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José Ángel Castellanos-Reyes,1, ∗ Paul Zeiger,1 Anders Bergman,1 Demie

Kepaptsoglou,2, 3 Quentin M. Ramasse,2, 4, 5 Juan Carlos Idrobo,6 and Ján Rusz1, †

1Department of Physics and Astronomy, Uppsala University, Box 516, 75120 Uppsala, Sweden
2SuperSTEM Laboratory, SciTech Daresbury Campus, Daresbury WA4 4AD, United Kingdom

3Department of Physics, University of York, York YO10 5DD, United Kingdom
4School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT, United Kingdom

5School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, United Kingdom
6Materials Science and Engineering Department,

University of Washington, Seattle, Washington 98195, USA

(Dated: February 23, 2023)

Magnon diffuse scattering (MDS) signals could, in principle, be studied with high spatial resolu-
tion in scanning transmission electron microscopy (STEM), thanks to recent technological progress
in electron energy loss spectroscopy. However, detecting MDS signals in STEM is technically chal-
lenging due to their overlap with the much stronger thermal diffuse scattering (TDS) signals. In bcc
Fe at 300 K, MDS signals greater than or comparable to TDS signals occur under the central Bragg
disk, well into a currently inaccesible energy-loss region. Therefore, to successfully detect MDS in
STEM, it is necessary to identify conditions in which TDS and MDS signals can be distinguished
from one another in regions outside the central Bragg disk. Temperature may be a key factor due to
the distinct thermal signatures of magnon and phonon signals. In this work, we present a study on
the effects of temperature on MDS and TDS in bcc Fe—considering a detector outside the central
Bragg disk—using the frozen phonon and frozen magnon multislice methods. Our study reveals that
neglecting the effects of atomic vibrations causes the MDS signal to grow approximately linearly up
to the Curie temperature of Fe, after which it exhibits less variation. The MDS signal displays an
alternating behavior due to dynamical diffraction, instead of increasing monotonically as a function
of thickness. The inclusion of the Debye-Waller factor (DWF) causes the linear growth of the MDS
signal to change to an oscillatory behavior that exhibits a predominant peak for each thickness,
which increases and shifts to higher temperatures as the thickness increases. In contrast, the TDS
signal grows more linearly than the MDS signal (with DWF) but still exhibits appreciable dynamical
diffraction effects. An analysis of the signal-to-noise ratio (SNR) shows that the MDS signal can be
a statistically significant contribution to the total scattering intensity under realistic measurement
conditions and reasonable acquisition times. For example, our study found that an SNR of 3 can be
achieved with a beam current of 1 nA in less than 30 minutes for a bcc Fe sample with a thickness
of 16.072 nm at a temperature of 500 K.

I. INTRODUCTION

Scanning transmission electron microscopy (STEM) is
a powerful and versatile technique to study and char-
acterize micro- and nanostructures [1]. Recent progress
in STEM monochromators and spectrometers has made
it possible to perform electron energy loss spectroscopy
(EELS) with sub-10 meV energy resolution at nano-
metric and atomic spatial resolutions [2–5]. This has
opened the possibility for high-spatial-resolution STEM-
EELS studies of elementary excitations in the zero-to-
few-hundreds meV range, such as molecular vibrations,
infrared plasmons, and phonons [6]. It has been pointed
out that high spatial resolution STEM-EELS could, in
principle, be performed also for magnons [7–9], since their
excitation energies lie in the same range [10].

Magnons are quanta of collective spin excitations
(quantized spin waves), pictured semiclassically as waves
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of precessing magnetic dipole moments [10]. These quasi-
particles lie at the core of the current understanding
of the ordered magnetism of solids [11, 12]. Therefore,
studying magnons at high spatial resolution in STEM
would be relevant not only for magnetic solid-state tech-
nologies (such as spintronics, spin caloritronics [13, 14],
and magnonics [15]) but also for the foundations of solid-
state magnetism.

