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A collapse-free version of quantum theory is introduced to study the role of the projection pos-
tulate. We assume “passive” measurements that do not update quantum states while measurement
outcomes still occur probabilistically, in accordance with Born’s rule. All other defining features of
quantum theory, such as the Hilbert space setting, are retained. The resulting quantum-like theory
has only one type of dynamics, namely unitary evolution. Passive quantum theory shares many
features with standard quantum theory. These include preparational uncertainty relations, the im-
possibility to dynamically clone unknown quantum states and the absence of signalling. However,
striking differences emerge when protocols involve post-measurement states. For example, in the
collapse-free setting, no ensemble is needed to reconstruct the state of a system by passively meas-
uring a tomographically complete set of observables – a single system will do. Effectively, the state
becomes an observable quantity, with implications for both the ontology of the theory and its com-
putational power. At the same time, the theory is not locally tomographic and passive measurements
do not create Bell-type correlations in composite systems.

Experimental evidence for the state change of a
quantum system induced by measurements was avail-
able since 1925. Using a cloud chamber, Compton and
Simon [1] studied the scattering of “x-ray quanta” by
electrons. They discovered that the angle character-
ising the path of the recoiling electron and the angle of
the photon scattering direction are strongly correlated.
Knowing one of them is sufficient to determine where
the particles interacted and these “position measure-
ments” can be carried out in arbitrary temporal order.

According to von Neumann [2], this experiment im-
plements two subsequent measurements of one single
observable, namely the spatial coordinate of the in-
teraction locus (which is initially undetermined). The
measurements of the angles can happen in quick suc-
cession and lead to identical results. The ensuing de-
terministic repeatability is shown by von Neumann to be
equivalent to assuming the projection postulate: imme-
diately after measuring a non-degenerate observable,
a quantum system will reside in the unique eigenstate
associated with the observed outcome.

In principle, one could imagine other relations
between the outcomes of the same measurement when
carried out twice within a short period of time. Von
Neumann mentions two options. Either a determin-
istic mechanism could control the measurement out-
comes (this assumption effectively amounts to the ex-
istence of hidden variables), or the outcomes of the
second measurement could be governed by the same
probability distribution as the outcomes of the first.

In this paper, we introduce a quantum-like theory
that realizes von Neumann’s second option by assum-
ing that measuring an observable causes no state up-
date. Then, consecutive measurements of the same
observable produce outcomes governed by one and
the same probability distribution. All other features
of quantum theory, such as its setting in Hilbert space
or the Born rule, are retained.

The resulting passive quantum theory (pQT) shares
many features with standard quantum theory but is
manifestly different from it. Passive measurements
have far-reaching consequences, both from a concep-

tual and an applied point of view. Suspending the col-
lapse highlights the subtle ways in which the projec-
tion postulate shapes quantum theory.

Definition of pQT – Five axioms define a bare-bones
version of (non-relativistic) quantum theory. Four of
these axioms describe the mathematical framework of
the theory: (S) the states of a quantum system corres-
pond to rays |ψ〉 in a separable, complex Hilbert space
H, or to their probabilistic mixtures ρ; (O) observables
are represented by Hermitean operators Â acting on
the space H; (T ) the time evolution of quantum states
is governed by Schrödinger’s equation; (C) the state
space of a composite system is obtained by tensoring the
Hilbert spaces of its constituent parts.

The fifth axiom M relates theory to experiment. Its
three parts specify (M1) the measurement outcomes (the
eigenvalues ar of the measured observable Â), (M2)
the probability with which they will occur (Born’s rule:
pA(ar) = |〈ar|ψ〉|

2 for non-degenerate Â), and (M3)
the post-measurement states (the eigenstate |ar〉 of Â
when ar has been observed). Schematically, the pro-
jection postulate M3 states that

|ψ〉
ar−→ P̂r|ψ〉/

√

〈ψ|P̂r|ψ〉 , (1)

where P̂r = |ar〉〈ar| projects on the state |ar〉. The
quantum states undergo a non-linear transformation.

The model pQT is defined by the same set of pos-
tulates as quantum theory, except for the state update
rule. Denoting states in passive quantum theory – or
p-states, for short – by |

⌢

ψ〉, the modified projection pos-
tulate reads

⌢

M3: A system resides in the same state |
⌢

ψ〉 be-
fore and after measuring an observable Â.

