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The security of prepare-and-measure satellite-based quantum key distribution (QKD), under restricted eaves-

dropping scenarios, is addressed. We particularly consider cases where the eavesdropper, Eve, has limited

access to the transmitted signal by Alice, and/or Bob’s receiver station. This restriction is modeled by lossy

channels between Alice/Bob and Eve, where the transmissivity of such channels can, in principle, be bounded

by monitoring techniques. An artefact of such lossy channels is the possibility of having bypass channels, those

which are not accessible to Eve, but may not necessarily be characterized by the users either. This creates inter-

esting, unexplored, scenarios for analyzing QKD security. In this paper, we obtain generic bounds on the key

rate in the presence of bypass channels and apply them to continuous-variable QKD protocols with Gaussian

encoding with direct and reverse reconciliation. We find regimes of operation in which the above restrictions on

Eve can considerably improve system performance. We also develop customised bounds for several protocols

in the BB84 family and show that, in certain regimes, even the simple protocol of BB84 with weak coherent

pulses is able to offer positive key rates at high channel losses, which would otherwise be impossible under an

unrestricted Eve. In this case the limitation on Eve would allow Alice to send signals with larger intensities than

the optimal value under an ideal Eve, which effectively reduces the effective channel loss. In all these cases, the

part of the transmitted signal that does not reach Eve can play a non-trivial role in specifying the achievable key

rate. Our work opens up new security frameworks for spaceborne quantum communications systems.

I. INTRODUCTION

Satellite-based quantum communications links [1–11] can be part of a global solution to quantum key distribution (QKD)

networks or, more generally, the quantum Internet [12–15]. QKD provides two parties with a secret key that can be used in

cryptographic protocols, such as one-time pad encryption. In the absence of practical quantum repeaters, however, fiber-based

QKD links are limited to a distance of a few hundred kilometres [16–19]. In contrast, free-space QKD relying on ground-to-

satellite, satellite-to-ground, and/or satellite-to-satellite quantum communications links can potentially offer secure key exchange

over thousands of kilometers [20, 21]. The successful launch of the Chinese QKD satellite in 2017, and the experiments carried
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out since then [20–23], has particularly been a game changer in bringing the field into a new exciting development phase while

a substantial global effort is directed at finding practical solutions to the wide-scale deployment of QKD systems. That said,

satellite-based quantum communications comes at an additional price for launching and operating possibly dedicated satellites, as

well as with some restrictions on accessibility and the achievable key rate. This manuscript seeks solutions that can enhance the

benefits reaped from investing in this technology by looking into relevant threat models that would be realistic, with potentially

verfiable assumptions, in satellite-based QKD.

To make the above vision possible, and, particularly, to deploy satellite-based QKD in large scales, certain technological chal-

lenges must be addressed. For instance, a secure satellite-based QKD system must combat loss and noise effects in the link. A

satellite-to-ground link would also face additional challenges due to pointing errors and atmospheric turbulence, which impact

system performance. Ultimate limits, as well as achievable rates of specific QKD protocols, have recently been investigated con-

sidering diffraction, extinction, background noise and fading in such links [24–26]. Such analyses as well as recent experimental

demonstrations suggest that a typical low-earth-orbit (LEO) satellite-to-ground link could suffer around 30-40 dB of loss for a

modest-size receiver telescope [20], and with night operation only in order to minimize the background noise. This would imply

that, under nominal security assumptions that give Eve maximum possible control over the channel, many QKD protocols may

struggle to offer sufficiently high, if any, positive key rates.

The above limitations are partly because of the assumptions made in our security analysis, e.g., that the channel in its entirety is

assumed to be under the control of a potential eavesdropper. Whether such an assumption is necessary/realistic in satellite-based

QKD, which relies on line-of-sight links, needs to be scrutinized. Relaxing this assumption could open up new opportunities

that have been discounted, but which, if proved to be viable, could offer additional options for implementation and commercial

exploitation.

With the above idea in mind, recently, several works have addressed the security of satellite-based QKD in wiretap channels

[27–29], while earlier the security of QKD in the framework of physical layer security was considered [30]. The work in [27]

considers a passive eavesdropping scenario for a wiretap channel [31] and compares the key rate achievable under an unrestricted

Eve for several QKD protocols with alternative schemes that they refer to as photon key distribution (PKD). They overall observe

more resilience to noise in high-loss regimes for their PKD schemes, which allows them to cover longer distances. The work

in [28, 29] considers the in-principle achievable key rate, in a wiretap channel, when only one of Alice and Bob measures their

signal, and the other one holds onto a quantum state, on which they can in principle do an optimal measurement to maximise

the key rate. They will then observe a boost in the key rate so long as the channel between Alice and Eve is lossier than that of

Alice and Bob. In [29] they further claim that by considering a protected zone around Alice (the satellite) and Bob (the ground

station) they can ensure that the above condition holds if the presence of an eavesdropper in orbit can be ruled out. For the latter,

they will then consider some constraints on celestial mechanics to show how difficult it would be for Eve to eavesdrop in this

line-of-sight link.

In this manuscript, we study the security of prepare-and-measure (P&M) satellite-based QKD for a restricted Eve without

fully specifying the channel that connects Alice to Bob. This is an important step toward having a verifiable set of assumptions.

In the case of wiretap channels considered in [28, 29], it will be difficult to ensure through experimental observations that the

channel is indeed a wiretap channel. The potential users should then choose whether they are satisfied with this assumption, or

whether for provable security they wish to use a full QKD protocol. In our case, the primary assumption that we make about the

potential eavesdropper is on the collection efficiency of her apparatus when it comes to interacting with the transmitted signal

from Alice’s telescope. This collection efficiency can then be bounded based on the size of devices that Eve has to employ within
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the line-of-sight link. The corresponding size can, in principle, be bounded using monitoring techniques that can be employed

in parallel to quantum signal transmission. The same argument and methodology can be used to bound the loss between Eve and

Bob. Note that specifying the minimum loss that Alice’s signal would go through before being collected by Eve does not specify

the entire channel between Alice and Bob, and it is still possible that part of Alice’s signal reaches Bob without going through

Eve. This latter channel, which we refer to as a bypass channel, has a non-trivial role in the achievable key rate, and one of our

key contributions here is to analyse QKD security in the presence of such bypass channels. Moreover, unlike the wiretap channel

model, we can now consider scenarios where Alice-Eve loss is lower than that of Alice-Bob. By performing the security analysis

under the above conditions, we can then bound the achievable key rate for a restricted Eve using a set of verifiable assumptions.

This turns out to offer better performance without necessarily compromising on our security assumptions.

The key contributions of this paper are as follows:

• We develop models for restricted eavesdropping whose elements can, in principle, be characterized using monitoring

techniques;

• We obtain generic bounds on achievable key rates in P&M QKD setups with an uncharacterized bypass channel not

accessible to Eve;

• We show that, in certain practical regimes, such bounds enable CV-QKD in satellite-based systems to offer positive key

rates; and

• We develop customised bounds for discrete-variable QKD systems that rely on photon-number channels, and improve

their performance under restricted eavesdropping.

The rest of this paper is organized as follows. In Sec. II, we describe our setting and the motivations behind the model we

have adopted for the restricted Eve. In Sec. III, we offer some generic results applicable to QKD protocols in the presence of

bypass channels. We apply these results to continuous variable (CV) protocols, in Sec. IV, and customize them to the case of

discrete variable QKD protocols, such as BB84 [32], in Sec. V. We conclude the paper in Sec. VI with some discussions on the

relevance of the results obtained and the way forward for other cases not considered in this paper.

II. GENERIC MODELS FOR RESTRICTED EAVESDROPPING

In this section, we model the key restriction we consider in this work on potential eavesdroppers in a satellite-based QKD

system. One of the distinctive features of a satellite link, as compared to a fiber link, is that it is a line-of-sight link. While it

may not be possible, for a link of around 500 km of length in the LEO case, to fully monitor the channel between Alice and Bob,

one can employ monitoring techniques, such as light detection and ranging (LIDAR), to detect objects of a certain minimum

size along the path. In fact, the same system and the corresponding optics that are being used for tracking and acquisition

purposes can also be used to detect unwanted objects along the beam. In free-space LIDAR, the power received by the detection

site is proportional to the effective area of the object, and scales inversely with the power four of distance between the object

and the LIDAR source. If the collected power is below a certain noise threshold, we cannot conclusively declare detecting

an object, but we might be able, at any given distance, to set a bound on the maximum size that any undetected object may

have. In fact, our preliminary calculations suggest that for a 500-km-long satellite link, and for LIDAR systems used at both

Alice and Bob stations, with some nominal assumptions, the largest undetected object within the beam width of our LIDAR
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FIG. 1. (a) Restrictions imposed on Eve in terms of her collection efficiency, modelled by a beam splitter with transmissivity ηAE, and her

access to Bob’s telescope via a beam splitter with transmissivity ηEB. The part of the transmitted signal that does not go through Eve may

still reach Bob via a bypass channel inaccessible to Eve. The signal lost at the second beam splitter, with transmissivity ηEB, is assumed to

be inaccessible to all parties. (b) A simplified model where the bypass channel in (a) is assumed to be not accessible to Bob. This assumption

would effectively reduce the channel model in (a) to a typical prepare-and-measure QKD scenario with extended Alice’s and Bob’s boxes that

contain some trusted lossy elements.

sources is around a few centimetres in diameter; see Appendix A. This is important because, for any effective eavesdropping

activity in the P&M scenario, Eve requires (i) to somehow collect the signals transmitted by Alice, or reflect it to some other

collection point, and/or (ii) to somehow be able to send her own signals towards Bob’s receiver. In the satellite scenario, full

power collection/reflection requires telescopes/optical tools of a certain size, corresponding to the beam width, and manipulation

of Bob’s receiver might need powerful laser sources, especially if Eve’s source is not fully aligned with Bob’s telescope. This

implies that the combination of limited size telescopes/devices used in the line-of-sight link for Eve and a monitored/protected

zone around Alice box could restrict Eve to only receiving a fraction of what Alice has sent. This would be the first departure

point from a maximally powerful Eve. In the second case, where Eve cannot replace the channel between herself and Bob with

an ideal channel, any active attack by Eve will be affected by potentially a lossy channel that the protection zone around the

receiver would enforce. This could further restrict Eve in implementing her attack scenario.