Detecting magnon signals in STEM is technically chal-
lenging, since they are typically orders of magnitude
less intense than the so-called thermal diffuse scatter-
ing (TDS) signals [7, 9]—produced by the inelastic scat-
tering of the electron probe due to lattice vibrations
(i.e., phonons). For example, in Ref. [7] it was reported
that the simulated TDS signal for bcc Fe at 300 K is
four orders of magnitude greater than the correspond-
ing magnon diffuse scattering (MDS) signal. More-
over, the simulations of Ref. [9] for the same system
showed that MDS signals greater than or comparable to
TDS signals are found only for scattering angles smaller
than 0.5 mrad, under the central Bragg disk. This re-
gion corresponds—through the dispersion relation—to
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magnons with energies below 10 meV [10], practically
on the current energy resolution limit of monochromated
EELS [2–5].
Hence, to achieve MDS detection in STEM at high-

spatial resolution, it is necessary to find conditions in
which MDS and TDS signals can be told apart. In par-
ticular, as has been argued in Ref. [7], temperature could
play a decisive role for this purpose.
In this Article, we investigate the behavior of MDS

at different temperatures and explore the possibility of
temperature-aided detection of MDS in STEM. Employ-
ing the prototypical bcc Fe as the magnetic system and
the methodology developed in Ref. [7], we investigate
the temperature dependence of simulated MDS signals.
From the studied cases, we establish optimal combina-
tions of temperature and sample thickness having the
highest MDS signals. In particular, we focus on signals
surrounding the central Bragg disk to explore and ad-
dress the challenge reported in Ref. [9]. Finally, we com-
pare our results with TDS simulations and discuss the
feasibility of MDS detection in STEM.

II. METHODS

To simulate the inelastic electron-probe scattering on a
specimen at a certain temperature in STEM, it is neces-
sary to have a model for the specimen at the considered
temperature and to implement a method for electron-
beam propagation through it. In this work, the inelastic
signals—TDS and MDS—of ferromagnetic bcc Fe are ob-
tained following the methodology of Ref. [7]. Explicitly,
the TDS signals are calculated via the frozen phonon mul-
tislice (FPMS) method [16] and the MDS signals via the
analogous frozen magnon multislice (FMMS) method,
originally introduced in Ref. [7]. These methods are
named “frozen” because each electron from the STEM
probe travels with a relativistic speed, interacting with
the specimen in a time on the order of tens of attosec-
onds, at which the motion of atoms and their magnetic
moments looks practically “frozen.”
To simulate the electron-beam propagation through

the specimen in FPMS, the conventional multislice
method [17] is employed. In FMMS, to account for
the effects of spins and magnetism, the Pauli multislice
method [18, 19] is utilized. We employed an in-house
developed software for both multislice methods.
For TDS calculations at a given temperature, the mag-

netic moments of Fe atoms are completely ignored, and
the dynamics of the Fe atomic vibrations (phonons) are
obtained through molecular dynamics (MD) simulations.
Meanwhile, for the MDS calculations, atomistic spin dy-
namics (ASD) [10] simulations are employed to obtain the
dynamics of the magnons—i.e. the evolution of the pre-
cessing magnetic moments of Fe atoms (of imposed con-
stant magnitude)—assuming that the atomic positions
are kept fixed. ASD simulations accurately model the
dynamics of thermally excited magnetic moments con-

figurations in a manner analogous to how MD does for
atomic vibrations.
In FPMS, the TDS signal is obtained by sampling over

the possible atomic displacements configurations [16, 20].
Analogously, the MDS signal in FMMS is computed by
sampling over the magnetic moments configurations [7].
In both FPMS and FMMS, the inelastic signal at the
diffraction plane, for a given temperature, is calculated
as the difference between the so-called incoherent and
coherent intensities [7, 21, 22]. On the one hand, the in-
coherent intensity—corresponding to the total scattered
signal Itot in the diffraction plane—is the average, over all
samples, of the exit wavefunctions’ intensities (squared
amplitudes). On the other hand, the coherent intensity
is the squared amplitude of the averaged exit wavefunc-
tions, and it corresponds to the purely elastic scattering
signal Iela in the diffraction plane. Therefore, the inelas-
tic signal Iine(T ) at temperature T is given by

Iine(T ) = Itot(T )− Iela(T ), (1)

where “ine” stands for MDS in the case of FMMS, and
TDS in the case of FPMS.
We have chosen ferromagnetic bcc Fe as our model

system because it is a prototypical magnetic material
for which magnons have been detected using electron
beams [23]. Moreover, the methodology discussed above
has already been tested in Ref. [7] for bcc Fe.
For the calculations, we have employed supercells St

consisting of 20×20× (14t) repetitions of the bcc Fe unit
cell (in x, y, and z directions, respectively; see Fig. 1),
with t ∈ {1, 2, 3, 4, 5} to account for five different thick-
nesses, of dimensions 5.74×5.74× (4.018t) nm3, contain-
ing 11200t atoms. Periodic boundary conditions were
considered in x, y, and z directions.

