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Aggregation kinetics of proteins and peptides have been studied extensively due

to their significance in many human diseases, including neurodegenerative

disorders, and the roles they play in some key physiological processes.

However, most of these studies have been performed as bulk

measurements using Thioflavin T or other fluorescence turn-on reagents as

indicators of fibrillization. Such techniques are highly successful in making

inferences about the nucleation and growth mechanism of fibrils, yet cannot

directly measure assembly reactions at low protein concentrations which is the

case for amyloid-β (Aβ) peptide under physiological conditions. In particular, the

evolution from monomer to low-order oligomer in early stages of aggregation

cannot be detected. Single-molecule methods allow direct access to such

fundamental information. We developed a high-throughput protocol for

single-molecule photobleaching experiments using an automated

fluorescence microscope. Stepwise photobleaching analysis of the time

profiles of individual foci allowed us to determine stoichiometry of protein

oligomers and probe protein aggregation kinetics. Furthermore, we

investigated the potential application of supervised machine learning with

support vector machines (SVMs) as well as multilayer perceptron (MLP)

artificial neural networks to classify bleaching traces into stoichiometric

categories based on an ensemble of measurable quantities derivable from

individual traces. Both SVM and MLP models achieved a comparable

accuracy of more than 80% against simulated traces up to 19-mer, although

MLP offered considerable speed advantages, thus making it suitable for

application to high-throughput experimental data. We used our high-

throughput method to study the aggregation of Aβ40 in the presence of

metal ions and the aggregation of α-synuclein in the presence of gold

nanoparticles.
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Introduction

Interest in protein misfolding and aggregation in general, and

amyloidogenesis in particular, has exploded in the past dozen

years, as scientists started to recognize the role of protein

aggregates in a number of neurodegenerative diseases as well

as other human diseases (Dobson, 2003; Iadanza et al., 2018; Ke

et al., 2020). However, some amyloids are actually “functional,”

biologically useful, and have been selected for performing

important biological tasks, such as the establishment of long-

term memory and biofilm formation (Ulamec and Radford,

2020). Arguably, amyloid-β peptide (Aβ) has received the

most attention because of its importance in Alzheimer’s

disease pathology (Selkoe and Hardy, 2016). High-order Aβ
aggregates (“plaques”) are one of the key hallmarks of

Alzheimer’s disease (AD), but in fact the most cytotoxic

species are low-order oligomers (Benilova et al., 2012).

However, the composition of low-order Aβ oligomers is

poorly described, and the kinetics of early-stage Aβ
aggregation is essentially unknown.

Conventional techniques such as the Thioflavin T (ThT)

fluorescence assay (Xue et al., 2017), circular dichroism (CD)

spectroscopy (Zhang et al., 2018), nuclear magnetic resonance

(NMR) (Suzuki et al., 2013), transmission electron microscopy

(TEM) (Eisenberg and Sawaya, 2017), and atomic force

microscopy (AFM) (Smith et al., 2006) have all been used to

provide ensemble kinetics of amyloidogenic protein aggregation.

They can resolve the intermediate species populated during their

formation to some degree and the morphology of amyloid fibrils.

In the ThT assay, Aβ aggregation kinetic measurements are

typically performed at an Aβ concentration range between

1 and 100 μM, several orders larger than its physiological

concentration. Kinetic modeling of these aggregation data sets

is highly successful in making inferences about the nucleation

process and the growth mechanism of fibrils and microscopic

kinetic parameters can be characterized (Meisl et al., 2018).

However, the evolution from monomer to low-order oligomer

in the early stage of aggregation cannot be easily detected by the

ThT assay or any other ensemble assays due to the low

population of the oligomers and their transient nature. Single-

molecule approaches are well suited to detect different molecular

species in a complex mixture. A single-molecule method termed

two color coincidence detection (TCCD) was reported to be

capable of detecting the association of biomolecules at

concentrations at low fM concentrations (Orte et al., 2006),

and was then adapted to probe the assembly of oligomeric

species formed during the aggregation of PI3 kinase (Orte

et al., 2008). Single-molecule fluorescence resonance energy

transfer (smFRET) has also been proven a powerful method

to resolve oligomeric subpopulations during aggregation, and

oligomers formed during the aggregation of Yeast Prion Protein

Ure2 can be quantified and different types of α-synuclein
oligomers can be distinguished (Cremades et al., 2012; Fusco

et al., 2017; Yang et al., 2018).