In this work, we model the restrictions explained above, which can, in principle, be characterized by the employed monitoring

systems, by lossy channels between Alice and Eve, and between Eve and Bob. In particular, as shown in Fig. 1(a), we assume

that a lossy channel with transmissivity ηAE connects Alice to Eve, and Eve has no access to the signals lost in this channel. Note

that part of the lost signal can still reach Bob, and we cannot discount this possibility. This creates an interesting QKD scenario,

where, in addition to the channel controlled by Eve, there is a bypass channel via which some signals can reach Bob. Eve has no

access to this bypass channel, but Alice and Bob cannot necessarily characterize this channel either. The study of QKD security

in the presence of such a bypass channel would generate interesting scenarios that we analyse in this paper. Similarly, we assume

that every signal sent by Eve to Bob would go through a lossy channel with transmissivity ηEB, where Eve (and Bob) has no

access to the lost signals on this channel. We do not impose any other restrictions on Eve except being bound by the laws of

quantum mechanics. We investigate how these two restrictions affect the performance of a QKD system ran on such a link.

There are different scenarios that one can consider with the above generic restrictions. One possible scenario, shown in

Fig. 2(a), is when Eve’s telescope is sufficiently large to capture all signals that would end up on Bob’s telescope, but not

necessarily large enough to capture the entire signal sent by Alice. This case corresponds to ηAE < 1, but possibly with ηEB
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close to one. Please note that when we are speaking of Eve, she is not restricted to operate only from one point in space. Another

possibility is when Eve’s telescope is assumed to be too small to capture the entire signal that would be received by Bob, in

which case part of Alice’s signal may reach Bob without Eve’s intervention; see Fig. 2(b). This case would result in intriguing

scenarios especially when ηAE ≪ 1. We look at how we can capitalise on this restriction to increase the secret key rate in

forthcoming sections. One last case, shown in Fig. 2(c), is for when Eve is simply a passive receiver of Alice’s signal without

sending anything to Bob. This case corresponds to a small ηAE and ηEB = 0, and captures a passive attack on a wiretap channel

[27]. These are just a few examples, but the important point is that the generic model proposed here for a natural restriction on

Eve can capture many practical cases that could happen in reality, as well as the few cases considered thus far in the literature

[27–29].

Ground station

Eavesdropper

Object

Protected 

zone

Protected zone

Satellite

Atmosphere

(a)

Ground station

Satellite

Atmosphere

(b)

Ground station

Satellite

Atmosphere

(c)

FIG. 2. Schematic view of a satellite-to-ground QKD link, with different restricted eavesdropping scenarios: (a) a semi-powerful Eve who,

while does not capture the entire beam sent by the satellite (Alice), has access to the part that will be collected by the ground station (Bob); (b)

An Eve with a telescope too small to capture the entire signal that reaches Bob; and (c) A passive Eve in a wiretap channel.

Our objective in this paper is to find bounds on the secret key generation rate under the assumption that ηAE and ηEB are

known to Alice and Bob. We separate the issue of how, in practice, we can find an upper bound for these parameters from

the security proof that follows once this restrictive assumption is used. The latter will be discussed in Sec. III, with particular

examples on CV and DV QKD in Secs. IV and V, respectively. For the former, in Appendix A, we consider a simple model to

calculate the reflected power from an object (or a collection of objects with a similar effective size) with a certain reflectivity,

in the line-of-sight link, assuming that a LIDAR system has been employed on both the satellite and ground station. If our

LIDAR system detects an object of a certain size, we can then use that to bound ηAE and ηEB. Even if the LIDAR systems

do not detect any object, by making some nominal assumptions on the power budget on satellite and earth, the sensitivity of

the LIDAR system, and the reflectivity of space objects, we can then find the maximum object size that may remain undetected

by our LIDAR systems, and then accordingly upper bound ηAE and ηEB. This preliminary analysis suggests that, in nominal

working conditions, ηEB is greater than ηAE, and can be close to 1, whereas ηAE can remain small. In our analysis in Secs. IV

and V we then only consider the special case of ηAE < 1 at ηEB = 1, which is of practical interest.

In what follows, we first find some generic results for the key rate of the setup in Fig. 1(a). Throughout the paper, the satellite

is assumed to have the QKD encoder and the ground station would decode the received signals. We therefore mainly focus on
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prepare-and-measure schemes in the forthcoming sections. In particular, we consider the BB84 protocol with different types

of sources, and CV-QKD with Gaussian encoding. One interesting point about the restricted Eve scenario is the possibility of

designing new protocols that capitalize on Eve’s imposed restrictions. For instance, as shown in [27], in the case of a passive

Eve, one can relax the requirement for using two mutually unbiased bases to come up with simpler protocols. Or, in the case of

an ideal single-photon source (SPS) with a passive Eve, no privacy amplification may be needed [33]. In our setting, the bypass

channel in Fig. 1(a) can play a non-trivial role in determining the key rate, as we investigate next.

III. SECURITY PROOF

In this section we aim at finding generic bounds on the secret key generation rate for the setup in Fig. 1(a). One simplifying

assumption, as shown in Fig. 1(b), is to ignore the bypass channel and assume that no information would reach Bob via the

bypass channel. One may argue that, because the information carried via the bypass channel is not accessible to Eve, this

assumption would lead to a lower bound on the key rate. If this conjecture is correct, then the secret key rate calculations would

reduce to modifying existing security proofs to account for the trusted loss in the channel. This is because the combination

of Alice’s encoder and the first beam splitter makes an extended Alice box, whose output is available to Eve; the same would

hold with Bob’s receiver and the trusted beam splitter of trasmissivity ηEB. Altogether, they create a typical QKD setting albeit

with extended encoder/decoder boxes rather than the original. But, whether the above conjecture is valid or not needs to be

scrutinized as we do in this section. The results turn out to be more subtle than explained above.

FIG. 3. (a) A generic attack model for a QKD system under restrictive assumptions on the collection efficiency and transmission efficiency of

Eve’s apparatus; (b) The attack model assuming that the bypass channel includes an infinitely high loss and only produces the vacuum state at

its output. Notations are defined in the text.

In Figs. 3(a) and (b), we have presented generic attack models, in the entanglement-based picture, for, respectively, the

scenarios in Figs. 1(a) and (b). Here, |ψAB〉 represents the initial bipartite entangled state generated by Alice, where one of its
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components is measured by measurement operator MA to give the classical outcome X , and its other component is sent to Bob.

In Fig. 3, we have used the same notation for the field modes at the input and output of a quantum operation. For instance, mode

B would go through the initial beam splitter, and then through Eve’s system, followed by the second beam splitter before entering

Bob’s telescope, modelled by operator ET , and measurement operator MB resulting in a classical variable Y . The measurement

operator MB effectively models the corresponding QKD measurements in the respective QKD protocol. Given that the bypass

channel and Eve-controlled channels represent two independent spatial modes, the operator ET effectively combines these two

modes to generate outcome Y . For a physical telescope, these two modes are defined by what the telescope actually collects. In

that case, this operation has to model a unitary evolution. We therefore assume ET is a unitary map, in which case we need to

introduce a second output mode, which we have denoted by F0. In our setup, mode F0 is not accessible to Bob, but it would be

interesting to see what, in principle, is achievable for Alice and Bob if F0 is available to Bob. Lemma 1 below considers this

case. Other important components of Figs. 3(a) and (b) are complete positive and trace preserving (CPTP) maps E and E ′, which,

respectively, model the channel controlled by Eve and the bypass channel, with pure input states denoted by |ψE〉 and |ψF 〉. In

order to match the model in Fig. 3(b) with that of Fig. 1(b), we have introduced a trivial map EV that maps every incoming state

to the vacuum state |0〉. More specifically, the map EV is a CPTP map with the following Kraus representation:

EV (ρ) =
∑

i

KiρK
†
i , Ki := |0〉〈ei | (1)

with {|ei〉} being an orthonormal basis for the Hilbert space where the input state ρ lies in. This operation ensures that nothing

but the vacuum state would be transferred via the bypass channel, which corresponds to the simplified scenario in Fig. 1(b).

Finally, the second input to both beam splitters in Fig. 3 is the vacuum state to model a lossy channel.

For the above detailed settings, we now investigate how the key rate achievable in Fig. 3(a), which corresponds to the main

restrictions imposed on Eve in our work, compares with that of Fig. 3(b), which further simplifies the channel and makes

additional assumptions. As discussed earlier, our intuition may suggest that the the former cannot be lower than the latter. In

Lemma 1, we prove that this intuition is correct in the case of direct reconciliation, provided that Eve’s attack (map E) is fixed in

both scenarios of Fig. 3(a) and Fig. 3(b) and mode F0 is available to Bob. However, from a security perspective, we cannot ensure

that Eve would perform the same attack independently of the physical channel(s) linking Alice and Bob. Interestingly, when

allowing for the worst-case attack by Eve in each scenario of Fig. 3, and conditioned on the observed parameters in the QKD

experiment, the achievable key rate in Fig. 3(a) turns out to be upper bounded by that of Fig. 3(b), as we prove in Theorem 1.

Note that the bypass channel E ′ is not necessarily known to Alice and Bob.

Let us first consider the case where mode F0 is available to Bob and Eve’s attack is identical in both scenarios of Fig. 3.

Lemma 1. For a quantum Bob with access to modes B and F0, and a unitary map ET , the in-principle achievable asymptotic

key rates ra and rb, with one-way direct reconciliation, corresponding, respectively, to the setups in Figs. 3(a) and (b), satisfy

rb ≤ ra. (2)

The proof is given in Appendix B. The proof of Lemma 1 hinges on the fact that the scenario in Fig. 3(b) can be recovered

from Fig. 3(a) by applying an additional map on Bob’s systems—effectively, the extra map EV that maps everything to the

vacuum. Since such a map does not affect Eve’s uncertainty about Alice’s X outcomes while it increases Bob’s uncertainty,

by possibly increasing the quantum bit error rate (QBER) in a QKD experiment, under conditions of Lemma 1, the in-principle

achievable key rate in Fig. 3(b) should not be higher than that of Fig. 3(a).
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The result of Lemma 1, however, holds for a quantum Bob under fixed attack by Eve performed in the two scenarios of Fig. 3

and might not be of use when evaluating the secret key rate produced in a given QKD experiment. As a matter of fact, in a

QKD experiment, what we are interested in is a bound on the leaked information to Eve conditioned on the set of observations

made in the corresponding QKD experiment, in either configurations in Fig. 3. Considering that scenario (b) is equal to scenario

(a) except for possibly an additional noise-increasing map, by fixing the observed amount of noise, we may conclude that the

required attack by Eve can be less powerful in (b) than in (a), such that the resulting noise is effectively the same in the two

scenarios. A less powerful attack could amount to less information leaked to Eve, hence a higher secret key rate in the case of

Fig. 3 (b). This leads us to the opposite conclusion from what we draw in Lemma 1, namely, that, in the P&M QKD setting, the

secret key rate in Fig. 3 (a) cannot be larger than that of Fig. 3 (b). An alternative way to look at this problem is that, from Alice

and Bob’s point of view, they have to find the worst case attack in the space spanned by valid choices of {E , E ′}, for Fig. 3 (a),

and in the space of {E , EV } for Fig. 3 (b). The latter turns out to be a subset of the former, which implies that Eve might come

up with a more effective attack in the setup of Fig. 3 (a). We formalize this argument in the following theorem, which rigorously

proves the above insight in the finite-key scenario and for both direct and reverse reconciliation cases.