FIG. 1. Scheme of the system under consideration. A 200 kV
aberration-free STEM electron probe, propagating in z direc-
tion with 1 mrad convergence semiangle, illuminates a unit
cell of bcc Fe at a certain temperature, with lattice param-
eter 0.287 nm and 2.30 µB atomic magnetic moment (µB is
the Bohr magneton).
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To implement FMMS, we generated a representative
sampling of the magnetic moments configurations from
ASD simulations using the UppASD code [10, 24]. We con-
sidered the Heisenberg Hamiltonian with exchange inter-
actions and magnetic moments computed ab initio with
the scalar-relativistic SPRKKR code [25]. The magnitude
of Fe magnetic moments was 2.30 µB (where µB is the
Bohr magneton). To account for the effect of the micro-
scope’s objective lens, we have included a 1 T external
static magnetic field oriented along the positive z direc-
tion. A sample of 101 configurations per temperature—
from 0 K to 1700 K—was obtained by taking a snapshot

(i.e., a static configuration), every 10 fs, out of an ASD
simulation with a 0.1 fs time step. To minimize the corre-
lation between different snapshots, we set a large Gilbert
damping parameter α = 0.5 in the simulations. Then,
for each snapshot, we performed a Pauli multislice sim-
ulation. Finally, the MDS signal at a given temperature
was obtained using the coherent and incoherent averages
(over all the snapshots) as in Eq. (1). A discussion about
the level of convergence of our calculations in terms of
the accuracy of the computed averages is presented in
Appendix A.

Analogously, we performed FPMS simulations using
snapshots sampled from trajectories of constant temper-
ature MD simulations (“NV T ensemble”) in the LAMMPS
software [26, 27][28]. The size of the supercell was set
in the same way as in the UppASD calculations described
above. The simulations were run using a Nosé-Hoover
thermostat, which maintained the specified temperature
with a temperature damping parameter Tdamp = 100 fs.
In order to account for thermal expansion, the aver-
age lattice parameter in the NV T ensemble simulations
was determined from constant temperature and constant
pressure MD simulations (“NPT ensemble”) for each
temperature. The time step of the MD simulation was set
to 1 fs and the interatomic forces between Fe atoms were
described by a so-called embedded-atom method (EAM)
potential [29]. Similar to the case of the FMMS sim-
ulations, we sample 101 configurations per temperature
from the MD trajectories in the NV T ensemble by tak-
ing a snapshot of the atomic positions every 1000 fs after
an initial thermal equilibration time of 10000 fs.

In the conventional and Pauli multislice simulations,
following the discussion of Ref. [7] regarding the res-
olution of inelastic signals in the diffraction plane, we
have employed a 200 kV aberration-free electron probe
focused on the entrance surface of the supercell, with a
1 mrad convergence semiangle, propagating in z direction
(see Fig. 1). For the supercell St, the multislice calcula-
tions were performed on a regular grid Gt consisting of
1000×1000×(420t) points in x, y, and z directions, span-
ning the entire supercell.

The magnetic field B(r) and vector potential A(r)
produced by Fe magnetic moments on a given snapshot
(used for multislice simulations) were calculated using the
parametrization by Lyon and Rusz [30], which has been
successfully benchmarked against density functional the-

ory calculations of bcc Fe.
For the electrostatic potential V (r) of Fe atoms, we em-

ployed the parametrization by Peng et al. [31]. Addition-
ally, we implemented the Debye-Waller factor (DWF) [11]
into V (r) to account for the attenuation of elastic signals
due to thermal motions in FMMS simulations [32]. The
mean-squared displacements (MSD) used for the imple-
mentation of the DWF were computed from a running
average of the MSD, computed at every time step in the
aforementioned MD simulations in the NV T ensemble,
and are presented in Table I in Appendix B.
In all cases, V (r), B(r), and A(r) were computed in

the gridpoints of Gt surrounding each Fe atom up to a
specified cutoff distance rcut, above of which all are set
to zero. The specific value of rcut used in each case was
chosen as a compromise between numerical accuracy and
computational resources demand, see Appendix C.

