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a b s t r a c t

The common causes of Transient Loss of Consciousness (TLOC) are syncope, epilepsy, and functional/dis-

sociative seizures (FDS). Simple, questionnaire-based decision-making tools for non-specialists who may

have to deal with TLOC (such as clinicians working in primary or emergency care) reliably differentiate

between patients who have experienced syncope and those who have had one or more seizures but are

more limited in their ability to differentiate between epileptic seizures and FDS. Previous conversation

analysis research has demonstrated that qualitative expert analysis of how people talk to clinicians about

their seizures can help distinguish between these two TLOC causes. This paper investigates whether auto-

mated language analysis - using semantic categories measured by the Linguistic Inquiry and Word Count

(LIWC) toolkit - can contribute to the distinction between epilepsy and FDS. Using patient-only talk man-

ually transcribed from recordings of 58 routine doctor-patient clinic interactions, we compared the word

frequencies for 21 semantic categories and explored the predictive performance of these categories using

5 different machine learning algorithms. Machine learning algorithms trained using the chosen semantic

categories and leave-one-out cross-validation were able to predict the diagnosis with an accuracy of up to

81%. The results of this proof of principle study suggest that the analysis of semantic variables in seizure

descriptions could improve clinical decision tools for patients presenting with TLOC.

� 2023 The Authors. Published by Elsevier Inc. This is an open access article under the CCBY license (http://

creativecommons.org/licenses/by/4.0/).

1. Introduction

Patients who experience Transient Loss of Consciousness (TLOC)

are frequently asymptomatic on presentation to health services.

This means that investigation and treatment are largely guided

by a clinician taking and interpreting the history available from

the patient (and TLOC witnesses if possible) [1]. The diagnostic

process, therefore, relies heavily on the expertise of the history-

taker. Given that patient typically first present with TLOC in non-

specialist medical settings such as primary and emergency care,

it is not surprising that the median initial misdiagnosis rates

between epilepsy, syncope, and functional/dissociative seizures

(FDS), the three most common causes of TLOC, is around 20%

across different studies (range 2–71%) [2]. Patients who receive

the wrong initial diagnosis may be referred for inappropriate tests

and receive the wrong treatment. Because syncope may be caused

by potentially lethal arrhythmias and uncontrolled epilepsy is

associated with a risk of Sudden Unexpected Death in Epilepsy

(SUDEP), early diagnostic errors and diagnostic delay can be fatal.

The initial management of patients presenting with TLOC could

be improved by reliable decision-making aids or stratification tools

guiding non-specialists to provide management that is appropriate

for the cause of TLOC. However, to date, only a limited number of

potential clinical decision tools have been proposed for this setting

and none have been shown to differentiate reliably between the

three common causes of TLOC [3]. Historical features have been

shown to aid the differentiation between syncope and seizures

[4,5,6]. Therefore, the overall performance of these tools is
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particularly diminished by the challenging differentiation between

people with epilepsy (PWE) and people with FDS (PWFDS) [4].

We hypothesized that it may be possible to improve the ability

of questionnaire-based stratification tools to distinguish between

PWE and PWFDS by incorporating an automated analysis of the

language used by patients answering questions about their sei-

zures. Previous studies based on the qualitative analysis of interac-

tions between patients with seizures and clinicians by experts in

conversation analysis identified a number of differences in diag-

nostic value. Differences have been observed at the levels of lan-

guage use (linguistic level), topic choice (topical level), and

relation to turn-taking behavior (interactional level). For example,

at the linguistic level, PWE and PWFDS display different amounts

of formulation effort while describing their seizures (including

more hesitations (‘‘um”), repetitions (‘‘I I felt”), restarts (‘‘It was

like I felt confused”), and reformulations of descriptions) [7,8].