Single-molecule fluorescence loss due to photobleaching

results in a stepwise intensity drop for individual fluorophores

in a biomolecular complex. Therefore, direct measurement of the

number of fluorophore-tagged monomers present in a

biomolecular assembly can be achieved by counting the total

number of photobleaching steps in the fluorescence intensity

profile over time (Leake et al., 2006; Lenn et al., 2011). This tool is

well suited to determine stoichiometry of protein complex in

living cells (Mehta et al., 2013; Hummert et al., 2021) as well as

detect amyloidogenic protein oligomers (Dresser et al., 2021),

although sometimes it is hampered by fast photobleaching, which

limits the total number of photons that can be detected thereby

giving a short time profile for analysis, or photo-induced blinking

of the fluorophore (Dickson et al., 1997).

We developed a high-throughput protocol for single-

molecule photobleaching experiments under the total internal

reflection fluorescence (TIRF) mode with an automated optical

microscope and applied it to investigate the aggregation of Aβ40
in the presence of metal ions and the aggregation of α-synuclein
in the presence of gold nanoparticles. Stepwise photobleaching of

dye-labeled Aβ40 immobilized onto a solid substrate allowed us to

determine stoichiometry of Aβ40 oligomers and probe their

evolution over time.

It is well documented that Aβ40 and Aβ42 peptides have

differences in their aggregation behavior (Qiu et al., 2015).

Aβ42 has a higher propensity to aggregate and form

protofibrils than Aβ40. We aimed to keep the Aβ peptide in

its monomeric form as much as possible prior to the start of

the aggregation process, therefore we chose Aβ40 as our model

system in this study.

Copper was found to inhibit the growth of the fibrillar form

of Aβ by stabilizing off-pathway prefibrillar Aβ (Pedersen et al.,

2011), and the disruption of copper homeostasis plays a crucial

role in neurodegeneration (Giampietro et al., 2018). We have

previously studied kinetics of copper binding to various Aβ
peptides and found that the rate of copper-bridged dimer

formation of Aβ carrying the FAD mutation correlates with

the onset age of FAD and that the timescale of the redox cycling

of Aβ-Cu complex is biologically relevant (Branch et al., 2015;

Girvan et al., 2016; Branch et al., 2017; Girvan et al., 2018). We,

therefore, applied the high-throughput method to address the

influence of copper on the Aβ oligomer distribution as a function
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of time under sub-micromolar Aβ concentration, a case closer to
a physiological condition, yet intractable by a conventional

method.

α-Synuclein is a 140 residue intrinsically disordered protein

that is highly enriched in presynaptic terminals and its

aggregation is associated with Lewy body dementias (LBDs)

FIGURE 1
Workflow of high-throughput protein oligomer analysis by single-molecule stepwise photobleaching. (A) Dye-labeled protein sample is
immobilized onto a solid-phase substrate or lipid membrane inside cover glass-bottomed chambers. (B) Overview of the automated acquisition
process. An automated piezoelectric stage is used to rapidly acquire large numbers of photobleaching traces over preset regions of interest (ROIs) in
the glass well. Immobilized oligomers are viewed with TIRF illumination with focusmaintained over large distances with a computer-controlled
focusing system, with each fluorescence time series acquired automatically via custom control software automating laser shuttering and image
acquisition. Example images of immobilized oligomers from two different ROIs are shown. (C) Illustrative idealized photobleaching traces for a
monomer, dimer, trimer, and tetramer. (D)Normalized distribution of the number of fluorophores in CD209 tetramers determined experimentally (N
~ 6000).
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including Parkinson’s disease (PD) (Goedert, 2001). Oxidative

stress plays an important role in the degeneration of

dopaminergic neurons in PD (Dias et al., 2013). Recently we

demonstrated that α-synuclein coated gold nanoparticles were

able to induce oxidative stress in neuroblastoma cells which could

then be rescued by antioxidant lipoic acid-coated gold

nanoparticles (Piersimoni et al., 2020). Herein we showed that

our high-throughput approach can differentiate oligomer

distributions at the same time point on aggregation curves

under different nanoparticle concentrations.

Furthermore, we have investigated the potential application

of supervised machine learning to classify photobleaching traces

into stoichiometric categories based on an ensemble of

measurable quantities of the traces themselves. Both

traditional machine learning using support vector machines

(SVMs) (Huang et al., 2018) and a neural network model

based on multilayer perceptron (MLP) (Yu et al., 2019) were

found to achieve on average more than 80% accuracy against

simulated traces, yet the later runs much faster and hence better

suited for high-throughput applications.