III. EFFECTS OF THE TEMPERATURE ON

MDS AND FEASIBILITY OF

TEMPERATURE-AIDED DETECTION

The aim of this work is to investigate the behavior of
MDS at different temperatures, particularly, to explore
the possibility of temperature-aided MDS detection in
STEM. Therefore, we start our study in Subsection IIIA
presenting the general features of the resulting electron-
probe diffraction patterns. At this first stage, we select
a STEM detector that collects relevant MDS signals sur-
rounding the central Bragg disk and study these signals
as a function of temperature in the following.
In Subsection III B we study the MDS while completely

ignoring the effects of atomic vibrations. Therein, we
present the results of the MDS as a function of temper-
ature for all the specimen thicknesses considered.
One of the effects of atomic vibrations is the atten-

uation of elastic signals as the scattering angle and/or
the temperature increase [11]. This effect can be intro-
duced in static-lattice calculations by implementing the
Debye-Waller factor (DWF). Hence, to continue our in-
vestigations, in Subsection III C we study how the DWF
changes the MDS signal as a function of temperature, in
the first approximation to the effects caused by atomic
vibrations.
To complement, in Subsection IIID we show simula-

tions of the TDS signal (ignoring completely the mag-
netic moments of Fe) and contrast it with the MDS sig-
nal. Finally, in Subsection III E we discuss the implica-
tions of our findings for the successful detection of MDS
in STEM.
All the intensities presented in the figures of this work

are divided by the total intensity of the incident elec-
tron beam integrated over the whole diffraction plane,
I0, to show dimensionless results. Moreover, when plot-
ted in regions of the diffraction plane, as a function of the
scattering angle, they actually correspond to intensities
integrated over pixels. This is the case for Figs. 2, 4, 7,
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and 8. The size of a pixel in our calculations (that can be
computed from the parameters described in Section II)
is 0.19 mrad2.

A. MDS diffraction patterns and selection of an

annular dark-field detector

We simulated MDS signals for different temperatures
and thicknesses fixing the atomic positions, both when
including and ignoring the DWF. The relevant features
of all the resulting diffraction patterns can be appreciated
in Fig. 2, showing results for bcc Fe of 20.09 nm thickness
at 1700 K, including the DWF.
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FIG. 2. Diffraction patterns calculated for bcc Fe of 20.09 nm
thickness at 1700 K, including the Debye-Waller factor
(DWF). (a) Total signal log

10
(Itot/I0) [I0 denotes the total

intensity of the incident electron beam integrated over the
whole diffraction plane] and annular dark-field detector (ADF;
shown in green dashed lines). (b) Magnon diffuse scattering
(MDS) signal log

10
(IMDS/I0).

The general behavior of the total signal is illustrated in
Fig. 2(a), showing log10(Itot/I0). The total signal con-
sists of Bragg disks, alternating on high and low (for-
bidden reflections) intensities, with low-intensity lobes
surrounding the high-intensity Bragg disks.
The MDS signal, log10(IMDS/I0), computed from

Eq. (1), is shown in Fig. 2(b). In particular, it can be
appreciated that the MDS signal is concentrated around
the high-intensity Bragg disks, vanishing away from the
center of the diffraction plane. We employed rcut = 1 nm
in Fig. 2 for a better resolution of the MDS near the
Bragg disks (see Appendix C). In particular, the highest
MDS signal is located within the central Bragg disk, in
agreement with Ref. [9]. Therefore, for experimental de-
tection, it is relevant to analyze the MDS signal at small
scattering angles surrounding the central Bragg spot.
Thus, to study the effects of temperature, we consid-

ered an annular dark-field (ADF) detector [17] of inner
collection semiangle 2 mrad and outer collection semi-
angle 7 mrad [illustrated by the green dashed lines in
Fig. 2(a)]—to avoid all Bragg disks, including the for-
bidden reflections. Hence, this detector collects only the
MDS signal. In particular, as discussed in Appendix C,
the calculations in this ADF detector are already con-
verged at rcut = 0.4 nm—having MDS signals two orders
of magnitude greater than the error coming from the av-

eraging process (see Appendix A). Therefore, in the fol-
lowing, we study the effects of temperature on the sig-
nals collected by the aforementioned ADF detector using
rcut = 0.4 nm.