Theorem 1. Consider an ε-secure QKD protocol, with one-way direct (or reverse) information reconciliation and ε = 2ε̄ +

εEC + εPA, where εEC and εPA are, respectively, the security parameters for the error correction and privacy amplification

steps. Let n be the number of signals used for key generation and {Qobs
1 , Qobs

2 , . . . } be the observed parameters by Alice and

Bob in the parameter-estimation rounds. Then, the achievable secret key rates Ra and Rb of scenarios (a) and (b) in Fig. 3,

respectively, obtained with the above protocol in the finite-key regime satisfy:

Ra ≤ Rb. (3)

Proof. The claim directly follows from the definitions of achievable secret key rate for scenario (a) and (b) in the finite-key

regime. To see this, let us first consider the state ρXnY nE representing the raw keys of Alice and Bob, together with Eve’s

quantum side information. For simplicity, we assume that Bob assigns a random outcome in the case of no detection in a key

generation round. A similar proof would hold in the case where Alice and Bob apply a sifting map to their outcomes in order to

discard the rounds where Bob had no detection. Let us denote the initial state of all subsystems, before any map is applied, by ρ

given by:

ρ := |ψAB〉〈ψAB |⊗n ⊗ |0〉〈0|⊗n
F0

⊗ |ψF 〉〈ψF | ⊗ |ψE〉〈ψE | ⊗ |0〉〈0|⊗n
F2
. (4)

Then, for scenario (a), we have

ρ
(E,E′)
XnY nE = TrF0F1F2 [MB ◦ ET ◦ BηEB ◦ E ′ ◦ E ◦ BηAE ◦MA(ρ)] , (5)

and for scenario (b),

ρ
(E)
XnY nE = TrF0F1F2 [MB ◦ ET ◦ BηEB ◦ EV ◦ E ◦ BηAE ◦MA(ρ)] , (6)

where we denote the maps of the two beam splitters by BηAE and BηEB and discarded the map E ′ in (6) since it would have no

effect on the state. Then, the state in Eq. (6) can be obtained from Eq. (5) by replacing E ′ with EV , that is, ρ
(E)
XnY nE = ρ

(E,EV )
XnY nE .

For scenario (a), the achievable secret key rate obtained from the n detected key-generation rounds, in the case of direct

reconciliation, reads [34]:

Ra =
1

n

[

min
(E,E′)∈S({Qobs

1 ,Qobs
2 ,... },ε̄)

H ε̄
min(X

n|E)ρ(E,E′) − IEC − log2
2

εEC
− 2 log2

1

2εPA

]

, (7)
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where the minimization is performed over all possible attacks by Eve, E , and all possible actions of the bypass channel, E ′,

compatible with the observed parameters, while IEC is the amount of error-correction information publicly revealed by Alice

and H ε̄
min is ε̄-smooth min entropy function. More specifically, the set S({Qobs

1 , Qobs
2 , . . . }, ε̄) contains all pairs of maps (E , E ′)

such that the parameters {Qn
1 , Q

n
2 , . . . }, computed from the resulting state ρ

(E,E′)
XnY n in Eq. (5), are close to the observed parameter

values {Qobs
1 , Qobs

2 , . . . }, except for a small probability fixed by ε̄.

Similarly, for scenario (b), the achievable secret key rate is given by:

Rb =
1

n

[

min
E∈T ({Qobs

1 ,Qobs
2 ,... },ε̄)

H ε̄
min(X

n|E)ρ(E) − IEC − log2
2

εEC
− 2 log2

1

2εPA

]

, (8)

where in this case the set T ({Qobs
1 , Qobs

2 , . . . }, ε̄) contains all possible maps E such that the parameters {Qn
1 , Q

n
2 , . . . }, com-

puted from the resulting state ρ
(E)
XnY n in (6), are close to the observed values {Qobs

1 , Qobs
2 , . . . }, except for a small probability

fixed by ε̄.

For a fixed set of values {Qobs
1 , Qobs

2 , . . . , ε̄}, Eqs. (7) and (8) are identical expect for their smooth min-entropy terms.

Moreover, we observe that the minimization set in (8) is a subset of the minimization set in (7). In particular, the smooth min

entropy term in (8) is calculated for ρ
(E)
XnY n = ρ

(E,EV )
XnY n , which is a subset of all the states ρ

(E,E′)
XnY n that are considered in Eq. (7).

In other words, we have: T × {EV } ⊆ S . We, therefore, conclude that the minimization in Eq. (7) can only produce a smaller

or equal rate than the minimization in Eq. (8), thus proving the claim that Ra ≤ Rb.

Note that the same proof can straightforwardly be extended to the reverse reconciliation case, by replacing Alice’s raw key

Xn with Bob’s raw key Y n in the smooth min-entropy terms. We again observe that, by minimizing the achievable key rate over

the uncharacterized maps of the setups in Fig. 3, namely, E and E ′ in (a) and E in (b), scenario (b) can be seen as a particular

case of scenario (a). Thus, the optimal key rate in (a) should be smaller than or equal to the optimal key rate in (b). However,

this also suggests that a partial characterization of the map E ′ in the bypass channel would prevent us from viewing (b) as a

particular case of (a), leading to a potentially different relation between the key rates Ra and Rb.

Theorem 1 provides an easy way to obtain upper bounds on the key rate in the generic setup of Fig. 3(a), which includes a

bypass channel, using existing techniques and bounds for the setup of Fig. 3(b), which includes extended Alice and Bob boxes.

While this is an important result, in QKD, we are often interested in lower bounds on the key rate, by which we can specify the

required amount of privacy amplification in a real experiment. In the following sections, we will further study the relationship

between such lower and upper bounds in the case of certain CV and DV-QKD protocols. In particular, we numerically check in

the case of CV-QKD how the two bounds are close to, or deviate from, each other in certain practical scenarios. In the case of

DV-QKD, we also use the photon-number nature of the channel in certain BB84 protocols to come up with customized lower

bounds in the setups with a bypass channel.

An alternative way to lower bound the min-entropy term in Eq. (7), in the direct reconciliation case, is to calculate

H ε̄
min(X

n|B′), where, in Figs. 3(a) and (b), B′ represents mode B right after the first beam splitter, which is in the state

given by ρB′ = TrAF0 [BηAE(|ψAB〉〈ψAB |⊗n ⊗ |0〉〈0|⊗n
F0

)]. To prove this, consider that the min-entropy in Eq. (7) is computed

on the state in Eq. (5) where the system Y n is traced out. This allows us to simplify some of the quantum maps in the state in

Eq. (5) since they have no effect once the systems on which they act are traced out. We thus have that the min-entropy term in

Eq. (7) is computed on the following state:

ρXnE = TrF0B

[

E ◦ BηAE
◦MA(|ψAB〉〈ψAB |⊗n ⊗ |0〉〈0|⊗n

F0
⊗ |ψE〉〈ψE |)

]

. (9)

9
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Then, we can use the strong subadditivity of the smooth min-entropy function [35] to obtain the following lower bound:

H ε̄
min(X

n|E) ≥ H ε̄
min(X

n|BE), (10)

where the entropy on the right hand side is computed on the state:

ρXnBE = TrF0

[

E ◦ BηAE
◦MA(|ψAB〉〈ψAB |⊗n ⊗ |0〉〈0|⊗n

F0
⊗ |ψE〉〈ψE |)

]

. (11)

By using the data-processing inequality [35], the entropy can be further bounded as follows:

H ε̄
min(X

n|BE) ≥ H ε̄
min(X

n|B′E), (12)

where the entropy on the right hand side is now computed on the state without eavesdropper’s map E , i.e.,

ρXnB′E = TrF0

[

BηAE ◦MA(|ψAB〉〈ψAB |⊗n ⊗ |0〉〈0|⊗n
F0

)
]

⊗ |ψE〉〈ψE |. (13)

Because system E is separate from all other systems in Eq. (13), it follows that its contribution to the conditional entropy

vanishes, i.e. H ε̄
min(X

n|B′E) = H ε̄
min(X

n|B′). By combining this with Eq. (10) and Eq. (12), we then obtain

H ε̄
min(X

n|E) ≥ H ε̄
min(X

n|B′), (14)

which proves our claim. Note that, in certain regimes of operation, Eq. (14) would allow us to obtain an effective lower bound

on the key rate, as we will see in the CV-QKD section.

duct with XB′ system [35]. In certain regimes of operation, Eq. (14) would allow us to obtain an effective lower bound on

the key rate, as we will see in the CV-QKD section.

IV. CV-QKD WITH RESTRICTED EVE

Here, we focus on continuous-variable QKD protocols, in which data is encoded on the quadratures of light. We consider

a particular protocol in the family of GG02 protocols [36, 37], in which Alice uses Gaussian encoding, and Bob performs

homodyne detection. CV-QKD is not an obvious choice when it comes to highly lossy channels [38] such as the ones we may

face in the satellite-based QKD scenario. But, for that very reason, it is a particularly interesting case to study because, in our

setting, the initially trusted loss ηAE could alleviate some of the problems that CV-QKD faces in high-loss channels. Note that,

by using the fading nature of the atmospheric part of the link, it might also be possible to find working regimes of operation for

satellite-based CV-QKD [39]. In this work, however, we only focus on the benefits we may reap by imposing access restrictions

on Eve, particularly, at the transmitter end, by assuming ηAE ≤ 1 while ηEB = 1. For the same reason, we only focus on the

asymptotic case, which also makes the analysis a bit easier to follow.

To be able to obtain concrete results, for the most of this section, we study a special case of the setup in Fig. 3(a), which we

expect to encounter in practice. A schematic diagram of this case is given in Fig. 4, in which the bypass channel is modelled

as a pure loss channel with transmissivity ηS. This is a reasonable assumption considering scenarios we may face in practice.