Thus, p-states undergo a linear transformation when
p-measurements are carried out,

|
⌢

ψ〉
ar−→ |

⌢

ψ〉 . (2)

Our main goal is to investigate the consequences of
replacing the rule (1) by (2).
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Basic properties of pQT – The predictions of stand-
ard quantum theory and pQT agree as long as post-
measurement states are not used or referred to. The
expectation value of an observable Â in pQT, for ex-
ample, can be determined just as in quantum mechan-
ics: the eigenvalue ar of the observable Â will occur
with probability pA(ar) upon measuring it repeatedly
on an ensemble of systems each of which resides in
the p-state |

⌢

ψ〉. Hence, preparational uncertainty re-
lations [4, 5] for the variances of non-commuting ob-
servables do hold in pQT. It follows that the inequal-
ities exist due to the probabilistic character of meas-
urement outcomes. State changes caused by quantum
measurements cannot be their source.

Hence, Heisenberg’s original plausibility
argument—measuring the position of an electron
will cause an uncertainty of its momentum, due to an
uncontrollable state change—is invalid for prepara-
tional uncertainties. Heisenberg’s classically inspired
reasoning can only be justified in terms of measurement
uncertainty [6, 7].

To see where pQT deviates from quantum theory,
post-measurement states must play a role. For ex-
ample, the expectation value of an observable may
be obtained in pQT from a single copy of a p-state
|
⌢

ψ〉, in contrast to the ensemble needed in quantum
theory. Since a (non-destructive) passive measure-
ment of Â does not update a p-state, it is possible
to repeat it on one and the same system as often as
is necessary to determine the outcome probabilities
⌢

pA(ar) = 〈
⌢

ψ |P̂r|
⌢

ψ〉. They follow from the Born rule
M2 and agree with their counterparts in quantum the-
ory,

⌢

pA(ar) ≡ pA(ar).
Single-copy state reconstruction – Both a quantum

state |ψ〉 and a p-state |
⌢

ψ〉 correspond to a unique
ray in the Hilbert space of the system but they dif-
fer from an operational point of view: the collapse-
free theory allows us to reconstruct an unknown p-
state |

⌢

ψ〉 from a single system. To identify the ray
in Hilbert space associated with |

⌢

ψ〉, one simply re-
peats p-measurements of an informationally complete
set of observables [8–10] on the given system, without
the need of an ensemble. A fortiori, an experimenter
can tell apart any two distinct non-orthogonal p-states
|
⌢

ψ〉 and |
⌢

φ 〉 with certainty, even when being presen-
ted with a single copy only. Successful state recon-
struction and discrimination based on a single copy
of the unknown state means that p-states should be
thought of as directly observable, classical, quantities.
From an ontological point of view, this “reality” of p-
states removes notorious interpretational issues posed
by quantum states.

The absence of a state update after p-measurements
means that, effectively, only a single dynamical law ex-
ists in pQT, described by Axiom T . Hence, the tension
between the unitary dynamics of a quantum system
and its “stochastic” time evolution caused by meas-
urements is entirely absent in pQT. Attempts to elim-
inate the non-deterministic evolution from quantum
theory have a long history, ranging from models which
consider the measurement device as a quantum sys-
tem [2, 11] to alternative interpretations of the theory

[12, 13]. In pQT, this issue does not arise although a
measurement problem persists in the sense that Ax-
iom T appears insufficient to explain the emergence
of specific measurement outcomes.

Density operators in pQT – Gleason’s theorem [14]
tells us that mixed states emerge naturally in the Hil-
bert space setting of quantum theory. The proof of the
theorem, based on associating measurement outcomes
with projection operators, remains valid in pQT. Thus,
non-negative Hermitean operators with unit trace also
represent candidates for states in pQT. However, their
interpretation as mixtures of pure quantum states can-
not be upheld in pQT as it is possible to identify an
unknown p-state |

⌢

ψ〉 by carrying out single-copy state
reconstruction, at least in principle. If the ignorance in
the classical probability of a p-density operator

⌢

ρ can
always be removed, proper (or epistemic) mixtures do
not represent a fundamental concept in pQT.

However, improper p-density matrices still play a
role in pQT. They arise if an observer can access only
a part of a larger p-system, just as in quantum theory.
To see this, we need to discuss the behaviour of com-
posite systems when p-measurements are carried out.
For simplicity, we limit ourselves to bipartite systems.