B. MDS neglecting the effect of the atomic

vibrations

In the top panel of Fig. 3, we show the simulated MDS
signals as a function of temperature for the five different
thicknesses considered in this work (in all cases, the con-
tinuous lines joining the computed values are only a guide
to the eye). Specifically, we present IMDS/I0 collected by
the selected ADF detector up to 1700 K (the melting tem-
perature of our system is around 1800 K). It can be ap-
preciated in this panel that, for all thicknesses, the MDS
signal grows approximately linearly up to ≈ 1100 K, cor-
responding to the Curie temperature (TC) of our samples.
Above TC, the linear increment stops, giving place to a
less-varying behavior. These features are consistent with
the semiclassical picture of the interaction, in which the
MDS signal would increase with the randomness in the
orientation of the magnetic moments (this randomness
reaches its maximum for T ≥ TC).
It could be expected that the MDS signal increases

with the thickness. However, in the top panel of Fig. 3,
the signal corresponding to the thickness 8.036 nm is
greater than the one of 12.054 nm. Also, the results of
16.072 nm are greater than those of 20.090 nm. This al-
ternating behavior is due to dynamical diffraction (multi-
ple scattering) [1]. In particular, increasing the thickness
of the specimen for the electron beam propagation can
lead to constructive and destructive interference condi-
tions for the coherent intensity that are not present at
the lowest thickness.

C. Effects of the Debye-Waller factor on MDS

The effects of including the DWF in MDS calculations
can be appreciated in the bottom panel of Fig. 3, showing
the signals collected by the chosen ADF detector in this
case (in the same format as in the top panel of the same
figure).
For the thinnest specimen considered (4.018 nm), the

ADF-collected signal in the bottom panel of Fig. 3 again
grows linearly up to TC, saturating at a slightly higher
value than in the top panel. However, the higher sam-
ple thicknesses display a qualitatively different temper-
ature dependence, in which the saturation and linearity
disappear. In the specimens with thicknesses 8.036 nm,
12.054 nm, and 16.072 nm, the ADF-collected signal dis-
plays an oscillatory behavior, presenting a dominant peak
for each thickness. This peak increases and shifts to
higher temperatures as the thickness increases. Mean-
while, in the thickest specimen (20.090 nm), apart from
these features, there is an additional smaller oscillation
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FIG. 3. MDS signals collected by the selected ADF detector
for bcc Fe of different thicknesses (indicated in the legend of
the top panel) as a function of temperature. The top panel
shows IMDS/I0 neglecting the effect of the atomic vibrations,
while the bottom panel includes the effects of the DWF. The
gray vertical line indicates the Curie temperature of the sam-
ples. Solid lines joining the computed values are only a guide
to the eye.

at low temperatures. Notably, the highest signal is ob-
tained at the highest temperature, 1700 K, in all the
studied cases.

The changes between the behavior of the MDS signals
in the top and bottom panels of Fig. 3 come from the fact
that the DWF varies with temperature—see Appendix B.
An effect of the DWF is to reduce the probability that
the electron probe scatters to higher angles. This reduc-
tion becomes stronger as the temperature increases [11].
Therefore, the DWF will modify the interference effects
that produced the alternating (thickness) behavior in the
case of the top panel of Fig. 3, where there was no DWF.
In general, the dynamical diffraction [1], which affects the
thickness dependence of the electron scattering signals,
will be modified by the DWF. Hence, it is the tempera-
ture dependence of dynamical diffraction induced by the
DWF that is responsible for the behavior of MDS in the
bottom panel of Fig. 3.

D. Comparison between MDS and TDS

In Ref. [7] it was reported that the TDS signal was
typically at least four orders of magnitude greater than
the corresponding TDS signal at 300 K. We have found
that this is also the case at the different temperatures and
thicknesses considered in this work. This is illustrated
in Fig. 4 showing vertical profiles of the TDS and MDS
(including the DWF) signals through the center of the
diffraction plane (i.e., as a function of the scattering angle
θy, with θx = 0).

FIG. 4. IMDS/I0 (including the DWF) and ITDS/I0 as a func-
tion of the scattering angle θy, with θx = 0, for bcc Fe—at
300 K and thickness 4.018 nm (orange curves), at 300 K and
thickness 20.09 nm (blue curves), at 1700 K and thickness
4.018 nm (red curves), and at 1700 K and thickness 20.09 nm
(green curves). In all cases, rcut = 0.4 nm has been used. The
TDS signals, always greater than the corresponding MDS sig-
nals, are located in the upper portion of the plot (above the
horizontal black dashed line), while the MDS ones are in the
lower portion.