Alternatively, a thermal-loss channel could have been assumed for the bypass channel, but as we will see later the insights

we obtain into the effects of the bypass channel on the performance would not majorly change. The second assumption is in

modelling the telescope action as a coupling beam splitter with transmissivity ηT. As we will show in Appendix C, this is partly

the result of the mode definitions in Fig. 3(a), and partly because of the light collecting nature of a telescope. Finally, whenever

10
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FIG. 4. A special setting for the setup of Fig. 3(a), where the bypass channel and the telescope actions are modeled by beam splitters. Eve’s

attack has also been modelled using an entangling cloner assuming that the Eve controlled section of the channel is also lossy.

Eve’s action needs to be explicitly modelled, we assume Eve is implementing an entangling cloner attack. This would implicitly

imply that the channel controlled by Eve is of thermal-loss nature. This may not be necessarily the case, especially in our setting

where the bypass channel can offer other pathways to the receiver. But, again, it is what we may expect to be the case in a

realistic scenario, and it also considerably reduces the search space when we look for worst-case configurations.

The key rate of a CV-QKD protocol, in the asymptotic limit of infinitely many signals, in the direct reconciliation (DR) and

reverse reconciliation (RR) cases, are, respectively, given by

KDR = βIAB − χAE , (15)

KRR = βIAB − χBE , (16)

where β is the reconciliation efficiency, IAB is the mutual information between Alice and Bob, and χAE (χBE) is the Holevo

information between Alice (Bob) and Eve. Under optimal collective Gaussian attacks [40–42], the mutual information and

Holevo information terms can both be bounded by using the covariance matrix (CM) of Alice, Bob, and Eve in the equivalent

entanglement based picture of the protocol. In the unrestricted Eve scenario, it can be assumed that Eve holds a purification of

Alice and Bob joint states. This enables us to calculate all relevant terms just as a function of the CM of Alice and Bob, which

can directly be measured in the experiment. In the restricted Eve scenario, however, this purification assumption does not hold

as there are other modes, such as F0, F1, and F2, that are not accessible to any of the parties. This would require us to redo some

of the calculations related to the simulation cases we consider in this section.

Throughout this section, we assume that the measured CM by Alice and Bob implies a channel with an excess noise, at the

transmitter end, ξ, and a total transmissivity Teq = ηchηd, where ηd is the receiver efficiency, corresponding to the measurement

operator MB , which is a trusted source of loss that can be characterized by the users. For simulation purposes, we only consider

scenarios where Teq ≤ ηch ≤ 1. We also assume that the mutual information term, IAB , which is an observable in the

experiment, is given by

IAB =
1

2
log2

V + χtot

1 + χtot
, (17)

corresponding to a thermal-loss channel identified by Teq and ξ. In Eq. (17), V is the variance of the two-mode squeezed vacuum

(TMSV) state at the source (in the entanglement-based picture), and χtot = χline +
χHom

ηch
is the total noise, calculated at the

11



A Reverse reconciliation 12

transmitter end, where χline =
1−ηch

ηch
+ ξ and χHom = 1−ηd

ηd
+ νel

ηd
are, respectively, noise due to the channel and the homodyne

receiver. Here, νel denotes the receiver’s electronic noise.

In the following, we obtain the secret key generation rate under above assumptions for the setup in Fig. 4 in RR and DR cases,

and compare it with the corresponding upper bounds that can be obtained from Theorem 1.

A. Reverse reconciliation

Reverse reconciliation is typically the default choice for CV-QKD systems in highly lossy channels. We first consider this

case under the restricted Eve scenario of ηAE ≤ 1 while ηEB = 1 in Fig. 4. The key question we would like to explore is how

the achievable key rate in the setup with a bypass channel compares with the upper bound that can be obtained from the setup of

Fig. 3(b). Interestingly, we find that, under the assumptions outlined above, the two are numerically very close to each other in

certain practical regimes of interest.

Let us first explain the limitations we have considered in the special setup shown in Fig. 4. Given that this is a linear channel,

and our encoding is Gaussian, a Gaussian attack is expected to be the optimal collective attack by Eve. In principle, for any

given values of ηAE, ηS and ηT, there could be a Gaussian attack by Eve that is compatible with observed values of Teq and

ξ. The Gaussian operation by Eve could take different forms. Here, we only focus on one particular form of attack, which can

be modelled by the conventional entangling cloner setup as shown in Fig. 4. Here, Eve combines a TMSV state with variance

VE, at a beam splitter with transmissivity ηE, with the signal she receives from Alice. The implicit assumption here is that Eve’s

channel is lossy corresponding to the condition that ηE ≤ 1. The conclusions we draw in this section will then only be valid for

this type of attack.

In Appendix D, we have calculated the corresponding CM for all parties in Fig. 4, from which the expected values for our

key observables, Teq and ξ are obtained and, respectively, given by Eq. (D5) and Eq. (D6). In the following, for simplicity, we

assume that the receiver has no loss, i.e., ηd = 1, and no electronic noise, i.e., νel = 0. For any given values of ηAE, ηS and ηT,

we can then find the corresponding values for ηE and VE that are compatible with observed values of Teq and ξ. For the sake of

our simulation, we assume that the resulting ηE ≤ 1, to be compatible with the entangling cloner attack considered here.

In order to calculate the key rate for the setup of Fig. 4, we use the CM given in Eq. (D3), from which all relevant terms can

be calculated. IAB is already given by Eq. (17). To calculate the Holevo information term, we have

χBE = H(EE′)−H(EE′|B), (18)

where H(EE′) and H(EE′|B) can, respectively, be obtained from the corresponding symplectic eigenvalues of the CM for

EE′ and EE′|B; see Fig. 4 for notations. The former, VEE′ , is specified by tracing out modes A and B in the CM of Eq. (D3).

We then numerically find its symplectic eigenvalues, which we denote by Λ1 and Λ2. The latter CM, VEE′|B , can also be

obtained by applying a homodyne measurement on mode B:

VEE′|B = VEE′ − 1

VB
ΣBEE′ΠΣT

BEE′ , (19)

where ΣT
BEE′ = [CBEZ CBE′✶] and Π = diag(1, 0) [43]. In the above, VB , CBE , and CBE′ are defined in Eq. (D4).

Denoting the symplectic eigenvalues of VEE′|B by Λ3 and Λ4, the Holevo information term in the RR case is given by

χBE = g(Λ1) + g(Λ2)− g(Λ3)− g(Λ4), (20)

12
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FIG. 5. Secret key generation rate, for the CV-QKD protocol in Fig. 4 with reverse reconciliation, versus (a) ηS and (b) ηT for different values

of observed excess noise and transmissivity. In (a), the bound on the leaked information to Eve, χEB , is also shown in the inset. In both

figures, V = 300 in SNU, β = 1, ηd = 1, and νel = 0. Other parameters are specified on the plot.

where g(x) = (x+1
2 ) log2(

x+1
2 ) − (x−1

2 ) log2(
x−1
2 ). Note that, in the above calculations, we account for the fact that the state

corresponding to ABEE′ is not a pure state. This prevents us from calculating all the terms from the CM of A and B, as it is

common in the unrestricted case.

Let us now fix the observed values for Teq and ξeq and compare the achievable secret key rates in Fig. 4 with the corresponding

scenario where the bypass channel is removed, or, equivalently, when ηS = 0. In both cases, some optimization needs to be

done to find the lower bound on the key rate. In Fig. 4, while the telescope is part of Bob’s secure station, it is not clear how this

parameter can be characterised. For any key rate analysis, one should then consider the space of feasible values of ηS and ηT

and go with the worst case possible. In Fig. 4, this corresponds to going over all possible values of ηS and ηT that are compatible

with Teq and ξeq, and then find K
(a)
RR ≡ minηS ,ηT

{KRR}. Similarly, for the extended Alice model, we can set ηS = 0, and

optimize over ηT. For a fixed loss in the link, the higher ηT, the more control is given to Eve. The minimum guaranteed key rate

in this case is then given by K
(b)
RR ≡ KRR(ηS = 0, ηT = 1). We can then compare K

(a)
RR with K

(b)
RR.

In order to get some insight into our optimization problem, in Fig. 5, we have plotted KRR versus each of ηS and ηT, while

keeping the other parameter constant. In Fig. 5(a), ηT and ηAE are fixed at 0.5, while, for different values of Teq, we look at

how KRR varies versus ηS. We observe a decreasing behavior for the key rate within the acceptable range of values for ηS. Note

that, within the assumptions in our model, e.g. that 0 ≤ ηE ≤ 1, such a range becomes narrower with decrease in Teq. This

is because in Eq. (D5), the maximum value for ηS is given by ηmax
S = Teq/(1 − ηAE)/(1 − ηT) at ηE = 0, i.e., when Alice’s

signal reaches Bob only via the bypass channel. Interestingly, at such a point, the key rate is minimum, while χEB , shown in the

inset, is maximum. A justification for this behavior is that, at ηE = 0, Eve can keep the entirety of the signal she has received

from Alice for herself, and use it to obtain information about Bob’s key. In fact, in this scenario, the bypass channel helps Eve

with masquerading the transmissivity of the channel without requiring her to give up any information she can extract from her

share of Alice’s signal. This observation also explains why the scenario with no bypass channels offers an upper bound on the

key rate. In the latter case, i.e., when ηS = 0, we see a similar behavior with regard to the optimum value of ηE from Eve’s

13
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FIG. 6. Secret key generation rate, for the CV-QKD protocol in Fig. 4 with reverse reconciliation, versus ηAE. The solid lines represent K
(a)
RR

and the dashed lines represent K
(b)
RR. As shown in the inset, the two curves are very close to each other, and mostly overlap except for small

values of ηAE. In all graphs Teq = 0.001, V = 300 in SNU, β = 1, ηd = 1, νel = 0, and the excess noise is shown on the graphs.

perspective. As shown in Fig. 5(b), in this case, the key rate goes down with increase in ηT ≥ Teq. The larger ηT , the smaller

will be ηE = Teq/ηT, meaning that Eve has more control on the channel. This observation agrees with our earlier definition of

K
(b)
RR.

Putting together the points made above, it may seem that the gap between K
(a)
RR and K

(b)
RR could be large in certain regimes

of operation. In Fig. 5(a), it is, however, interesting to see that the difference between the maximum value of KRR at ηS = 0,

and its minimum value, obtained at ηmax
S , shrinks down as Teq decreases. This would give us the hope that, in practical regimes

of operation for satellite QKD with a total loss of 30-40 dB, the difference between K
(a)
RR and K

(b)
RR could be reasonably low.