Measurements in composite p-systems – The pure states
|Φ〉 of a bipartite quantum system are elements of the
space HAB = HA ⊗ HB (cf. Axiom C). The corres-
ponding bipartite p-system has the same state space,
i.e. |

⌢

Φ〉 ∈ HAB. The mathematical distinction between
product states and entangled states in the space HAB

applies to both theories.
To measure a “local” observable of the form Â ⊗ Î

(or Î⊗ B̂) requires access to one of the subsystems only.
Having observed the outcome ar upon measuring the
observable Â ⊗ Î by means of a “local” device DA, the
update of the initial quantum state |Φ〉 can be described
as the action of a suitable projection operator,

|Φ〉
ar−→ P̂r ⊗ I|Φ〉/

√

〈Φ|P̂r ⊗ I|Φ〉 . (3)

In contrast, a p-measurement of the observable Â ⊗

Î does not cause the p-state |
⌢

Φ〉 to update; effectively,
the map in Eq. (2) holds for any state of a bipartite sys-
tem as well. In quantum theory, the probability to ob-
tain the value ar is found from repeated measurements
on an ensemble of systems in state |Φ〉 while in pQT
the measurements can be repeated on a single system.
Both theories predict the same numerical value,

pA(ar) = 〈Φ|P̂r ⊗ I|Φ〉 ≡ 〈
⌢

Φ|P̂r ⊗ I|
⌢

Φ〉 . (4)

Therefore, local p-measurements on a subsystem can
reveal whether the composite system resides in a
product state |

⌢

φ A〉⊗ |
⌢

φ B〉 or in an entangled state |
⌢

Φ〉:
single-copy state reconstruction will return either the
p-state |

⌢

φ A〉 or the mixed state
⌢

ρ A = TrB|
⌢

Φ〉〈
⌢

Φ|, re-
spectively. In this case, the use of the p-density matrix
⌢

ρ A is justified since it provides the correct description
of the subsystem as seen by a local observer.

Joint probabilities in pQT – Passive measurements
do not create correlations between entangled systems
since they do not collapse p-states. Therefore, local p-
measurements cannot reveal the probabilities of joint
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outcomes which are essential to probe Bell-type in-
equalities. Only global p-measurements can be used
to extract joint outcome probabilities which may vi-
olate Bell-type inequalities. Interestingly, a violation
would not imply the existence of non-classical correl-
ations and hence not rule out the existence of local
hidden variables. It is also impossible to reconstruct
entangled p-states from local p-measurements which
means that pQT is not locally tomographic.

Quantum information in pQT – The no-cloning the-
orem [15, 16] states the impossibility to dynamic-
ally produce copies of unknown quantum states, i.e.
through the application of unitary gates. This form
of the theorem also holds in pQT but an alternat-
ive cloning procedure exists which requires a single
system only. Once the state of a p-system has been
revealed by single-copy state-reconstruction, another
system can be prepared in the observed p-state. In
quantum theory, such a measurement-based copying
procedure would require an ensemble of identically
prepared systems.

The state update induced by quantum measure-
ments is essential for many protocols of quantum in-
formation. Teleportation [17] and entanglement swap-
ping [18], for example, rely on system-wide state
changes as a result of local measurements. Thus,
they will no longer work in pQT. The impossibil-
ity to “steer” the state of a distant subsystem means
that quantum key distribution protocols based on en-
tangled states are also ruled out. At the same time,
single-copy state reconstruction would allow for per-
fect eavesdropping on p-states, i.e. without leaving a
trace.

Collapse-free measurements also modify the com-
putational power of quantum theory. Some p-
algorithms turn out to be more powerful than their
quantum counterparts. “Quantum parallelism” may
be exploited in full since the p-state encoding the result
of a quantum computation is “observable” via single-
copy state reconstruction, at least in principle. The al-
gorithms by Deutsch and Jozsa, Grover, and Simon
[19–21], for example, involve “oracles” which “eval-
uate” a function f (x) by means of a unitary oper-
ator, viz. Û f : |x, 0〉 → |x, f (x)〉. Letting the lin-
ear operator Û f act on the symmetric superposition

|s〉 = 2−n/2 ∑
2n−1
x=0 |x, 0〉, the output state carries in-

formation about the function f (x) for all its values. A
projective measurement on the final state Û f |s〉 will,
however, reveal at most one value of f (x), necessit-
ating further calls to the oracle. In the absence of
the collapse, however, all values f (x) can be extrac-
ted from the final p-state Û f |

⌢

s 〉 by reconstructing it
from a single copy. Hence, only a single call to the or-
acle is necessary within pQT which represents a sub-
stantial reduction in computational cost, but a large
increase in measurement complexity. In stark con-
trast, measurement-based quantum computation [22]
is evidently impossible in pQT.