Their accounts also tend to differ in the use of metaphors that

are used to describe seizure experiences [9], diagnostic labels

[10], and the type of third-party references [11]. At the topical

level, they vary in the extent to which they describe subjective

symptoms. Interactional observations include the degree of resis-

tance patients may exhibit when they are asked to focus on specific

memorable single seizure experiences (such as the first, last, or

worst seizure) [7,8]. Expert evaluations based on linguistic profiles

capturing these observations (and no additional clinical data about

the patient’s seizure disorders) achieved an accuracy of 80–90% in

the differentiation of epilepsy and FDS [12–17]. These findings

highlight the potential of automated language analysis in the dif-

ferentiation between PWE and PWFDS, an idea supported by previ-

ous research using semi-automated methods to detect differences

in formulation effort in seizure descriptions provided by patients in

these two diagnostic groups [18].

Recordings of routine medical encounters represent an effective

way to explore the feasibility of predicting TLOC diagnoses using

an automated analysis of language because the interaction often

includes a lot of information about the patient, their medical his-

tory, and their seizure(s). During the history-taking phase of the

medical interactions [19], the doctor attempts to understand who

the patient is, how the patient’s behavior may be related to the

medical condition, what the illness is, how it has developed, and

whether there are other illnesses present [20]. This interaction

may give rise to other linguistic differences between PWE and

PWFDS based upon the different aetiologies of and experiences

associated with each health condition: FDS are automatic and

uncontrolled responses to emotions, thoughts, sensations, or situ-

ations perceived as threatening [21] and PWFDS report higher

levels of general psychopathology [22], are more likely to experi-

ence panic symptoms during a seizure [22] and catastrophize life

experiences [23] than PWE. This means that the history-taking

phase of clinical interactions can provide a lot of information that

is suitable for exploring whether there are linguistic variations in

the spoken responses of patients that can be incorporated into an

automated analysis of language focussing on seizure descriptions.

1.1. Linguistic Inquiry and Word Count

Linguistic Inquiry and Word Count (LIWC) is an application that

processes text and measures the proportion of words that corre-

spond to different semantic categories [24]. The term ‘‘semantic”

denotes a sub-branch of linguistics related to meaning in language.

In this paper, ‘‘semantic” is used to describe language differences

that center around the use of different words, and semantic cate-

gories describe categories that contain multiple words that share

similar or related meanings based on some arbitrary concept. The

words in each semantic category were generated using previous

research. This research involved the evaluation of the validity

and reliability of each category by a panel of judges and by explor-

ing the frequency of category activations and similarity with

human ratings across a broad range of text documents [25–27].

The application has been used to compare semantic differences

between people with and without various psychiatric conditions,

for example, social anxiety, borderline personality disorder,

depression, and Alzheimer’s disease [28–31]. Moreover, the appli-

cation of LIWC to semi-structured interviews with PWE and

PWFDS found that PWE used significantly more instances of

‘‘she/he”, ‘‘we” and family references compared to PWFDS [32].

These findings demonstrate the potential of LIWC to detect linguis-

tic patterns associated with a specific health condition.

1.2. Aim

The objective of this paper is to explore how effectively seman-

tic categories from the LIWC application can predict a diagnosis of

epilepsy or FDS when applied to the history-taking phase of rou-

tine seizure clinic encounters. The focus was on semantic cate-

gories that align with the linguistic differences observed in

previous differential diagnostic research.

2. Method

2.1. Data

The dataset consisted of 58 manually transcribed recordings of

encounters involving patients and neurologists in a routine seizure

clinic setting. The recordings were originally collected for previ-

ously published conversation analysis studies [11,33]. The neurol-

ogists in one group of interviews took part in a training program

aiming to enhance their ability to pick up interactional and linguis-

tic differential diagnostic features during their clinic interactions

with patients. During the training, they were instructed to ask par-

ticipants about their first, most recent, and worst seizure, and

encouraged not to interrupt patients during their narratives [33].

The neurologists in the second group had received no instructions

[11]. Recordings were included in the analysis if a final medical

diagnosis had been confirmed by a review of all clinical data by

an epileptologist or the diagnosis had been confirmed by the

video-EEG recording of a typical seizure. Patients were only

included if their final diagnosis was one of epilepsy (N = 37) or

FDS (N = 21). Two stages of the medical encounters, establishing

the reason for the visit and the history taking [19] were manually

extracted from the whole interaction before the doctor started

talking about the diagnosis.