Results

We designed and programmed a TIRF imaging microscope

with an autofocus system to collect precise, reliable, and clear

photobleaching data. We used customized analysis code written

in FIJI andMATLAB to process raw image sequences and extract

time-dependent intensity traces of all single molecules that can be

identified. We then used the Progressive Idealization and

Filtering (PIF) software developed by Blunck and coworkers

(McGuire et al., 2012) to determine the stoichiometry of

oligomers from photobleaching time profiles. The

combination of two codes enabled us to analyze hundreds of

molecules simultaneously for a given image sequence, allowing

high-throughput and excellent statistics on experimental

datasets. Figures 1A–C briefly show the workflow of our high-

throughput single-molecule photobleaching method. First, the

sample at a given aggregation time point was diluted and single

molecules (monomers and oligomers) were immobilized on

polylysine coated surface of glass wells (Figure 1A). TIRF

imaging of single molecules was then carried out on each

glass well using an automated optical microscope equipped

with a Perfect Focusing System (Figure 1B). Single-molecule

photobleaching traces were obtained and then classified

according to their number of photobleaching steps determined

by PIF (Figure 1C). Large datasets can be analyzed without user

bias in the selection or interpretation of the data. With such

automatized data collection and analysis, we can determine

stoichiometry of a hundred thousand oligomers in a day.

We first tested the accuracy and robustness of the method by

CD209 (also known as DC-SIGN). CD209 is a C-type lectin

receptor of dendritic cells involved in early stages of numerous

infectious diseases. It is naturally organized into a tetramer,

thereby enabling multivalent interaction with pathogens

(Feinberg et al., 2005). The protein was site-specifically labeled

by ATTO 488 dye with an efficiency of ~75 % determined by

mass spectrometry. Since not all protein monomers were labeled

by a fluorophore, we predicted the probability p of detecting the

number of fluorophores n in a tetramer by the following

equation: pn � 4!
n!(4−n)!γ

n(1 − γ)4−n, where γ is the labeling

efficiency. Based on our result as shown in Figure 1D, we

estimated the labeling efficiency to be around 80%, in good

agreement with the experimentally measured value,

confirming that the protein was predominantly in its

tetrameric form. Given that pre-photobleaching before

imaging acquisition was negligible in our experiment, we

concluded that apparent monomers, dimers, and trimers

observed were not only due to insufficient labeling but also

due to their dissociation after dilution to pM concentration

for single-molecule imaging.

We then attempted to probe kinetics of the aggregation of

Aβ40 below µM concentration. We studied Aβ40 oligomerization

under a varied set of near-physiological conditions with single-

molecule photobleaching techniques in the presence of copper.

Various immobilization strategies for Aβ40 were explored,

including absorption onto the unmodified borosilicate glass

surface, immobilized onto a poly-L-lysine (PLL) substrate, and

insertion into supported phospholipid bilayers. We found that

PLL was the best choice for the immobilization of Aβ40 oligomers

on the surface. Fluorescent foci were analyed by measuring the

integrated intensity throughout 750 frames, and stoichiometry of

photobleaching traces was determined via PIF (McGuire et al.,

2012). We acquired kinetic oligomerization profiles over a period

of 12 h with and without copper. 500 nMAβ40 was incubated with
and without 5 µM Cu2+ and a minute volume of sample at each

time point were taken and diluted to 50 pM before being applied

to a PLL-coated glass chamber. The low Aβ/Cu stoichiometry

case better resembles the physiological condition where low nM

Aβ are present, while copper released to the synaptic cleft could

reach µM concentrations (Branch et al., 2015). Figure 2 shows the

time profiles determined for the Aβ40 monomer, dimer, trimer,

and above. The mass fraction was used to better represent the

amount of Aβ40 in different oligomeric states. Unlike most

amyloidogenic protein aggregation kinetic experiments that

have been reported, the single-molecule method facilitates

direct access to the distribution of different sized oligomers as

a function of time, making detailed kinetic analysis of the initial

stage of aggregation feasible.

We found the presence of a significant amount of pre-

formed Aβ40 oligomers when samples were incubated at

500 nM concentration (time = 0). More trimers and larger

oligomers (trimer+) were detected in the presence of copper

even for the time 0 measurement. Interestingly, while mass

fractions of monomer and trimer+ exhibit either a time-

dependent decay or rise, the dimer fraction fluctuates
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around a constant mean, suggesting that the dimer could be

the key intermediate in pre-equilibrium with the monomer

and other oligomers on the pathway to nucleation. However,

this result does indicate that there is no dramatic effect of

copper on the timescale of oligomer formation in Aβ40
aggregation at this stage.

Next, we investigated the potential mechanism responsible

for the delayed fibrilization of α-synuclein in the presence of an

increasing concentration of gold nanoparticles, by monitoring

the distribution of α-synuclein oligomeric species in the single-

molecule regime.