Specifically, in Fig. 4 we show ITDS/I0 and IMDS/I0 for
the thickest (blue and green curves) and the thinnest (or-
ange and red curves) bcc Fe samples at 300 K (in orange
and blue curves) and 1700 K (in red and green curves).
In all cases, rcut = 0.4 nm has been used. We have em-
ployed the same colors for the corresponding MDS and
TDS signals, since they are well separated (we have in-
cluded a horizontal black dashed line dividing them). In
particular, it can be appreciated that the difference be-
tween the TDS and MDS signals becomes even larger at
higher scattering angles. Therefore, the region of inter-
est for MDS detection—now in the presence of the TDS
signal—is again that of small scattering angles. This, to-
gether with avoiding the Bragg disks, supports the choice
of the same ADF detector used for the MDS studies in
the previous subsections.
In the top panel of Fig. 5, we present the signal ITDS/I0

collected by the ADF detector, as a function of temper-
ature, for the different sample thicknesses, in the same
format as in Fig. 3. It can be observed that the TDS
signal is about five orders of magnitude greater than the



6

corresponding MDS signal (see Fig. 3). In contrast to the
MDS case, the TDS curves grow more linearly with the
temperature, but dynamical diffraction effects can also be
appreciated. In particular, for the thickness 20.090 nm,
a weak oscillatory component in the temperature depen-
dence of ITDS can be appreciated.

FIG. 5. Top panel: ITDS/I0 collected by the ADF detector
as a function of temperature in the same format as Fig. 3.
Bottom panel: signal-to-noise ratio (SNR) evaluated for a
dose of one electron. Line colors follow the legend of the top
panel.

To determine the optimal combination of temperature
and sample thickness for MDS detection, it is relevant
to consider the signal-to-noise ratio (SNR) in the ADF
detector, which is given in this case by

SNR =

(

IMDS√
ITDS + IMDS

√
I0
I0

)

√

ibta
e

, (2)

where ib is the STEM-electron-beam current, ta is the
acquisition time, e is the elementary electric charge, and
the inelastic intensities are those collected by the detec-
tor.
In the bottom panel of Fig. 5 we show the SNR

evaluated for an electron dose of one electron [i.e., for
ibta/e = 1 in Eq. (2)] for all the temperatures and sample
thicknesses considered. It can be observed that the opti-
mal detection setup corresponds to a sample of 16.072 nm
thickness at 500 K. This is a consequence of the con-
trasting behavior of the MDS and TDS signals for the

16.072 nm specimen around 500 K, which can be appre-
ciated in the top panel of Fig. 5 and the bottom panel
of Fig. 3. While the MDS has a peak at 500 K, with a
distinctive concave behavior, the TDS presents a slightly
convex behavior in the same region. Could this change
be detected and resolved in current STEM machines? A
positive answer would imply a method for temperature-
aided detection of MDS in STEM.
A typical criterion for successful detection conditions

in STEM is to have at least SNR = 3 [33], while in general
signal processing SNR = 5 criterion is used [34]. There-
fore, using Eq. (2) for the sample of 16.072 nm thickness
at 500 K, we present in Fig. 6 log-log plots of ib as a
function of ta giving SNR = 3 and SNR = 5.

FIG. 6. Log-log plots of the electron beam current ib as a
function of the acquisition time ta—computed from Eq. (2)—
producing signal-to-noise ratios (SNR) of 3 and 5, for bcc Fe
of 16.072 nm thickness at 500 K.

It is worth mentioning that existing STEM machines
vary from some of which have low ib, on the order of pA,
to others capable of routinely working well above 1 nA
[35–37]. Therefore, it can be appreciated in Fig. 6 that
our calculations predict large yet reasonable acquisition
times for realistic conditions (below one hour for beam
currents over 1 nA). For example, it is predicted that a
SNR = 3 could be obtained in less than 30 min. using a
1 nA electron probe. Also, it is worth noticing that for
tens of pA, the acquisition times are less than one day.