2.2. Linguistic Inquiry and Word Count

The recordings of the doctor-patient interactions were manu-

ally transcribed. A manually created algorithm was used to extract

the text that corresponded to all patient turns during the target

subsection of the interaction. The most recent version of the LIWC

application has a dictionary of almost 6400 words across 93 differ-

ent semantic categories [34]. We followed a hypothesis-driven

approach based on previous research focussing on the differentia-

tion of patients’ epileptic seizures or FDS to identify 21 potentially

relevant semantic LIWC categories and used these categories to

build an automatic classification algorithm.

We included five semantic categories that measured the fre-

quency of social words (‘‘We”, ‘‘She/He”, ‘‘Family”, ‘‘Social”, and

‘‘Affiliation”) because previous research has demonstrated group

differences for ‘‘We”, ‘‘She/He” and ‘‘Family” [32] and PWFDS are

more likely to make catastrophizing third party references,

whereas PWE are more likely to make normalizing third party
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references [11]. The categories ‘‘Risk” and ‘‘Reward” were included

to detect differences in anxiety, catastrophization, and avoidance

[23,35]. ‘‘Cause” was selected because people with FDS have previ-

ously reported that seizures cause greater disruption to their

everyday life compared to people with epilepsy [36]. Seven cate-

gories were included to measure differences in emotive language

(‘‘Emotional tone”, ‘‘Affect”, ‘‘Positive emotions”, ‘‘Negative emo-

tions”, ‘‘Anxiety”, ‘‘Anger”, and ‘‘Sad”) to capture differences associ-

ated with levels of general psychopathology [21] and any

associations between emotional processing and experiences and

FDS [21,35,36]. The categories ‘‘Focus Present” (measuring the

number of present tense verbs) and ‘‘Quantifiers’’ (words that

express quantity) were included because PWFDS display an

increased tendency to talk about seizures in general rather than

focussing on the description of a single seizure experience in the

past tense, for example ‘‘in most of my seizures” and ‘‘in all of

my seizures” [7,8]. Two categories (‘‘Certainty” and ‘‘Tentative-

ness”) were used to measure varying levels of certainty associated

with descriptions, for example, increased tentativeness during the

description of subjective symptoms for PWE and increased ten-

dency to make absolute negations for PWFDS [7,8]. Finally, the

two categories were included to measure different metaphoric

conceptualizations (‘‘Space” and ‘‘Power”) frequently observed in

descriptions of seizures [9] and the increased focus on the circum-

stances and consequences of seizures (‘‘Space”) for PWFDS [9].

We conducted group comparisons for each semantic category to

gain insight into which categories may be the most effective for

future research. The Shapiro-Wilk test was used to test the normal-

ity of each variable, and the Levene test was used to test for homo-

geneity of variance. Group differences for each semantic category

were calculated using an independent T-Test or Mann-Whitney U

Test depending on whether the variables were normally dis-

tributed and if the samples had equal variances. No correction

was made for multiple comparisons because of the exploratory

aim of this study. Corrections for multiple comparisons would have

increased the risk of making a type 1 error, which could prevent

future researchers from exploring variables that may improve the

predictive performance of machine learning models.

2.3. Demographic and general speech differences

A chi-squared test of independence was performed to investi-

gate whether there was a significant difference in gender between

PWE and PWFDS. There was no significant difference between

these variables X2 = (1, N = 58) = 0.431, p = 0.511.

A Mann-Whitney U test was used to evaluate whether there

was a difference in the word count and total number of unique

words per transcript for PWE and PWFDS. We found that PWFDS

spoke more words in general (median = 1445) compared to PWE

(median = 1115), U = (1, N = 58) = 275, p < 0.05. Moreover, PWFDS

spoke more unique words (median = 351) compared to PWE

(median = 271), U = 230.5, p < 0.01.

