D. Matching Points Extraction

The system works by detecting key points in an image and

then describing each key point, which is a set of features that



describe the local region around the key point. SIFT uses

a scale-space extrema detection to find distinctive features,

which are invariant to image scale and rotation changes. Once

the features have been detected, the matching between images

is performed, which allows object detection and recognition.

The image-matching process is between a reference image

that was derived from prior flights of the UAV in the same

environment and frames from the current flight. The proposed

system is extracting the overall number of matches that the

algorithm finds. The matches threshold is used as a condition

to specify good detection and matching results are observed.

Fig. 5: Feature matching results on simulation environment

Furthermore, after a good observation, the bounding box

is generated in order to pass the information to the tracking

algorithm. The matching results between the reference image

and the current frame can be observed in Figure 5.

In order to test the invariance of the feature matching

algorithm on rotation, the reference image in Figure 5 is

rotated. Figure 6, shows the bounding box placed in the

original video frames after detection.

Fig. 6: Detection results and visualisation

V. PERFORMANCE EVALUATION

The proposed classification approach was used to evaluate

the system for automated UAV landing. After the runway is

identified in the frame a class is assigned to the frame as 1,

and 0 when no runway is detected. The evaluation process can

be observed in Figure 7. 2D(Dimensional) distances between

the UAV and the landing point were calculated to measure

the accuracy of the classification results, in distance ranges,

for testing detection on runways observed in further/closer

distances with respect to the UAV in the frames.

The Haversine distance is a mathematical equation 6 that is

used to calculate the great-circle distance between two points

on a sphere, such as the Earth. The formula uses the latitude

and longitude of the two points and the radius of the sphere to

calculate the central angle between the points [55]. The great-

circle distance is then calculated as the product of the central

angle and the sphere’s radius, as follows

d = 2r sin−1(
√

DLat + cos(Lat1) cos(Lat2)DLon). (6)

Here d is the distance between the two points, r is the radius

of the sphere (such as the Earth’s radius) and has a constant

value of 6,378 km, Lat1 and Lat2 are the latitudes, and Lon1

and Lon2 are the longitudes of the two points. The distance

between the values of latitudes and longitudes are as DLat =
sin2

(

Lat2−Lat1
2

)

and DLon = sin2
(

Lon2−Lon1

2

)

respectively.

The evaluation methodology is based on literature and the

FAA standards [56] for automatic UAV landing [17], [57].

Figure 8, refers to the evaluation of the system and the

category distances are in meters. The reduction in accuracy

for the nearest ground distance is due to the reference images

depicting the closest view of a runway. Table I presents the

accuracy results from different scenarios. Such scenarios are

1) clear weather conditions, 2) difficult weather conditions

such as rain, or storm, and 3) cross landing conditions.

The ground truth data is generated from the results of

detection and classification tasks which account for the 2D

distance between the UAV and the landing point. The detection

is performed before classification using prior knowledge. The

classification task assigns a value equal to one to frames where

the runway is detected and the landing is initiated. The 2D

distances are assigned on frames after the autopilot enables

the vision-based system. The system makes a decision at a

certain altitude.

The runway detection algorithm was able to correctly iden-

tify the class in an average of 94.89% from videos generated

and the average processing time for feature matching or

tracking on a frame is 0.23s. Table I gives the accuracy of

the runway identification in the specific distance ranges.

Fig. 8: Clear weather scenario evaluation results

VI. CONCLUSIONS

Motivated by the necessity of providing a high level of

autonomy for UAVs, this paper develops a real-time vision-



Fig. 7: Evaluation procedure block diagram

TABLE I: Accuracy of the proposed architecture

Distance Range Scenario
Clear weather Difficult weather Cross landing

A:1300m - 1000m 100 % 99 % 98 %

B:1000m - 700m 100 % 95 % 93 %

C: 700m - 200m 91 % 90 % 90 %

D: 200m - 0m 93 % 93 % 89 %

based system for runway detection and UAV landing. We

first reviewed the recent related Computer Vision methods

and discussed their pros and cons. Deep learning methods are

in their early stage of development, require a lot of data for

training and this still creates obstacles to their applications on

UAVs. Real-time solutions can be achieved with a combination

of computationally efficient Computer Vision methods able

to learn from the data. In this work, the developed multi-

image matching system achieves both real-time and accurate

runway detection by embedding SIFT, SURF and the CSRT

tracking algorithms all implemented on a Jetson Xavier NX

board. The results of simulated data show that the average

accuracy is 94.89% in clear weather conditions. The perfor-

mance validation shows a real-time image processing speed

of 0.23 seconds on average for a frame. Future work will

focus on introducing learning methods able to achieve real-

time performance such as transfer learning and approaches

for difficult weather conditions.
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