E. Discussion

We have shown that, in our simulations, there are op-
timal detection conditions at which IMDS can be statisti-
cally significant at reasonable acquisition times. There-
fore, there might exist experimental configurations allow-
ing for temperature-aided detection of MDS in STEM.
However, we have not put forward an explicit method

to separate the two contributions, ITDS and IMDS. A
possible starting point in this endeavor could rely on the
difference in the concavity of the signals at the optimal
conditions, pointed out in the previous subsection. In
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particular, it could be useful to fit with Gaussian func-
tions the experimental ADF-collected signals at different
temperatures to detect the IMDS peaks. Also, given the
oscillatory behavior of ITDS and IMDS, having different
periodicity, it might be relevant to track such periods
in the Fourier transforms of the measured temperature
dependences. Moreover, rotating the samples’ magneti-
zation could be attempted, since it may influence IMDS,
leaving ITDS unaltered.
Nevertheless, independently of any specific detection

strategy, we consider that the main finding of our work
is that, under realistic measurement conditions, the IMDS

signal can become a statistically significant contribution
to the total scattering intensity within a suitably chosen
detector.
To further bridge the gap toward successful MDS de-

tection in STEM, it would be valuable to perform energy-
resolved STEM studies. For that matter, a theoretical
methodology allowing for MDS simulations with energy
resolution would be of utmost relevance. Nevertheless,
the findings reported in this work could likely help to es-
tablish optimal conditions for STEM-EELS MDS studies,
both theoretical and experimental.

IV. CONCLUSIONS

We have presented a study of simulated magnon diffuse
scattering (MDS) in bcc Fe samples, of different thick-
nesses and temperatures, to explore the possibility of
temperature-aided MDS detection in scanning transmis-
sion electron microscopy (STEM). An annular dark-field
(ADF) detector that collects the relevant MDS signal sur-
rounding the central Bragg disk [illustrated by the green
dashed lines in Fig. 2(a)] has been employed.

It was found that when the effects of the atomic vi-
brations are neglected, the MDS signal IMDS grows ap-
proximately linearly up to the Curie temperature (TC)
of Fe, presenting a much less-varying behavior for higher
temperatures. Also, instead of increasing monotonically
as a function of thickness, the MDS signal displayed an
alternating behavior due to dynamical diffraction.
When the Debye-Waller factor (DWF) is considered,

the linear growth of IMDS gives place to an oscillatory
behavior, which presents a predominant peak for each
thickness. This peak increases and shifts to higher tem-
peratures as the thickness increases.
In contrast, the thermal diffuse scattering (TDS), due

to the atomic vibrations (phonons), presented a signal
(ITDS) that grows more linearly than IMDS (with DWF),
but still displayed appreciable dynamical diffraction ef-
fects. Moreover, it was found that ITDS was five orders
of magnitude greater than the corresponding IMDS. Nev-
ertheless, an analysis of the signal-to-noise ratio (SNR)
showed that under realistic measurement conditions, the
IMDS signal can become a statistically significant contri-
bution to the total scattering intensity. In particular, we
found that SNR ≥ 3 can be achieved with existing STEM

machines in less than 30 min. of data acquisition for a
bcc Fe sample of 16.072 nm thickness at 500 K.
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Appendix A: Convergence in terms of the averaging

of snapshots

The accuracy of the inelastic signals Iine(T ) computed
with Eq. (1) depends, in particular, on the number of
snapshots Ns considered for the averaging process. A
higher Ns produces a more converged value of Iine(T ).
Given a fixed Ns, it is relevant to estimate the degree

of accuracy of the computed signals. A rough estimation
can be achieved by exploiting the fact that the elastic
signal Iela(T ) should consist of only Bragg disks.
Take for example Fig. 7, showing signals for bcc Fe

of 20.09 nm thickness at 1700 K—including the Debye-
Waller factor (DWF) and using the cutoff distance rcut =
1 nm (for information about the DWF and rcut, please
refer to the last two paragraphs of Section II). Specifi-
cally, in Fig. 7 we show Iela/I0 and IMDS/I0 (where I0
denotes the intensity of the incident electron beam inte-
grated over the whole diffraction plane) along a vertical
profile through the center of the diffraction plane, i.e., as
a function of the scattering angle θy, with θx = 0. We
have included vertical gray bars indicating the position
and width of the Bragg disks.
It can be appreciated in Fig. 7 that there is a non-zero

elastic signal between the Bragg disks. This signal, called
hereafter INs

error, goes to zero as Ns increases. Hence, from
Eq. (1), computing IMDS with a given Ns gives an error
on the order of INs

error in the resulting MDS signal (outside
the Bragg disks). In this work, in which Ns = 101, and in
particular in Fig. 7, INs=101