This has been verified, as a function of ηAE, in Fig. 6 at Teq = 0.001 for different values of excess noise. As can be seen, K
(a)
RR

and K
(b)
RR almost overlap in the entire region with the exception of when ηAE ≪ 1. Numerically speaking, the optimum value

for K
(a)
RR is often obtained at ηS = 1, which effectively maximises ηT and minimises ηE. The latter two favour Eve, while the

former makes the bypass channel a reliable replacement for what Eve should have done in the absence of the bypass channel.

This also suggests that, while our model in Fig. 4 is just a special case of what could happen in reality, a no-loss, and possibly

no-noise, bypass channel, as we are dealing with in the case of K
(a)
RR, could be the worst case scenario for Alice and Bob. We

have briefly examined this hypothesis by considering a thermal-loss bypass channel, and observed the following:

• The key change in the CM elements is for the excess noise expression in Eq. (D6), which now gets an additional term

(1 − ηS)((1 − ηT)(VS − 1), due to the bypass channel, where VS is the variance of the TMSV state that models thermal

noise in the bypass channel.

• At ηS < 1 and VS > 1, we see an increase in the key rate as compared to the case of VS = 1, corresponding to no thermal

noise in the bypass channel.

14
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• The minimum key rate is, however, still obtained at ηS = 1, in which case the effect of additional term in the excess noise

vanishes, and we will obtain the same result for K
(a)
RR as the pure-loss bypass channel.

We should note that we still limit our search space to the feasibility assumptions we have made in Fig. 4. While the above claim

needs to be analytically verified, based on our numerical results, in practical regimes of operation for satellite-QKD, it seems

safe to use the upper bound given by Theorem 1 as a reliable approximate to the lower bound on the key rate for CV-QKD

systems with reverse reconciliation.

Finally, as expected, Fig. 6 shows that the achievable key rate is a decreasing function of ηAE, that is, the more restriction

we set on Eve, the more key rate Alice and Bob can securely share. The impact in certain cases can be quite instrumental. For

instance, at ξ = 0.1, while no key can be exchanged under unrestricted Eve, positive key rates can be obtained for ηAE < 0.9.

The same happens for ξ = 1, but with higher restrictions on Eve at ηAE < 0.1. Interestingly, when ηAE is sufficiently low, the

key rate will become almost independent of the amount of excess noise, and rather large key rates can be obtained.

B. CV-QKD with direct reconciliation

In the previous section, we saw how the proposed restrictions on Eve can improve the key rate of CV-QKD systems in highly

lossy channels. Here, we apply the results of Section III to the case of CV-QKD with DR under a restricted Eve. In the DR

case, with no restriction on Eve, the maximum loss that we can tolerate is only 3 dB. It would be interesting to see how that

would change when we impose restrictions on Eve’s access to Alice’s signal. In the following, we consider two extremes: when

ηAE > Teq, in which case, the entangling cloner attack as in Fig. 4 is the optimal attack by Eve, and when ηAE < Teq, where

we can use Eq. (14) to directly find a lower bound on the key rate.

1. Method 1: Entangling cloner attack

Here, we assume that Teq < ηAE, and use the results of Appendix D to calculate the key rate for the setup of Fig. 4. As in the

RR case, we optimize the key rate over uncharacterized system parameters ηS and ηT as follows:

K
(a)
DR ≡ minηS,ηT{KDR(ηS, ηT)}

K
(b)
DR ≡ minηT

{KDR(0, ηT)} = KDR(0, 1), (21)

where KDR is defined in Eq. (15), with

χAE = H(EE′)−H(EE′|Ax), (22)

whereAx represents the homodyne measurement result on one of the quadratures of modeA after going through the 50:50 beam

splitter in the heterodyne measurement MA. The above entropy terms can be calculated using the CM in Eq. (D3) with some

modifications due to the 50:50 beam splitter in MA. The joint CM for modes AxEE
′ is then given by

VAxEE′ =









(V + 1)/2✶ 0✶ CAE′/
√
2Z

0✶ VE✶ CEE′Z

CAE′/
√
2Z CEE′Z VE′✶









, (23)
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where Z = diag{1,−1}, ✶ is the identity matrix of dimension two, and all other parameters are given by Eq. (D4). Eve’s state

ρEE′ is then described by the CM VEE′ , which is given by the 4× 4 submatrix in the lower right of VAxEE′ given in Eq. (23).

We then have

H(EE′) = g(Λ1) + g(Λ2), (24)

where Λ1 and Λ2 are the symplectic eigenvalues of VEE′ . Similarly, the conditional term H(EE′|Ax) = g(Λ3)+g(Λ4), where

Λ3 and Λ4 are the symplectic eigenvalues of VEE′|Ax
, given by

VEE′|Ax
= VEE′ − 2

V + 1
ΣAxEE′ΠΣT

AxEE′ , (25)

where we have applied a homodyne measurement on mode Ax [43] and ΣAxEE′ =





0✶

CAE′/
√
2Z



.

2. Method 2: Generic lower bound

In Method 2, we use Eq. (14), which basically uses the state before Eve’s operation, to bound χAE . The advantage of this

technique is that here we do not need to impose any conditions on the observed values of ηch and ηAE. In particular, we can now

cover the case of ηAE < ηch, which is the extreme case where Eve’s collection efficiency is worse than Bob, for instance, as in

Fig. 2(c). In this case, we use Eq. (14) to upper bound χAE by

χAB′ = H(B′)−H(B′|Ax), (26)

whereB′ is modeB right after the first beam splitter in Fig. 3(a). Note that, in this approach, we do not need to restrict ourselves

to the assumptions in Fig. 4. In the above equation, H(B′) is the von Neumann entropy of the thermal state B′ with variance

VB′ = ηAEV + 1 − ηAE. We then use the fact that the symplectic eigenvalue of a single-mode thermal state is indeed equal to

its variance to obtain H(B′) = g(VB′). Similarly, to calculate the term H(B′|Ax), we need to find the symplectic eigenvalues

for the conditional covariance matrix VB′|Ax
. Given that the CM of AxB

′ is given by

VAxB′ =





(V + 1)/2✶
√

ηAE(V 2 − 1)/2Z
√

ηAE(V 2 − 1)/2Z VB′✶



 , (27)

we have, after the homodyne detection on Ax,

VB′|Ax
= VB′✶− ηAE(V

2 − 1)

V + 1
ZΠZT

=





1 0

0 VB′



 . (28)

An upper bound on χAE can then be calculated from the following

χAE ≤ g(VB′)− g(
√

VB′). (29)

3. Numerical results

Figure 7(a) shows the key rate versus ηAE, for ηAE > Teq, using Method 1 for different values of Teq > 0.5. We have plotted

the upper bound K
(b)
DR (dashed lines) as well as the optimised lower bound K

(a)
DR (solid lines). Unlike the RR case, in the DR
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FIG. 7. Secret key generation rate, at V = 10
7 in shot-noise unit (SNU), obtained from (a) Method 1 and (b) Method 2, versus ηAE for

CV-QKD systems using direct reconciliation. The results are shown for an observed channel with different values of Teq, ξ = 1 SNU, ηd = 1,

νel = 0, and β = 1. In (a), the solid (dashed) lines represent K
(a)
DR (K

(b)
DR).

scenario, the two bounds are not close and effectively we cannot guarantee higher key rates than what we can obtain in the

unrestricted case. In particular, for Teq < 0.5, similar to the unrestricted case, we do not get a positive key rate for K
(a)
DR. The

optimum value of K
(a)
DR is again numerically obtained at ηS = 1, but this time optimum ηE takes rather large nonzero values

around 0.5. The larger ηAE is, the larger ηE we get at the optimum point. This could be because, at ηAE close to one, the main

path through Eve should offer a transmissivity close to 0.5, or higher, to get positive key rates, whereas, as ηAE goes down, the

bypass channel helps Eve more with the total observed Teq to the extent that the initial restriction on Eve becomes irrelevant.

We can however get some advantage in the restricted case in the extreme case of ηAE < Teq. Here, we can use the generic

lower bound in Eq. (29) to obtain the key rate. The results are shown in Fig. 7(b). As can be seen, in this case, the key rate

can improve by orders of magnitude by decreasing ηAE. The seemingly flat curves at the left-hand-side of the graph are mainly

because of the choice of a finite value for V . In principle, the key rate would continue going up in the asymptotic limit of

V → ∞. However, the growing happens very slowly, e.g., for a variance as large as V = 1020, the key rate is only about 25.

Considering the limitations on the transmitted power, a maximum V can be chosen in practice to offer the maximum key rate in

such settings where Eve is disadvantaged as compared to Bob, as in the case of the wiretap channel.

V. DISCRETE-VARIABLE PROTOCOLS WITH RESTRICTED EVE

In this section, we consider several DV-QKD protocols, mainly focusing on the BB84 protocol [44], and its variants. We

consider the original BB84 with single-photon sources (SPSs) as well as its variant with phase randomized weak coherent pulses

(WCPs) [45]. In all these cases we deal with a photon-number channel from Eve’s perspective. We assume ηEB = 1, i.e.,

we only consider Eve’s restriction on her signal collection capabilities. The case of ηEB < 1 will be the subject of another

investigation. In the following, we present a method to obtain a lower bound for the secret key rate in the restricted Eve case. In

this paper, we only consider the asymptotic regime where infinitely many signals are exchanged and focus on how restrictions
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on Eve can affect system performance.

A. General lower bounds for secret key rate

The secret key rate of BB84 protocols, in the asymptotic regime, in an unrestricted Eve scenario is lower bounded by [46]

R ≥ qQ

[

−fh(E) +
Q1

Q
(1− h(e1)) +

Q0

Q

]

, (30)

where f is the error correction inefficiency, q is the basis reconciliation factor, and h(·) represents Shannon’s binary entropy

function defined as

h(x) = −x log2(x)− (1− x) log2(1− x). (31)

In Eq. (30), Q, E, and e1, respectively, denote the total gain, QBER, and single-photon error rate. The parameters Q0 and Q1

are given by

Q0 = Y0p0,

Q1 = Y1p1, (32)

where Yi is the probability of Bob’s detection under the condition that Alice has sent i photons, and pi denotes the probability

that Alice sends i photons.

The general idea behind Eq. (30) is that, in photon-number channels, the information gained by Eve depends on the number

of photons in the signal received by Eve. For the events in which Eve receives two or more photons, one may assume that Eve

can obtain full information about the transmitted key bit using the photon-number splitting (PNS) attack [47]. In the events in

which Eve receives one photon, the maximum information that she can gain is h(e1). Finally, if Eve receives no photon, her

information is zero, assuming that direct reconciliation is used.