Furthermore, p-measurements on their own retain
the computational power they possess in quantum
theory: it is possible to determine the eigenvalues
of Hermitean matrices by p-measurements only since

this part of the quantum diagonalization algorithm
[23] does not rely on states collapsing.

Instruments – The collapse of a quantum state upon
measuring an observable Â = ∑r ar P̂r has a conveni-
ent description in terms of a specific quantum instru-
ment. The Lüders instrument consists of a collection of
maps {ωL

1 , ωL
2 , . . .} sending an initial state ρ to the ap-

propriate (un-normalised) post-measurement state

ρ
ar−→ ωL

r (ρ) = P̂rρP̂r , (5)

conditioned on the outcome ar. The trace of each map
equals the outcome probability, Tr[ωL

r (ρ)] = pA (ar).
Projective measurements act non-linearly on the ele-
ments |ψ〉 of Hilbert space H (cf. Eqs. (1) and (3)) but
linearly at the level of density matrices. More gener-
ally, quantum instruments consist of linear, completely
positive maps [24] of density matrices, all of which
can be realised by the Lüders instrument with post-
processing [25].

In contrast, pQT is linear at the level of p-states,

|
⌢

ψ〉
ar→ |

⌢

ψ〉. The maps {ω
p
1 , ω

p
2 , . . .} defining the asso-

ciated p-instrument act non-linearly on density matrices,

⌢

ρ
ar−→ ω

p
r (

⌢

ρ ) = Tr[P̂r
⌢

ρ P̂r]
⌢

ρ , (6)

so that, generally, ω
p
r (λ

⌢

ρ 1+(1 − λ)
⌢

ρ 2) 6= λω
p
r (

⌢

ρ 1)+

(1 − λ) ω
p
r (

⌢

ρ 2) for
⌢

ρ 2 6=
⌢

ρ 2 and λ ∈ (0, 1). The lack
of equality captures the distinguishability between
proper and improper mixtures in pQT. Operationally,
the left-hand side of this relation corresponds to per-
forming a measurement on the improper mixture

⌢

ρ =

λ
⌢

ρ 1 + (1 − λ)
⌢

ρ 2, whereas the right-hand side can be
interpreted as the effect of a passive measurement on
the proper mixture of

⌢

ρ 1 and
⌢

ρ 2 with weights λ and
(1 − λ), respectively.

Linearity and non-signalling – A non-linear time evol-
ution of quantum states would, in combination with
projective measurements on entangled states, enable
superluminal communication [26–28]. This result de-
pends on the fact that different convex combinations
of quantum states can be used to describe one and
the same mixed state. Imagine to remotely prepare a
mixed state in one of two distinct convex combinations
by local measurements on one part of a bipartite sys-
tem. If quantum states were to evolve non-linearly, a
space-like separated observer could subsequently dis-
tinguish these decompositions leading to signalling.
However, Gisin’s argument does not rule out all non-
linear time evolutions [29, 30].

The linearity of quantum instruments guarantees
that the instantaneous and non-local collapse does
not lead to violations of special relativity. Altern-
ative state-update rules (rather than alternative time
evolutions) may also result in non-linear transform-
ations of joint and reduced states. Any modifica-
tion leading to signalling would be unphysical. In
pQT, measurements have no effect on p-states mak-
ing them entirely unsuitable for signalling. Thus, both
passive measurements and the hypothetical readout
devices described by Kent [31] represent examples of
measurement-induced transformations not dismissed
by Gisin-type arguments.
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Simulating QT – Measurements on a passive
quantum system can be made to look as if they were
performed on a quantum system, modulo a finite time
delay. To see this, let us first consider the measure-
ment of a non-degenerate observable Â on a single-
partite system in an unknown state |