Figure 3A shows the ThT assay result for the aggregation of

α-synuclein at different gold nanoparticle concentrations,

suggesting that gold nanoparticles promoted protein

aggregation but delayed the growth phase when its

concentration increased. We labeled α-synuclein with alexa

FIGURE 2
Kinetic profiles of Aβ aggregation are determined by single-molecule photobleaching analysis. 500 nM Aβ was incubated in the presence and
absence of 5 µM Cu2+. Mass fraction instead of molar fraction in the Y-axis was used to better represent the relative population of oligomers.
Oligomers with sizes larger than trimer were binned together with trimers and shown as “Trimer+“. Three experimental repeats were carried out for
each condition (+/- copper) and over 1 million single-molecule photobleaching traces were analyzed in total.
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FIGURE 3
Single-molecule analysis of α-synuclein oligomer distribution. (A) α-Synuclein aggregation in the presence of different concentrations of gold
nanoparticles was monitored by ThT assay. The curves shown are the average of the triplicates. (B) Mass fraction of α-synuclein species in
aggregation solution at 12-h incubation.
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647 at position 7 which was mutated from glycine to cysteine for

single-molecule detection. Single-molecule analysis of the

distribution of α-synuclein species for samples taken at

12 h after mixing 20 µM labeled α-synuclein with 16, 25, and

32 nM 20 nm diameter gold nanoparticles, results shown in

Figure 3B, clearly indicates the increase of monomer fraction and

the decrease of oligomer fractions as the concentration of gold

nanoparticles increases. Since single-molecule data were acquired

at the time point located at the growth phase of the aggregation

(Figure 3A), this result correlates well with the ThT assay which

reveals the order of increased degree of aggregation is the reverse

order of the nanoparticle concentration. We note that, under our

experimental condition, aggregation of α-synuclein in the

absence of gold nanoparticles was not observed by the ThT

assay (Figure 3A), yet oligomers were relatively more populated

in this sample than all others as revealed by single-molecule

analysis. It is likely that, on one hand, the binding of α-synuclein
to gold nanoparticles can enhance seed formation, thus

promoting aggregation; on the other hand, when the ratio of

nanoparticle to α-synuclein increases, oligomers can also be

sequestered by excess binding surface available on gold

nanoparticles, thus delaying aggregation.

We have demonstrated the potential of the high-throughput

single-molecule photobleaching in obtaining oligomeric species

distribution in amyloidogenic protein aggregation. However, the

PIF (McGuire et al., 2012) algorithm is computationally costly,

with computing times becoming prohibitive for very large

numbers of analyzed molecules, thus precluding real-time

analysis of distributions during high-throughput data

acquisition.

To address this data analysis bottleneck, we started to investigate

an alternative solution to the problem of step identification in

photobleaching traces. We used supervised machine learning to

classify bleaching traces into stoichiometric categories based on an

ensemble of measurable quantities of traces themselves. We used

machine learning techniques to learn partitions of this feature space

according to the number of monomers comprising each simulated

trace and thus assign stoichiometry based on learned features of the

dataset.

Simulated traces were constructed first due to the lack of

accurate “ground truth” classifications for experimental

photobleaching traces as well as to compensate for the relative

lack of traces for higher oligomers since without balanced

training data for each oligomer type the model would become

biased towards classes for which it has seen the most examples.

Simulated traces were produced by creating a 500-frame step

function of initial intensity that corresponds to a random

sampling of the single-step photobleaching intensity

distribution from the single-molecule data. Gaussian noise was

added to simulate microscopy imaging noise, with parameters set

matching those measured experimentally from images.

Multimeric molecules were produced as the linear sum of two

or more such traces. Supervised classification learning was

conducted using multiple models, with the most accurate

determined to be either a two-layer multilayer perceptron

neural network (Yu et al., 2019) or an RBF-kernel support

vector machine (Huang et al., 2018). Machine learning trials

with simulated photobleaching traces up to 19-mer were carried

out. Figure 4A shows the workflow of the machine learning and

classification process.

As shown in the confusion matrix (Figure 4B),

misclassification of oligomer stoichiometry was generally

limited to ± 1 monomeric unit from the true value (see

Figure 4C for more details), and the overall accuracy is 83.5%.

In general, the prediction accuracy decreases with the increase of

oligomer size, and the multilayer perceptron (MLP) neural

network and the RBF-kernel support vector machine (SVM)

performed equally well (Figure 4D and Supplementary Figure

S2). Furthermore, the method avoids extreme misclassification of

complex higher-order traces though only the performance up to

19-mer was investigated. Taken together, the approach is a viable

and accurate strategy for oligomer stoichiometry counting, with

obvious utility in single-molecule aggregation kinetics

measurements.