2.4. Classification

Different machine learning models are often more effective on

different data types and classification tasks. We explored the clas-

sification performance of multiple machine learning classifiers to

identify the algorithms most suited to the differentiation between

people with epilepsy and FDS using an automated analysis of lan-

guage because the identification of the best-performing algorithm

could guide future research. The classification performance of the

semantic categories was evaluated using five different machine

learning models trained using the sci-kit learn toolkit in Python

[37]: Random Forest [38], Support Vector Machine with either a

linear or Radial Basis Function (RBF) kernel [39], Logistic Regres-

sion, and K-Nearest Neighbour [40]. Each model was trained using

‘‘leave-one-out” cross-validation and a nested search for the opti-

mum hyper-parameters to prevent overfitting [41]. The impor-

tance of each feature for the best-performing machine learning

models was determined using an ablation analysis where each fea-

ture was removed, and the classification accuracy of the model was

recalculated. Features that resulted in the largest decrease in clas-

sification accuracy were considered the most important.

3. Results

3.1. Comparison of the semantic categories

There were significant between-group differences in 11 of the

21 LIWC variables (Table 1). The semantic categories with a signif-

icant group differences were ‘‘Negative emotions”, ‘‘Emotional

tone”, ‘‘Quantifiers”, ‘‘Focus present”, ‘‘Sad”, ‘‘Reward”, ‘‘Anger”,

‘‘Family”, ‘‘Power”, ‘‘Cause”, and ‘‘Affiliation”.

3.2. Classification performance

The results of the classification analysis demonstrate a large

degree of variation between the five classifiers (Fig. 1). The best

performance was demonstrated with the three non-linear classi-

fiers, which were the K-Nearest Neighbour classifier (accu-

racy = 81%), the support vector machine with an RBF kernel

(accuracy = 77.6%), and the Random Forest algorithm (accu-

racy = 69%). The two classifiers that use a linear operation per-

formed less effectively (Support Vector Machine with a linear

kernel, accuracy = 67.2%, and the Logistic Regression algorithm,

accuracy = 62.1%). All classifiers were better at identifying individ-

uals with FDS because they demonstrated a greater specificity

(70.3–83.8%) than sensitivity (42.9–76.2%).

3.3. Most important features

The most important features were calculated for the K-Nearest

Neighbour model and the SVM model with the RBF kernel. The top

nine most important features determined from the ablation analy-

sis were: ‘‘Focus present tense”, ‘‘Emotional tone”, ‘‘Tentativeness”,

‘‘Quantifiers”, ‘‘Reward”, ‘‘Social”, ‘‘Affect”, ‘‘We”, and ‘‘He/She”. The

subsequent four features (‘‘Positive emotion”, ‘‘Family”, ‘‘Cause”,

and ‘‘Affiliation”) had the same importance score. Furthermore,

four out of the top nine features were among the features within

our analysis showing significant group differences in the single-

item comparisons, excluding ‘‘Tentativeness”, ‘‘Social”, ‘‘Affect”,

‘‘We”, and ‘‘He/She”. The support vector machine with an RBF ker-

nel appeared to be the most stable machine learning algorithm

because there was no change in the accuracy of the model when

13 out of the 21 features were removed independently, suggesting

that this model is less reliant on individual features, whereas

k-nearest neighbors demonstrated the most and largest changes

due to the removal of features (Fig. 2).

4. Discussion

This paper explored the feasibility of differentiating between

spoken accounts of epileptic and functional/dissociative seizures

(FDS) by comparing semantic differences between the words

patients use in routine medical encounters. Using 21 semantic cat-

egories measured using the Linguistic Inquiry and Word Count

(LIWC) application, we were able to accurately predict the diagno-

sis of epilepsy or FDS in up to 81% of cases. The best classification

performance was achieved using the K-Nearest Neighbour and

SVM-RBF algorithms. These findings support previous research
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suggesting that linguistic features extracted from spoken seizure

descriptions could be used for diagnostic predictions [18] and sug-

gest that semantic word categories could be effective features to

incorporate into an automated analysis of spoken descriptions of

seizures and the medical history [18].