In our restricted Eve scenario, for every sifted bit, we find an upper bound, IE, on Eve’s information, in the direct reconciliation

case, based on the number of photons transmitted by Alice and received by Eve, denoted, respectively, by n and m, as follows

IE =



































0 m = 0, n ≥ 0

1 m > 1, n ≥ m

h(ε11) m = 1, n = 1

1 m = 1, n > 1

where ε11 denotes an upper bound on the error rate of the signals for which n = m = 1. Here, we have pessimistically assumed

that Eve can distinguish between the cases where m = n = 1 versus m = 1, but n > 1. This assumption would allow Eve, in

the latter case, to keep the photon to herself and wait to see if one of the remaining photons is received by Bob. To find a lower

bound on the secret key rate, we define the parameters Wij and pij as follows:

Wij = Pr(Bob′s detection|n = i,m = j),

pij = Pr(n = i,m = j). (33)

In the asymptotic case where Alice sends infinitely many signals, a lower bound on the secret key rate can be obtained by

R ≥ qQ

[

−fh(E) +
S11

Q
(1− h(ε11)) +

S0

Q

]

, (34)
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where

S0 =
∑∞

i=0Wi0pi0,

S11 =W11p11. (35)

Effectively, the last two terms in the above expression resemble the case of no bypass channel, and represent part of the shared

key that can be used for privacy amplification.

In the following, we find bounds on the key parameters in Eq. (34). In a typical QKD protocol, it may not be possible to

measure the exact values of S0, S11 and ε11. Instead, we try to find lower bounds on S0 and S11, and an upper bound on ε11. To

find a lower bound on S0 and S11, in the first step we find a lower bound on S0 + S11. Note that

1 ≥ Q =

∞
∑

i=0

i
∑

j=0

Wijpij = S0 + S11 + Sother, (36)

where

Sother =

∞
∑

j=2

∞
∑

i=j

Wijpij +

∞
∑

i=2

Wi1pi1 (37)

Using Eqs. (35)–(37), we can obtain

S0 + S11 = Q− Sother ≥ SL
0+11 ≡ Q− (

∞
∑

j=2

∞
∑

i=j

pij +

∞
∑

i=2

pi1), (38)

where SL
0+11 denotes the lower bound on S0 + S11. Now, we consider the following two inequalities:

S0 ≤
∞
∑

i=0

pi0,

S11 ≤ p11, (39)

Note that
∑∞

i=0 pi0 is the probability that Eve receives no photon, i.e., m = 0. We denote this probability by pEve
0 . Then, we

can write

S0 ≥ SL
0+11 − S11 ≥ SL

0+11 − p11,

S11 ≥ SL
0+11 − S0 ≥ SL

0+11 − pEve
0 . (40)

Substituting Eq. (38) into the above inequalities, it can be concluded that

S0 ≥ SL
0 ≡ max{Q− (1− pEve

0 ), 0},

S11 ≥ SL
11 ≡ max{Q− (1− p11), 0}. (41)

The above bounds have an easy explanation. Let us look at SL
0 , for instance. The term 1 − pEve

0 is the probability that Eve has

got a non-vacuum state. This sets an upper bound on the number of detection events that Bob can get because of non-vacuum

states. Any other click must come from cases where Eve has received no photons, which gives us the expression in Eq. (41).

Note that, in the case of restricted Eve, the bound on S0 is likely to become relevant for small values of ηAE. This is because,

for SL
0 to be strictly positive, 1− pEve

0 should be smaller than Q. In the nominal mode of operation, when no Eve is present, Q

often scales with channel transmissivity, and, for coherent state inputs, 1 − pEve
0 is expected to scale with ηAE. This suggests

that as ηAE becomes smaller and smaller, there could be a non-negligible contribution from the S0 term, which is often ignored
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in the conventional unrestricted Eve case. In the latter case, 1− p0 is often a fixed value, which Q could easily become smaller

than in high-loss regimes. Even if Q happens to be larger than 1 − p0, the contribution from S0 is likely to be cancelled out by

the additional error correction that Alice and Bob need to do for the clicks resulted from the vacuum states sent by Alice. In

the restricted Eve scenario, however, the bypass channel can, in principle, provide a route to obtaining correlated data between

Alice and Bob without necessarily increasing the QBER. This could allow Alice and Bob to extract more secret key bits from

their measured data as compared to the conventional scenario. We will look more carefully at the effect of the above bounds on

S0 and S11 later in this section.

To find an upper bound on ε1, we note that

EQ =

∞
∑

i=0

i
∑

j=0

εijSij , (42)

where Sij =Wijpij . Using the above equation, we can write

EQ ≥ ε11S11 ≥ ε11S
L
11 ⇒ ε11 ≤ EQ

SL
11

. (43)

Using Eq. (41) and Eq. (43), the secret key rate, in the restricted Eve case, in the limit of infinitely long key is lower bounded by

R ≥ qQ

[

−fh(E) +
SL
11

Q
(1− h(εU11)) +

SL
0

Q

]

, (44)

where εU11 = min{EQ/SL
11, 1/2} gives an upper bound on h(ε11).

B. BB84 Performance under Restricted Eavesdropping

In the following, we discuss the secret key rate of BB84 protocols considering different sources. We find the relevant param-

eters needed in each case to calculate R as given by Eq. (44).

1. BB84 with Single-Photon Sources

If an ideal single-photon source is used at Alice side, we have S0 + S11 = Q, pEve
0 = 1− ηAE, and p11 = ηAE. Hence, from

Eq. (41), we have

SL
0 = max{Q− ηAE, 0},

SL
11 = max{Q− (1− ηAE), 0}. (45)

By substituting Eq. (45) into Eqs. (43) and (44), we can calculate the lower bound R on the secret key rate.

2. BB84 with WCP Sources

Phase-randomised WCP (or, in short, WCP) sources follow Poisson distribution in photon generation. If the average number

of photons of the WCP source is µ, then pij can be obtained by

pij = Pr(n = i)Pr(m = j|n = i) =
e−µµi

i!

(

i

j

)

ηjAE(1− ηAE)
i−j (46)
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TABLE I. Nominal values used for system parameters.

Parameter Value

Average channel loss, ηch 30 dB

Error correction inefficiency, f 1.16

Basis reconciliation factor, q 1

Total dark/background probability, pdc 1E-7

misalignment error, ed 0.01

quantum efficiency of detectors, ηd 0.9

By substituting the above equation into Eq. (39) and Eq. (41), we obtain

S0 ≥ SL
0 = max{Q− (1− e−µηAE), 0},

S11 ≥ SL
11 = max{Q− (1− µηAEe

−µ), 0}. (47)

The lower bound R can then be obtained by substituting the above two equations into Eq. (43) and Eq. (44).

3. Numerical results

In this subsection, we consider a satellite-based QKD system, using the BB84 protocol, and evaluate its performance in

different regimes of operation. Nominal values used for system parameters are listed in Table I. Noteworthy is the fact that we

calculate the key rate at a channel transmissivity of ηch = 10−3 corresponding to the recent efficiency measurements for the

Micius satellite [48]. We have also assumed the ground station is equipped with superconducting single-photon detectors of 90%

efficiency, but to account for possible background noise in the link [29], the dark count probability per pulse for the receiver is

assumed to be pdc = 10−7. For a system running at 100 MHz, this is one order of magnitude higher than the typical dark counts

for such detectors [49]. We also assume that we use the efficient version of the BB84 protocol [50], in which the reconciliation

factor q approaches one.

We consider two types of sources: SPS and WCP for the encoder at Alice side, i.e., the satellite. In a real QKD experiment,

the parameters related to the overall gain and the QBER, i.e., Q and E in Eq. (44), are obtained by measurement. Here, we

assume that the measured values for these parameters are equal to the ones that can be obtained analytically as calculated in

Appendix A of Ref. [51].

Figure 8(a) shows the secret key rate versus ηAE for SPS and WCP protocols. We have optimized the key rate over µ in the

WCP case. The optimum values of µ are shown in Fig. 8(b). There are several interesting points to highlight in Fig. 8:

• At the channel loss of 30 dB, the WCP protocol cannot provide any secret key under unrestricted Eve’s assumption. In

the restricted Eve case, however, we start having positive key rates for roughly ηAE < 8.1× 10−4. This suggests a simple

phase randomized laser source is sufficient for key exchange in this regime.

• The WCP protocol performance exceeds that of the SPS protocol at small values of ηAE. This is interesting as the

SPS source conventionally corresponds to the ideal BB84 protocol. In our example system, this happens at roughly

ηAE < 8 × 10−4. This is mainly because of the extra laser power that Alice can now use to generate signals with larger

number of photons without worrying much about photon number splitting attacks. We do not have this possibility with
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FIG. 8. (a) Secret key generation rate versus ηAE for WCP and SPS sources. (b) Optimal values of µ versus ηAE for WCP sources.

SPSs, hence such sources would not allow us to benefit from Eve’s restrictions in this case. We have verified this result

using numerical techniques for bounding the key rate [52, 53], and have observed a similar trend for the SPS source. The

full detail of the numerical approach will be the subject of a separate publication.

• As mentioned earlier, the case of ηAE < η is of special interest. This is when the bound SL
0 in Section V B 2 can take

nontrivial values. We can see this effect in the parameter values chosen for our simulation, whereQ = 1−(1−pdc)2e−ηµ.

In this case, we have Q− (1− pEve
0 ) = e−µ′ − (1− pdc)

2e−ηµ > e−ηAEµ − e−ηµ. The latter term would get a positive

value when ηAE < η, resulting in a positive value for SL
0 .

VI. CONCLUSIONS AND DISCUSSION

The security of prepare-and-measure QKD systems under certain restrictions on the eavesdropper was studied. We relaxed

the assumptions on the eavesdropper’s unrestricted capabilities in collecting and re-transmitting QKD signals. Such restrictions

could particularly find relevance in satellite-based QKD protocols. Our restrictive assumptions resulted in an under-explored

scenario, where the channel between Alice and Bob is not entirely controlled by Eve, but rather an uncharacterized bypass

channel could also carry signal. We found generic upper bounds on the key rate for QKD systems with a bypass channel, and in

the case of CV-QKD with reverse reconciliation showed the upper and lower bounds on the key rate are very close to each other

in certain practical regimes of interest. Such an upper bound offers a considerable boost to the key rate that can be achieved

under restricted Eavesdropping. In the case of CV-QKD with direct reconciliation, or that of BB84 protocols, the advantage was

limited to certain scenarios where Eve’s access to Alice’s signal is significantly hampered, as is the case, for instance, in wiretap

channels. Nevertheless, our approach to security proof relies only on a few assumptions, which can, in principle, be verified

with monitoring techniques.