Discussion

We established a high-throughput method to monitor the

progression of early-stage protein aggregation based on the

analysis of single-molecule photobleaching profiles. The

method enabled us to examine the time course of the

population of small Aβ40 oligomers, indicating the feasibility

of directly probing aggregation kinetics of Aβ40 at the level of

individual oligomeric species. Subtle shifts in populations of

oligomer species could be observed under near-physiological

aggregation conditions.

As a demonstration of the method, we investigated the

influence of copper on Aβ40 aggregation in the induction

phase which would be normally masked by studies using

traditional measurements such as the ThT assay. Our previous

study (Branch et al., 2015; Branch et al., 2017) indicated that the

binding of Cu2+ to Aβ is near diffusion limited and the binding

would be completed within milliseconds in the synaptic cleft as

well as under our experimental condition. Therefore, even at the

first time point of the measurement (t = 0), each Aβmolecule was

bound to a Cu2+ ion, resulting in a decrease in the brightness of

the fluorophore labeled at the N-terminus of Aβ by about ~60%

(Branch et al., 2015). However, our imaging platform and data

analysis tool performed well when facing such a reduction in the

fluorescence photon count rate. Admittedly, we were unable to

start the reaction at 100% Aβ40 monomer even though significant

efforts were made in refining the sample preparation because

Aβ40 is a high-aggregation-prone peptide, and as a result, it is

difficult to obtain a peptide that is free of pre-aggregates. This is a

major issue well recognized in the Aβ aggregation research
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FIGURE 4
Machine learning-based classification of realistic photobleaching traces allows accurate determination of oligomer stoichiometry. (A)Overview
of the computational workflowemployed for oligomer subunit predictionwith anMLPmodel. (B)Confusionmatrix showing performance of theMLP
model on the held-out test data. The scale indicates the fraction of each ground truth stoichiometric class predicted to have a given stoichiometry.
(C) True positive rates for the model across all stoichiometric classes. “Relaxed” true positive rates are also shown, where classification is
considered correct if the classification is only ± 1 monomeric unit from the true value. The average relaxed true positive rate across all classes is
98.9 ± 1.1%. (D)Classification accuracy ofMLP and SVMmodels was comparable across all oligomer classes, with both approaches displaying a drop-
off in accuracy for higher-order oligomers.
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(Bharadwaj et al., 2009). At 500 nM, significant populations of

Aβ40 dimer and other small Aβ40 oligomers were present, which

hampered detailed mechanistic modeling of the experimental

data, even though evolutions of the relative population of Aβ40
monomer and small oligomers were obtained. Our attempt with

a low pM concentration sample suggests that in situ detection of

the time profile of dimers and small oligomers is possible when a

low pM sample is monitored, yet the continuous build-up of

molecules on the surface would eventually pose a limit to how

long the aggregation process could be monitored (Supplementary

Figure S1). Further optimization of the sample and sample

immobilization will be necessary. One option would be the

use of recombinant Aβ, which has been shown essential to

obtaining high-quality aggregation data in the ThT assay

(O’Malley et al., 2018). On the sample capturing side, a set of

antibodies which can recognize different Aβ species from

monomer to small oligomers is desirable for our single-

molecule detection platform. Encouragingly, progress has been

made recently in the rational design of a conformation-specific

antibody for the quantification of Aβ oligomers (Aprile et al.,

2020).

Using single-molecule photobleaching analysis, we

successfully differentiated the monomer and small

oligomers present and their relative populations in the

growth phase of α-synuclein aggregation promoted by

20 nm gold nanoparticles. Our results regarding the

concentration-dependent effect of gold nanoparticles on the

half-life of the aggregation process differ from the literature

(Álvarez et al., 2013), exhibiting an increase rather than a

reduction upon the increase of gold nanoparticle

concentration. Since our single-molecule result agrees with

that of the ThT assay, we attribute this discrepancy to

disparities in the fluorescent indicator used and the

protein/gold nanoparticle ratio in these two studies. The

aggregation assay in the literature used a small fraction of

dye-labeled protein called MFC which is considerably more

sensitive in the detection of the early stages of the aggregation

than ThT (Yushchenko et al., 2010). Because of the lower

protein concentration used in our study (20 vs. 100 µM), it is

likely that at a low protein/gold nanoparticle ratio, oligomeric

protein would be sequestered and stay on gold nanoparticles,

hence reducing the number of oligomers available for seed

formation in the induction phase. Consequently, a prolonged

induction phase was observed in our study when the

concentration of gold nanoparticles increased.