In addition to exploring the predictive performance of the

semantic categories, we explored the contribution of independent

features to determine the most effective features for the classifica-

tion task. Although we observed a significant group difference for

11 of the 21 semantic categories, only four of these variables were

in the top ten performing features in the two best-performing

models. This demonstrates that semantic categories may be effec-

tive for predicting the diagnosis without distinct group differences,

potentially due to complex relationships between the different

semantic categories that can be captured by these machine learn-

ing algorithms. Future researchers may wish to use these findings

to select a lower number of features to incorporate into their

model.

A comparison of different machine learning algorithms demon-

strated that the non-linear models (K-Nearest Neighbours, Support

Vector Machine with RBF kernel, and Random Forest) outper-

formed the models that used a linear decision boundary or hyper-

plane (Logistic Regression and Support Vector Machine with linear

kernel). This finding suggests the presence of non-linear group dif-

ferences in language between people with epilepsy or FDS. Future

research should consider this when designing similar machine-

learning pipelines.

This research could be advanced by exploring the potential of a

fully automated system where people speak with a virtual agent

(VA) and their responses are automatically analyzed in real-time

to generate a diagnostic prediction. A similar VA is currently being

developed as a stratification tool for patients presenting with

memory problems [41]. The present proof-of-principle analysis

provides a baseline for how well a computer may analyze the spo-

ken language used by patients during the history taking in routine

medical consultations. Future research may explore whether better

Table 1

Means and standard deviations (parametric) or medians and interquartile ranges (non-parametric) of the percentage of words per semantic category for PWE and PWFDS. The t-

value and p-value are reported for each group comparison unless otherwise specified.

Semantic category PWE PWFDS T value P-value

Negative emotions y 1.04 (1.17) 1.73 (0.57) M = 210 P < 0.01

Emotional tone y 28.8 (28.35) 21.95 (7.83) M = 216 P < 0.01

Quantifiers y 1.7 (0.91) 2.19 (0.4) M = 229 P < 0.01

Focus present y 10.5 (3.54) 12.94 (2.64) M = 230.5 P < 0.01

Sad y 0.21 (0.32) 0.38 (0.27) M = 231.5 P < 0.01

Reward 1.035 (0.61) 1.399 (0.44) T = �2.356 P < 0.05

Anger y 0.05 (0.2) 0.18 (0.23) M = 271.5 P < 0.05

Family y 0.26 (0.37) 0.35 (0.69) M = 272 P < 0.05

Power 1.189 (0.55) 1.489 (0.38) T = �2.181 P < 0.05

Cause 1.184 (0.66) 1.568 (0.59) T = �2.179 P < 0.05

Affiliation y 0.52 (0.52) 0.71 (0.33) M = 285.5 P < 0.05

Space 5.517 (1.74) 6.254 (1.05) T = �1.736 P = 0.08

Social 5.638 (2.07) 6.7 (1.97) T = �1.879 P = 0.07

Risk y 0.39 (0.39) 0.48 (0.41) M = 286.5 P = 0.05

We y 0.06 (0.2) 0.14 (0.29) M = 291 P = 0.05

SheHe y 0.72 (1.1) 0.9 (1.09) M = 289 P = 0.05

Affect 2.76 (0.91) 3.09 (0.64) T = �1.431 P = 0.16

Positive Emotions y 1.54 (0.63) 1.4 (0.42) M = 313.5 P = 0.11

Anxiety y 0.29 (0.46) 0.31 (0.38) M = 318.5 P = 0.13

Certain 1.62 (0.77) 1.489 (0.59) T = 0.663 P = 0.51

Tentativeness y 2.78 (1.34) 2.65 (1.47) M = 388 P = 0.5

y - Mann Whitney U, median, and interquartile ranges are reported when variables were not normally distributed or the homogeneity of variance assumption was violated.