The analysis of QKD systems in the presence of bypass channels can certainly be extended in several directions, where each

could be investigated independently. For instance, the difference between reverse and direct reconciliation in the CV-QKD case,

raises the question of whether DV-QKD with reverse reconciliation could offer any better performance. One way to answer such

22



1 Optical setup 23

questions is by developing numerical techniques for finding tight bounds on the key rate in such setups, which is an ongoing

research. While Theorem 1 is applicable to finite-size key settings, the issue of statistical fluctuations in the presence of the

bypass channel needs to be further investigated. Whether the bypass channel affects non prepare-and-measure QKD protocols,

e.g., entanglement-based QKD, also needs to be investigated. Overall, while the key application of such an analysis could be

in satellite-based systems, the whole area of QKD security under unconventional assumptions is a less explored territory, which

deserves more attention. We hope that works like this manuscript can open new avenues of research in this area.
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VII. APPENDICES

Appendix A: Estimating ηAE and ηEB parameters

In this Appendix, we find nominal values for parameters ηAE and ηEB if Alice and Bob are equipped with the LIDAR

technology for detecting unwanted objects around them.

1. Optical setup

In this section we specify the optical setup considered in our calculation for the two authorized QKD parties, Alice (A) and

Bob (B), and the eavesdropper, Eve (E). We assume A is located on a low earth orbit (LEO) satellite, travelling in a circular

orbit at an altitude L above the ground. It is equipped with a QKD source and a telescope with aperture radius rA. B is instead

placed on the surface of the Earth and he collects the light sent by A using a telescope with radius rB . We address the static

situation in which the satellite is at a fixed position right above the optical ground station, so that the length of the link is exactly

L. In the following calculations, we will allow E to have two distinct satellites, one for collecting and one for re-sending the

light, with appropriate values of the aperture radius and position. However, it turns out that the configuration of a single satellite

is indeed optimal for her. We can therefore assume that E is represented by a spacecraft equipped with two telescopes, one

for collection (pointed towards A) and one for transmission (pointed towards B), both of radius rE . We also assume, as the

worst-case scenario, that the aperture of the telescope represents the whole projected area of E’s spacecraft.
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We assume that A’s telescope sends the QKD signals in the form of a Gaussian beam, with initial beam width W0, equal to its

radius rA, at wavelength λ. For the light propagation we neglect the action of the atmosphere and the contribution of pointing

errors. We use the standard expressions for Gaussian optics, corrected through the quality factor M2 in order to replicate the

far-field divergence of real optical elements. E’s telescope is instead perfect, meaning that she can send Gaussian beams with

M2 = 1.

In the following we will call z the coordinate along the propagation path, so that A is at z = 0 and B at z = L. After a

propagation of length z ∈ [0, L], the beam width can be expressed as

W (z) =W0

√

1 +

(

zM2

zR

)2

, (A1)

where zR = πW 2
0 /λ represents the Rayleigh range of the beam. Comparison between the far-field divergence of a perfect

Gaussian beam and the divergence measured for the Micius satellite suggests a value M2 ≈ 3. The transmittance of such a

beam, when impinging at the centre of a circular collecting aperture of radius ρ can be expressed as

η(ρ, z) = 1− exp

[

− 2
ρ2

W 2(z)

]

. (A2)

This expression can be used to compute the transmittance of A’s beam through B’s telescope, by setting z = L and ρ = rB :

ηAB = 1− exp

[

− 2
r2B

W 2(L)

]

, (A3)

which describes the efficiency of the QKD channel, apart from additional losses like atmospheric absorption, detection efficiency

and transmittance of the optical elements. The same formula can express the efficiency with which E can collect A’s signals,

while she is at position z and has a collecting aperture of radius rE(z)

ηAE(z) = 1− exp

[

− 2
rE(z)

2

W 2(z)

]

. (A4)

We assume here that E is positioned at the exact centre of the beam. The way we model the dependence of rE(z) on the distance

from A and B will be specified in the next section.

We can use a similar approach to estimate the ability of E to re-send the signals that she has intercepted towards B. In order to

take full advantage of her optical system, we allow E to send focused beams. It is not necessary to take this into account in the

case of A, because for a typical LEO satellite the total propagation length L is much larger than the Rayleigh range zR ≈ 70 km,

so focusing would not give much advantage. For our calculations, we suppose that E has a lens of focal length f just in front of

her sending aperture. We can then use the ray transfer matrix formalism and obtain the following expression for the optimized

width of a focused beam at distance d from its transmitter [54]:

WE(z) =
λd

πrE(z)
=
λ(L− z)

πrE(z)
, (A5)

which agrees with Eq. (A1) when z ≫ zR and rE = W0. Now, using Eq. (A2), we can compute the transmittance of E’s beam

through B’s aperture as follows

ηEB(z) = 1− exp

[

− 2
r2B

WE(z)2

]

. (A6)

We point out that, even in this case, the dependence of rE(z) on the length of A-E and E-B links is important and will be

modelled in the next section.
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2. Techniques for channel monitoring

In this section we obtain an upper bound on the size of an undetected E’s spacecraft, depending on the distance from A’s or

B’s position, if some sort of channel monitoring system is employed. Typical techniques are RADAR, LIDAR and direct optical

detection. We will not analyze the last one, as it requires rather stringent conditions: E’s spacecraft must be illuminated by the

sun while the receiver is in eclipse and the sky must be clear. A RADAR is very power-consuming, so we will address this

technique as operated only from B, on the ground (although examples of radars on spacecrafts can also be found). LIDARs

instead require much less power and share similar optical elements as those used for QKD, so may be placed on both A’s and/or

B’s sides.

The operation of a RADAR/LIDAR system can be described by the so-called RADAR equation:

dmax =

(

PTG
2λσ

Pmin(4π)3k

)1/4

, (A7)

which expresses the maximum distance at which an object with radar cross section σ can be detected. We are interested in the

inverse dependence for the maximum σ(z), for a space object at location z, i.e. distance L− z from B, which is given by

σ(z) =
Pmin(4π)

3kd4max

PTG2λ2
=
Pmin(4π)

3k(L− z)4

PTG2λ2
. (A8)

Here, Pmin represents the minimum power measurable by the receiving system, PT is the total power emitted, G is the gain of

the radar antenna, and k is a parameter that accounts for all additional sources of loss.

In order to assess the applicability of a RADAR system on Bob’s end, we use the following parameter values:

• G = 4π E π rant
λ2
R

where E = 0.6 is the antenna efficiency, rant = 2 m is the radius of the circular parabolic antenna and

λR = 4 cm is the wavelength of the radar signals. We chose rant = 2 m as a reasonable size for a dish to be put alongside

an optical ground station.

• PT = 105 W, as it is the power usually used in systems of this size (like the ones used in airports).

• Pmin = kBTFnB, with kB the Boltzmann constant, T the temperature, Fn = 8 dB is the so-called noise figure and

B = 2.5× 106 Hz is the effective noise bandwidth of the setup.

• k = 7 dB takes into account attenuation from atmospheric effects, filters and other sources.

• We also assume that L = 500 km corresponding to a LEO satellite.

In general the radar cross section σ is not equal to the geometric projected area and it strongly depends on the shape of the

object. Only for spherical objects these two quantities coincide and this is the case we consider here. In this way, we can set

the radius of E’s telescope to rE =
√

σ/π. Figure 9 shows the minimum size of rE , calculated from Eq. (A8) at the above

parameter values, if a radar is located at Bob’s site, i.e., at z = L. Figure 9 suggests that, if we only use RADAR at Bob’s end,

we can easily miss eavesdropping objects of a few meters in radius. This implies that we may not achieve useful bounds on ηAE

and ηEB, in Eq. (A4) and Eq. (A6), if we only rely on RADAR as a monitoring system. Even assuming that low-power radar

could be employed on the satellite to monitor the first tens of km around it, a telescope of 3 m in radius at 100 km from A would

be able to intercept and resend with transmittances very close to 1. In practice, radar techniques are currently used to monitor

the number of objects present in low orbits around the Earth [55]. However, much bigger facilities (antenna radius & 10 m)

25



2 Techniques for channel monitoring 26

FIG. 9. The minimum radius for E’s telescope aperture detectable by a typical radar system located at Bob’s site. Note that the distance from

Bob is measured by L − z. An object 500 km away from Bob must have a radius greater than 4 m, for our chosen parameter values, to be

detectable by Bob’s radar system.

are necessary for such missions and the information is usually not in real-time, but used to build and update catalogues of the

objects. We would therefore consider the radar solution unsuitable for our purposes. We next consider the LIDAR option.

Much better performance can be achieved using LIDARs. The working principle is the same as with radars, but in this case

light in the near ultraviolet, visible, or near infrared range is sent and recorded after reflection from the object under study. In

this case, instead of enormous antennas, we only need telescopes of reasonable sizes. For example, the same telescopes used for

exchanging QKD signals, or alignment, can be used for LIDAR operation. Moreover, instead of powers of tens of kW, lasers

with power on the order of 1 W are sufficient, meaning that this technique can rather easily be implemented on the satellite,

as well as on Bob’s side. As expected, the big advantage comes from the much shorter wavelength of the employed light with

respect to the microwave signals used in the radar technique, resulting in much smaller diffraction of the electromagnetic beams.