Single-molecule approaches have the potential to underpin

the working principles of complex biomolecules as well as reveal

kinetic mechanisms of the protein aggregation process. However,

such approaches generally require extensive sampling to obtain

statistically robust data on distributions of states and kinetic rate

constants connecting these states. Although emerging

experimental techniques, such as the one we used here, can

generate large datasets, existing analysis tools are not suitable to

process the large volume of data obtained in the high-throughput

mode, especially when on-the-fly analysis and display of the

result are preferable. We note that the well-known Chung-

Kennedy algorithm (Chung and Kennedy, 1991) and the

Hidden Markov model (HMM) analysis (Messina et al., 2006)

are computationally expensive. The application of machine

learning approaches in single-molecule analysis has gained

considerable interest recently (Meng et al., 2022; Xu et al.,

2019; Yuan et al., 2020; Thomsen et al., 2020; White et al.,

2020; Li et al., 2020). A deep learning algorithm named

DeepFRET has been demonstrated to reach classification

accuracy on ground truth data by over 95%, not only

outperforming human operators but also reducing the

computation time by two orders of magnitude (Thomsen

et al., 2020). Another unsupervised machine learning

algorithm called DISC can accelerate the analysis of single-

molecule trajectories by three orders of magnitude with

improved accuracy in comparison to commonly used

algorithms (White et al., 2020). Most notably, a convolutional

and long-short-term memory deep learning neural network

(CLDNN) used by Xu and co-workers (Xu et al., 2019)

achieved much higher accuracy and two orders of magnitude

improvement in efficiency compared to HMM for small

oligomers up to tetramer. Built upon the success of CLDNN,

an unsupervised learning framework of the discriminator-

generator network (DGN) was developed which outperforms

both HMM and PIF (Yuan et al., 2020). We adopted supervised

learning approaches based on lightweight artificial neural

networks (Yu et al., 2019) as well as RBF-kernel support

vector machines (Huang et al., 2018), and these approaches

demonstrated excellent capability to classify oligomers up to

19-mer, well beyond the capability of trace idealization

algorithms (PIF, HMM etc.). Classification time for a given

trace was on a sub-millisecond timescale, opening the door to

real-time analysis of oligomer distributions during high-

throughput experiments. In comparison to the literature study

(Xu et al., 2019; Yuan et al., 2020), the accuracy of our deep

learning methods is similar, but we have demonstrated that our

approach is applicable to even larger oligomers. Furthermore,

our approach is quite flexible since photobleaching and imaging

noise are physical phenomena well understood, making

simulation a valid way to train a model and obtain training

parameters before applying them to experimental

photobleaching traces. Future study to compare the accuracy

and efficiency of different machine learning algorithms is

desirable to establish a unified approach for single-molecule

photon trajectory analysis.

However, in comparison to label-free detection methods

which would generally not perturb the aggregation system

under investigation, our high-throughput method does require

site-specific fluorescent labeling which might alter the

physicochemical property of the protein, thereby influencing

the aggregation process. The effect of dye labeling on Aβ
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aggregation has recently been investigated in detail (Wägele et al.,

2019), indicating that HiLyte 647 label tends to favor the

formation of large oligomers in comparison to the HiLyte

488 label though standard ThT assays used to investigate the

kinetics of β-sheet formation display no delay for HiLyte 647-

Aβ40 compared to wild-type Aβ40. It was concluded that for

HiLyte 647-Aβ40, not the nucleation but the fibril growth was

modified. In the case of α-synuclein aggregation, dye labeling is

generally nonperturbative as illustrated by a combination of

in vitro aggregation kinetics measurements and imaging of the

resulting fibrils (Haney et al., 2016). However, it can have a

pronounced effect on the morphology of α-synuclein fibrils

(Mučibabić et al., 2016).

Another notable limitation is that our methodology requires

surface immobilization of the sample for single-molecule

imaging, during which protein oligomers and monomers

might further assemble on the surface to form larger

oligomers. On the other hand, dilution of sample

concentrations well below nM would potentially induce the

dissociation of oligomers prior to their immobilization.

Therefore, care should be taken when comparing results

obtained from high-throughput single-molecule analysis with

label-free ensemble measurements.