Fig. 1. A comparison of the performance (accuracy, sensitivity, and specificity) of each of the machine learning algorithms using all 21 semantic categories.
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diagnostic differentiation could be achieved if spoken seizure

descriptions from patients are sampled in more standardized ways,

for instance by a VA.

An interesting observation from this analysis is that PWFDS typ-

ically said more in their interactions with clinicians than people

with epilepsy. This finding was unexpected because previous

research has found that PWFDS typically provide less detailed

descriptions of their seizures and are more likely to use complete

negations instead of describing their seizure experiences more pre-

cisely (e.g. statements like ‘‘I don’t remember anything”) [7,8]. One

potential explanation is that the wider history-taking procedure

also involves conversations about other areas of the patient’s

health, for example, conversations about the consequences of sei-

zures, the impact they have on the patient’s life, potential causes

of the seizure, and information about previous medical interactions

and other comorbid health conditions. This finding may be impor-

tant for designing a fully automated system because it demon-

strates that PWFDS can have a lot to say during medical

interactions and that questions focussing on what happened dur-

ing the seizure may not capture all the variations in the responses

that allow these semantic categories to perform effectively in the

machine learning models.

4.1. Limitations

One limitation of this analysis is that the LIWC categories were

designed to measure these semantic concepts broadly and are not

tailored to seizure consultations. They are not able to measure

important semantic categories associated with seizure descrip-

tions, for example, the label used for the chief complaint [10] or

descriptions of subjective symptoms [7,8]. They contain many key-

words unrelated to seizure consultations. It may be possible to

generate semantic categories that are customized for seizure con-

sultations that are better able to differentiate between PWE or

PWFDS, but future research would need a larger dataset to detect

the broad range of words used for these semantic categories. A sec-

ond limitation is that the questions that the neurologist asked the

patient were not standardized. Although some of the neurologists

had received instructions about what questions to ask patients as

part of the original research project [33], these instructions did

not apply to the whole history-taking procedure and the neurolo-

gists whose consultations were studied in the other project had

received no instructions [11]. Future research should explore

semantic differences in interactions where every participant is

asked the same question because this may change what words

people use in the interaction. A third limitation of this analysis is

that it focuses on independent words and does not consider the

wider context of keywords within the talk. The LIWC may not be

as effective at identifying semantic constructs compared to human

raters because people are able to label a whole segment of text as

corresponding to a construct, whereas LIWC only detects the key-

words from that segment [27]. There are more complex, non-

linear, machine learning algorithms that can process a segment

of text rather than a single word, for example, recurrent neural net-

works with long short-term memory [42], that could be used to

overcome these limitations. However, these methods typically

require larger datasets to be effectively used. Finally, this analysis

uses manual transcripts instead of automatic speech recognition.

Although this has allowed us to test the proof-of-principle of this

method, automatic speech recognition would be required for an

automatic stratification tool and a small proportion of words will

be misidentified due to the associated word error rate, which

may change the predictive accuracy of this method.

5. Conclusion

These findings evidence that semantic differences in the contri-

butions of patients with epilepsy or FDS during the history-taking

phases of medical consultations can be identified automatically

and may have differential diagnostic value. In this proof of princi-

ple study, these differences predicted the diagnosis with a good

level of accuracy using non-linear machine learning classifiers.

Our results support previous qualitative and quantitative research

demonstrating that language can be analyzed to predict the cause

of seizures and provides further evidence to suggest that auto-

mated analysis of language could improve the challenging differ-

entiation between epilepsy and FDS. These findings are relevant

for researchers and clinicians who are aiming to develop clinical

decision tools for TLOC. Our findings suggest that incorporating

methods of automatically collecting and evaluating information

related to TLOC from patients may support the identification of

the different health conditions associated with TLOC. These clinical

decision tools could help to stratify patients presenting with TLOC

to ensure that they are referred to the most appropriate further

specialist assessment and treatment pathways and reduce the risk

of diagnostic delay and misdiagnosis.

Fig. 2. The change in classification accuracy (x-axis) for each classification model

(hue) when each feature (y-axis) is removed from the analysis independently.
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