error is about two orders of mag-
nitude smaller than the corresponding IMDS. We include
IMDS/(100I0) in Fig. 7 (red curve) to help illustrate this
result.
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FIG. 7. Elastic and magnon diffuse scattering signals—Iela
and IMDS (divided by the total intensity I0 of the incident
beam integrated over the whole diffraction plane), respec-
tively [see Eq. (1)]—for bcc Fe of 20.09 nm thickness at
1700 K, including the Debye-Waller factor (DWF) and using
the cutoff distance rcut = 1 nm. A curve of IMDS/I0 divided
by 100 is included for comparison with Iela. The position and
width of the Bragg disks are indicated by the vertical gray
bars.

Appendix B: Mean square displacements

The mean-squared displacement (MSD) used for the
implementation of Debye-Waller factors [11] at temper-
ature T are given in Table I, along with the lattice pa-
rameter of bcc Fe, as obtained by molecular dynamics
calculations.

TABLE I. Mean-squared displacement (MSD)—used for the
implementation of Debye-Waller factors—and bcc Fe lattice
parameter a, at temperature T , used for TDS calculations.

T [K] a [Å] MSD [Å2] T [K] a [Å] MSD [Å2]

100 2.855389 0.004693 1000 2.881882 0.061313
200 2.856854 0.009678 1100 2.886190 0.069974
300 2.858989 0.014849 1200 2.890794 0.079865
400 2.861494 0.020589 1300 2.895650 0.090492
500 2.864269 0.026535 1400 2.900800 0.102204
600 2.867294 0.032765 1500 2.906238 0.115404
700 2.870572 0.038693 1600 2.912003 0.130029
800 2.874080 0.045774 1700 2.918126 0.148881
900 2.877857 0.053119

Appendix C: Convergence in terms of rcut

The microscopic electromagnetic fields V (r), B(r), and
A(r) of an atom vanish as the distance from the atom
increases. Therefore, it is customary to define a cut-
off distance rcut above which these fields are set to zero
to economize computational resources in crystals simu-
lations. This establishes a compromise between the pre-

cision of a calculation and its computational resources
demand.

(a)

(b)

FIG. 8. Convergence of the magnon diffuse scattering signal
IMDS (divided by the intensity I0 of the incident beam) for
different cutoff distances rcut—indicated in the inset of the top
plot [Fig. 8(a)]—for bcc Fe of 20.09 nm thickness at 1700 K,
including the Debye-Waller factor (DWF). (a) Vertical [i.e., as
a function of the scattering angle θy for fixed θx = 0] and (b)
diagonal [i.e., as a function of θr =

√

θ2x + θ2y, with θx = θy]
profiles through the origin of the diffraction plane. The gray
bars indicate the position and width of the Bragg disks.

To show the convergence level of our calculations, in
Fig. 8 we show MDS profiles (in logarithmic scale) for
different values of rcut, as a function of the scattering
angle θr, for bcc Fe of 20.09 nm thickness, at 1700 K,
including the DWF. Specifically, in Fig. 8(a) we show
the vertical profile of IMDS/I0 (I0 denotes the intensity
of the incident electron beam) through the origin of the
diffraction plane—that is, as a function of θy for fixed
θx = 0. Meanwhile, Fig. 8(b) shows a diagonal profile of
IMDS/I0 through the origin of the diffraction plane—i.e.,

as a function of θr =
√

θ2x + θ2y with θx = θy. We have

included vertical gray bars indicating the position and
width of the Bragg disks in both Figs. 8(a) and 8(b).
It can be observed in these figures that the MDS sig-

nal decreases as the scattering angle increases, present-
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ing maxima near the position of the high-intensity Bragg
disks (in agreement with Figs. 2(a), 2(b), and 7). More-
over, the highest MDS signal is located around the cen-
tral Bragg spot (at zero scattering angle), in conformity
with Ref. [9]. Therefore, in our study, we considered an
annular dark-field (ADF) detector [17] of outer collection
semiangle 7 mrad and inner collection semiangle 2 mrad

[represented by the green dashed lines in Fig. 2(a)] to
avoid all Bragg disks.
In particular, well converged MDS signals within the

considered ADF detector can be obtained with rcut =
0.4 nm, as shown Figs. 8(a) and 8(b). However, to bet-
ter resolve the MDS near and within the Bragg disks, a
higher rcut is necessary.
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