Nevertheless, the high-throughput method is capable of

screening compounds that can inhibit protein aggregation. We

are aware that the use of chemical kinetics has recently enabled

accurate quantifications of microscopic aggregation steps that

lead to the proliferation of protein oligomers and the kinetics

strategy has been successfully used to screen small molecules

inhibiting oligomer formation in α-synuclein aggregation (Staats

et al., 2020). Since our platform can directly measure the time

profile of oligomer distribution, we expect that it can be readily

used to determine the effect of compounds that prevent or reduce

amyloid oligomer formation.

In summary, we have introduced our recent efforts in

developing a high-throughput method for amyloidogenic

protein oligomer classification based on single-molecule

stepwise photobleaching analysis. Applications of our

method in copper-induced early stage Aβ40 aggregation as

well as in gold nanoparticle-promoted α-synuclein
aggregation have demonstrated, to some extent, the

potential of such method in elucidating the aggregation

mechanism of Aβ under physiological conditions and

facilitating the understanding of the possible role of copper

in the initiation of Aβ aggregation in the synaptic cleft which

is inaccessible by experimental tools currently available.

Furthermore, we have demonstrated the successful

application of supervised deep learning approaches to

classify single-molecule photobleaching traces and

determine the oligomer size. We envisage that artificial

intelligence is coming to age in single-molecule studies of

amyloidogenic protein aggregation linked to

neurodegenerative diseases.

Materials and methods

Aβ40 sample preparation

HiLyte™ Fluor 647-labeled Aβ40 (HPLC purity >95%) was

purchased from Anaspec. Lab-Tek Chambered

1.0 Borosilicate cover glass was purchased from Thermo

Fisher Scientific. Aβ40 powder was dissolved in a HFIP

(1,1,1,3,3,3-Hexafluoro-2-propanol) solution to break

preexisting β-sheet structures and vortexed gently to mix

well. The solution was divided into aliquots and dried in

open tubes overnight in the fume hood. The peptide was

then further dried under vacuum for 2 hrs to evaporate

HFIP residues and kept at -20°C.

Expression and dye labeling of CD209 and
α-synuclein

An extracellular segment of CD209 (also known as DC-

SIGN) was constructed as described (Mitchell et al., 2001).

Glutamine at position 274 was mutated to cysteine which was

labeled by ATTO 643. α-Syn was expressed using pT7-7 α-Syn
WT, a gift from Hilal Lashuel (Addgene plasmid # 36,046). A

glycine to cysteine mutation was introduced at position 7 and the

protein was labeled by Alexa 647 (Details in Supplementary

Material).

Synthesis of gold nanoparticles

The citrate-stabilized gold nanoparticle was synthesized

by the sodium citrate method (Frens, 1973). 50 ml of the 1 mM

chloroauric acid solution (HAuCl4, cat. no. 484385, Sigma-

Aldrich) was heated with stirring until boiling and different

volumes of 38.8 mM sodium citrate were rapidly added. The

solution was then kept at boiling for further 15 min to give a

wine-red solution which was cooled at room temperature with

stirring. The hydrodynamic diameter of gold nanoparticles

was determined to be 20 nm by DLS using Malvern Zetasizer

Nano series (Malvern Instruments, Worcestershire,

United Kingdom).

Thioflavin T assay of α-synuclein
aggregation

ThT was diluted in a phosphate-buffered saline (PBS) at

the final concentration of 20 μM per well. Various amounts of

gold nanoparticles were mixed with α-synuclein and ThT at a

final concentration of 20 µM for the protein, 20 µM for ThT,

and 16 nM, 25 nM, and 32 nM for the gold nanoparticle.

Mixtures were incubated in a 96-well plate at 37°C with
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shaking every 5 min. After each round of shaking, mixtures

were excited at 440 nm and fluorescence emission at 485 nm

was recorded.

Immobilization of Aβ40, CD209, and α-
synuclein oligomers for single-molecule
imaging

A 200 µL 0.01% poly-L-lysine (PLL) solution was added

to wells and kept for 5 min before draining slides. The

slides were stored overnight at room temperature for the

next day’s use. In the case of Aβ40, an aliquot was

resuspended in the HEPES buffer (50 mM Sodium-

HEPES, 100 mM NaCl, pH 7.5) to make the final

concentration of the peptide 500 nM. The Aβ40 solution

was then incubated with and without 5 µM Cu2+. A minute

sample at each time point was taken and diluted to 50 pM

before being applied to PLL-coated glass chamber. In the

case of α-synuclein, 20 µM α-synuclein in the HEPES

buffer was incubated with different concentrations of

gold nanoparticles and a minute sample at 12-h

incubation time was taken and diluted to 2 pM before

being applied to PLL-coated glass chamber for imaging.

Similarly, 20 pM CD209 in the HEPES buffer was applied

to PLL-coated glass chamber for imaging.