⌢

ψ〉. If the outcome
ar is obtained, then the observer simply replaces the
original system by another one residing in the p-state
|
⌢

ar〉 prepared beforehand. The resulting situation is
identical to the one obtained after a standard quantum
measurement of the observable Â with outcome ar on
the state |ψ〉, although substituting |

⌢

ψ〉 by |
⌢

ar〉 will
take a finite amount of time. The “replacement” time
would be subject to “quantum speed limits” [32] if the
set

{

|
⌢

ar〉
}

was unavailable and the experimenter had

to generate the state |
⌢

ar〉 by unitarily evolving some
given state |

⌢

χ 〉 into one of the states in
{

|
⌢

ar〉
}

.
Now consider a bipartite system residing in an un-

known entangled p-state |
⌢

Φ〉 and carry out the single-
partite measurement Â ⊗ Î. If the (non-degenerate)
outcome ar occurs, the observer needs to substitute
|
⌢

Φ〉 by an appropriate product state |
⌢

ar〉 ⊗ |
⌢

ψ〉, in line
with the quantum mechanical update rule. To identify
the factor |

⌢

ψ〉, the p-state |
⌢

Φ〉 must be reconstructed
by means of bipartite, or “global”, measuring devices
of the form Â ⊗ B̂. Therefore, access to the subsys-
tems of a composite system is required to simulate the
quantum collapse of an entangled state.

Summary and discussion – We have introduced a
collapse-free foil theory of quantum mechanics by as-
suming that measurements do not cause states to up-
date. Its predictions agree with those of quantum the-
ory as long as post-measurement states are discarded
systematically. Any non-quantum feature of pQT can
be traced back to states not collapsing when meas-
uring generic observables. Being manifestly different
from quantum theory, the model pQT represents a tool
to study the role of the collapse rather than suggesting
an alternative interpretation aiming to circumvent the
projection postulate [12, 13].

The possibility of single-copy state reconstruction
turns p-states into observable quantities. As any time-
evolved state can be accessed directly in pQT, the
cost and computational power of known quantum al-
gorithms must be evaluated anew. Assuming that
the measured state has been reconstructed, passive
quantum theory can, in principle, simulate quantum
theory including the collapse if one accepts a time delay
in state updates. In contrast, quantum theory cannot
simulate pQT.

In standard quantum theory, projective measure-
ments can be used to prepare specific states. In
pQT, a desired state can only be prepared by suitably
evolving some known state in time, i.e. dynamically.

The comparison with pQT shows that some con-
cepts of quantum theory are equivalent because of the
non-trivial state update described by the standard pro-
jection postulate. As is well-known, proper and im-
proper mixtures of quantum states are indistinguish-
able. This is no longer true in pQT where passive
measurements can be used to reveal each of the indi-
vidual states forming a proper mixture. Similarly, in

quantum theory the observable Â ⊗ B̂ can be meas-
ured by either a single global device or by two local
devices implementing Â ⊗ Î and Î ⊗ B̂ separately, if
supplemented by classical communication. In pQT,
these two scenarios lead to entirely different outcome
statistics.

Other work – The idea of being able to “observe” the
state of a quantum system, which is one of the essen-
tial consequences of assuming passive measurements,
was explored occasionally in an ad hoc fashion. Busch
[33] assumes that there exists a state-determination
procedure not based on measurements using an en-
semble, with the goal to provide operational evidence
for it being incompatible with standard quantum the-
ory. Kent [34] considers a hypothetical read-out device
which provides access to the so-called “local state” of
a single system. Measurements performed with such a
device can, effectively, implement non-linear determ-
inistic maps on states which, however, do not result
in superluminal signalling. Therefore, both this “aug-
mented” version of quantum theory and pQT rep-
resent examples of measurement-induced non-linear
time evolutions not ruled out by Gisin’s argument [26].

Outlook – A more comprehensive study of pQT
and its generalizations [35] will investigate the con-
sequences of passive measurements on other quantum
information protocols and concepts such as quantum
channels or POVMs. It is also important to under-
stand to what extent pQT is a non-classical theory –
what would a description in terms of hidden vari-
ables mean? Finally, it is not difficult to see that
passive measurements represent just one specific case
of possible alternative state-update rules leading to
quantum-like theories. However, if consistent modi-
fications of the projection postulate exist, an intriguing
question arises: can we identify a physical prin-
ciple which singles out the quantum mechanical state-
update rule among these alternatives?
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