Single-molecule total internal reflection
fluorescence imaging

A total internal reflection fluorescence (TIRF)

microscope based on an inverted Eclipse Ti-E optical

microscope (Nikon, Japan) equipped with a 60× NA

1.49 oil immersion objective (Nikon, Japan) and an

electron-multiplied CCD (IXON DU-897E, Andor

Technologies, Ireland) was used for the acquisition of

imaging sequences. Two single-mode fiber coupled diode

pumped solid state lasers at 473 nm (Cobolt Blues 25,

Sweden) and 647 nm (Laser 2000; United Kingdom) were

used as the excitation source. Laser power at the back

aperture was adjusted by neutral density filters to 1.5 mW

and 0.7 mW for the 473 nm and 647 nm excitation,

respectively. Our customized code enabled simultaneous

laser exposure and image recording, thus minimizing pre-

photobleaching of fluorophores. The code performed

automated photobleaching travels in a vertical line

downward from the top of the wells. It took

approximately 12.5 min to take 20 images of 750 frames

with a 40 ms exposure time. Different areas inside each

chamber were imaged automatically by an encoded high-

speed XY stage with the focal plane being maintained by a

Perfect Focus System (PFS) (Nikon, Japan).

Extraction and analysis of single-molecule
photobleaching traces

A customized multi-step image processing and data analysis

MATLAB code was developed to facilitate the extraction of

photobleaching time profiles and follow-on oligomer

classification. Single-molecule photobleaching traces were

extracted from raw image sequences via an ImageJ macro,

which performed the following image processing operations.

Images were first median filtered (radius = 2 pixels) to

improve S/N ratios. Oligomers were identified by performing

a maximum intensity projection and maxima above a defined

threshold were obtained in this image sequence with the ImageJ

Find Maxima function. Peak locations were used to define a

circular ROI with a 4-pixel radius where counts were integrated

for time series to generate photobleaching time traces.

Subsequently, PIF software (McGuire et al., 2012) was used to

analyze photobleaching time traces.

Machine learning for oligomer size
classification

We investigated artificial neural networks (ANNs) and

support vector machines (SVMs) as methods for treating

oligomer stoichiometry determination from photobleaching

trace measurements as a multiclass classification problem.

Both types of models have found widespread application in

bioinformatics in recent years (Huang et al., 2018; Yu et al.,

2019). We developed bleaching trace simulations in Python

which harnessed key experimentally derivable quantities of

the fluorophore and imaging system under investigation to

produce realistic and experimentally representative traces for

oligomers of up to 19 subunits. We simulated

10,000 oligomers for each stoichiometric class, including an

additional class for traces where no oligomer was present

(i.e., imaging background noise). We used the sklearn library

to partition the data into train, validation, and test sets with a

ratio of 80:10:10. Training was performed with train and

validation sets, with the test set held out for performance

assessment after training. Prior to input to the model, the

dataset was scaled to zero mean and unit variance. We

implemented SVM models using sci-kit learn (Pedregosa

et al., 2011) in Python as well as MATLAB, whilst ANN

models were written in Python using TensorFlow 2

(https://github.com/tensorflow) and Keras (https://keras.io).

Codes on GITHUB are available upon request.

Our MLP neural network model consists two dense, fully

connected sequential layers of 256 neurons per layer with the

ReLu activation function. Each dense layer is followed by a

dropout layer with a dropout rate of 0.5, and the final output

layer implemented a softmax activation to convert layer outputs

into probability scores that a given trace belongs to each of the
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stoichiometric class. We trained the model from a random

weight initialization with categorical cross-entropy loss, and

with a learning rate of 1e-4 using the Adam optimizer. We

used a batch size of 256 during training. In contrast to SVM

models, the MLP model trained rapidly on the 200,000 simulated

trace dataset, in under 30 s on a single NVIDIAQuadro RTX5000

16 GB GPU.

We were able to perform classification with raw trace data

(Supplementary Figure S3); however, performance was improved

by using a feature vector of derivable parameters which

summarizes important facets of the bleaching trace. This

simple ensemble of predictors consists the initial trace

intensity, the integrated intensity of the entire trace, the trace

standard deviation, the trace kurtosis, a traveling window

calculating the mean intensity every 20 frames for the first

200 frames, and a feature termed the “bleaching

gradient”—the ratio of the initial trace intensity to the final

bleaching time. Across all stoichiometries simulated, with the

multilayer perceptron (MLP) model, on average, 98.9% of

oligomers were classified within ± 1 oligomeric subunit of the

ground truth value.
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