In this case, we can try to use again the standard radar equation of Eq. (A8), with suitably chosen parameters. We report here

a simple calculation, using again Gaussian optics, that gives a result very similar to the radar equation (with LIDAR parameters),

for when the LIDAR is placed on the satellite. A similar calculations can be used for a LIDAR based in the ground station. We

use Eq. (A5) and modify it to take into account the realistic quality factor M2 as estimated before

WLIDAR(z) =
λLIDARzM

2

πW0
, (A9)

where λLIDAR is the LIDAR wavelength. The intensity distribution of such a beam can be expressed as

I(r, z) =
2PT

πWLIDAR(z)2
exp

[

2r2

WLIDAR(z)2

]

, (A10)

where PT is the total power carried by the beam and r is the distance from the beam centre in the plane transversal to the

direction of propagation. We assume that the reflecting object is at the centre of the beam.
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We compute the total power incident on the object integrating Eq. (A10) in the area corresponding to E’s spacecraft as follows

P (z) =

∫

|r|<rE

I(r, z)drdθ =

= PT

(

1− exp

[

− 2r2E
WLIDAR(z)

])

. (A11)

We assume that the light is reflected back isotropically by the object under study, with reflectivity α, resulting in a received light

intensity of

IR(z) =
P (z)α

4πz2
=

=
PTα

4πz2

(

1− exp

[

− 2r2E
WLIDAR(z)

])

. (A12)

The total collected power reaching the satellite LIDAR is then PR(z) = IR(z)πr
2
Ak, where we account for any additional loss

encountered during transmission and collection by factor k. In order to obtain the bound on the size of E’s object, we can then

invert this expression and equate PR(z) to the minimum power Pmin measurable by the receiving setup, as follows:

rE(z)
2 = −

(

ln

[

1− 2Pminkz
2

αPTW 2
0

])(

λLIDARzM
2

πW0

)2

. (A13)

For the rest of this section, unless otherwise noted, we use the following parameter values. We set λL = 800 nm and assume

k = 0.25. The transmitted power is set to PT = 1 W due to the limit on the power consumption on the satellite. For the ground-

based LIDAR, this value could even be higher, although, offering a small advantage, as we show by the end of this section. We

choose a rather conservative value for the reflectivity of the object, α = 0.1, considering that for different metals it is usually

around α = 0.5 or more. Coating can be used to lower this value, however, measurements at different wavelengths could limit

the effectiveness of this technique. We also assume that M2 = 3, rA = 15 cm, and rB = 50 cm. These values are compatible

with the instruments used in the Chinese satellite mission Micius. All other relevant parameters are the same as the radar case.

Figure 10 shows the estimated maximum radius of E’s object that does not trigger our LIDAR monitoring system, versus

its distance from the satellite. The results obtained by using Eq. (A13) and Eq. (A8) are both shown. They differ because the

efficiency of the transmitter and the reflectivity of the object are modelled in different ways. We see that the bound on the size

of undetectable objects, rE , is much smaller as compared to the values shown in Fig. 9 using the radar technique, giving hope

that the values obtained for ηAE and ηEB in this case may be low enough to be useful in the enhancement of the secret key rate.

The minimum measurable power Pmin used in Fig. 10 is obtained by calculating the background light collected by the satellite

in normal working conditions. For the LIDAR placed on the satellite, the main source of background light during night-time

operation is represented by the light of the Moon reflected by the Earth [1], which can be expressed as follows

PA
min = αEαMR

2
Mr

2
A

Ωfov

d2EM

HsunBfilter , (A14)

where αE and αM are the albedo of Earth and Moon, RM is the radius of the Moon, dEM is the Earth-Moon distance, Hsun is

the Sun irradiance at λL and Ωfov is the field of view of the telescope and Bfilter is the bandwidth of the spectral filters. For the

LIDAR on the ground, we estimate the background light from the analysis in [56], as follows

PB
min = HbΩfovπr

2
BBfilter , (A15)

where Hb is the brightness of the sky background. The typical value for such background lights is very small suggesting that in

order to obtain some statistics about such sources we may need to use single-photon detectors in our LIDAR system [57].
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FIG. 10. Minimum radius for E’s telescope aperture detectable by LIDAR measurements performed, simultaneously, from the satellite and

from the ground. The bound on this quantity obtained from two different techniques: The blue curve is obtained from Eq. (A13), while the

orange curve from the radar equation Eq. (A8) using parameters suitable for a LIDAR system.

The previous analysis does not take into account the fact that the LIDAR detection from the ground will be strongly affected

by the presence of the atmosphere. The air can back-scatter the light sent by Bob’s LIDAR, especially when the sky is not

completely clear, giving a signal that can be attributed to Eve’s object. This means that, without additional analysis, every time

we will measure a reflected power greater than Pmin, we will think that this is because of Eve’s apparatus and the measured

power will be used to bound its size. If part of the back-scattered light is due to the atmosphere, we will end up over-estimating

the size of Eve’s object, and consequently its collecting efficiency. In that sense, while this issue can loosen our lower bound on

the key rate, it does not make our analysis unreliable.

3. Bounds on ηAE and ηEB

In this section we report the numerical results for the E’s collecting and re-sending efficiencies, obtained using the analysis

provided in the previous sections. Figure 11 shows the values of ηAE and ηEB, computed, resepctively, from Eq. (A4) and

Eq. (A6), as a function of z. In both graphs, the maximum value happens somewhere in the middle of the orbit. This is because

we are using LIDAR on both A and B, and the maximum value is achieved at the point where E’s telescope is the biggest, which

is roughly in the middle. This happens because the width of the beams, during the propagation, vary linearly with z, while

the bound on E’s size is proportional to z2 (equivalently, the cross-section in Eq. (A8) is proportional to z4). We see that ηAE

remains below 0.1, while ηEB grows up to about 1. There are two main reasons for this behaviour. First, we allow E to use

perfect optics that generate Gaussian beams with minimal divergence and second, B’s telescope aperture is bigger than A’s.

Figure 12 shows the values of some quantities of the setup as a function of the coordinate z, useful to understand the behaviour

observed in Fig. 11. The rE curve close to the x-axis is the same as the upper curve in Fig. 10, which shows the maximum radius

of the undetected E. The WE curve represents the width of the beam, sent by E at distance z from A with a telescope of radius

rE(z), when it arrives at B’s receiving plane. The WLIDAR curve is, instead, the width of the beam sent by A as it propagates

towards B. We see that when it arrives at B, after 500 km of travelling, the beam is about 2.5 m in radius, which is several
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FIG. 11. Values of ηAE and ηEB, for an undetected Eve, computed using Eq. (A4) and Eq. (A6), respectively.

times larger than that of B’s telescope, giving a transmittance between the legitimate parties of ηAB = 0.05 (only considering

diffraction losses, without collection and detection losses). As fro Eve, however, the minimum of theWE curve is roughly 30 cm

at B, which is smaller than B’s telescope size, resulting in ηEB ≃ 1.

FIG. 12. The maximum radius, rE , of the undetected Eve’s object, the width of the propagating beam, WLIDAR, sent by Alice, and the width

of signal sent by Eve at point B, WE , versus z.

The values in Fig. 11 can be lowered by raising the value of LIDAR’s transmitted power. Notice that rE ∝ P
1/2
T , so if we raise

the power by a factor 4, to 4 W, the bound on Eve size will be halved. In this case, smaller values of ηAE and ηEB are expected,

as shown in Fig. 13. ηAE, in particular, reaches a maximum of about 3%, giving big room for improvement in the achievable key

rate. This bound very strongly depends on the minimum measurable power Pmin. Any improvement in the filtering techniques

(defined by the parameters Bfilter and Ωfov) will improve the performance. In the same way, going to lower wavelengths will

reduce the diffraction losses and improve the bound. We point out that, in practice, the monitoring can possibly be repeated with
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a rather low frequency, leaving the remaining time for the QKD signal exchange. This means that the power actually consumed

during monitoring operation should be manageable even by small satellites.

FIG. 13. Values of ηAE and ηEB, for an undetected Eve, computed using Eq. (A4) and Eq. (A6), for a power of 4 W.

The LIDAR technique, in the simplified approach we used in these calculations, is sensible to the total power reflected by

objects illuminated by the transmitted light. This means that we are safe even in the situation where E places more satellites,

which taken alone would be smaller than the detectable size. If we detect that an object or more are passing between A and B,

by measuring a received power PR > Pmin, we can assume that they are all malicious, estimate their size by replacing Pmin

with PR in the expressions above and bound ηAE and ηEB in the real case.

We point out again that the presence of back-reflections from the atmosphere would give an over-estimation of the size of

Eve when measured from B, which has not been considered here, leading to higher values of ηAE and ηEB. More sophisticated

techniques should be able to address this problem, using the timing information obtained when using the LIDAR in the pulsed

regime. The advantage introduced by sending a beam with higher power, analyzed in Fig. 13, would be less effective for B,

because it would correspond to more light back-reflected by the atmosphere, too.

Until now we have considered the static case where the satellite is fixed at the position closest to the ground station. We

study now how the maximum values of ηAE and ηEB (optimal for E) vary during the passage of the satellite. We show the

results in Fig. 14 at PT =1 W transmitted power for the LIDAR system, and in Fig. 15 at PT = 4 W. As can be seen, both

configurations perform well for high elevation angles, however, the higher power level is required to put useful bounds at low

elevation angles. As pointed out before, if the available power output is limited, one can achieve the same performance by

changing other parameters of the setup.

For comparison, we report in Fig. 16 the behaviour of ηAB, from Eq. (A3), as a function of the position of the satellite. The

upper curve represents only the diffraction losses, while in the lower curve other sources of loss are also considered. In particular,

50% detection loss, 80% transmittance of the receiving optics and absorption in the atmosphere χext = exp
[

−β sec(θ)
]

, where

β = 0.7 for λ = 800 nm and θ the angle from zenith. The inclusion of pointing errors should have a fairly small impact, about

2-3 dB.

In the previous analysis we fixed the reflectivity of E’s spacecraft to bound its size. The value chosen at the end of Sec. A 2,

α = 0.1, is conservative enough if one considers standard spacecrafts. However, lower values of reflectivity parameters can be
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FIG. 14. Maximum values of ηAE and ηEB, for an undetected Eve, as a function of the position of the satellite, for a LIDAR transmitted power

of 1 W.

FIG. 15. Maximum values of ηAE and ηEB, for an undetected Eve, as a function of the position of the satellite, for a LIDAR transmitted power

of 4 W.

reached if specific technologies are used. For example, nano-structured coatings [58] can be laid over opaque surfaces, which

can enable reflectivity values < 10−2. Similar values can be obtained on transparent surfaces (such as lenses), using multi-layer

interferometric coatings. In Fig. 17 we report the minimum value of reflectivity parameter of E’s surfaces to achieve ηAE < 1,

for different positions of the satellite with respect to the ground station. This means that, by fixing all other parameters, any
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FIG. 16. Transmittance of the beam sent by A through B’s aperture ηAB, Eq. (A3), as a function of the position of the satellite.

value of reflectivity α < αmin will lead to ηAE = 1, so only values α > αmin lead to useful bounds in our analysis. We see from

Fig.17 that if E uses such high-performances coatings, the LIDAR setup is no longer sensitive enough. In this case, we have to

compensate for the lower reflectivity by increasing the emitted power PT , increasing the directionality of the beam (smaller λL

and/or larger W0) or decreasing the minimum measurable power Pmin.

FIG. 17. Minimum value of reflectivity parameter of E’s surfaces to achieve ηAE < 1, as a function of the angle of the satellite with respect to

the zenith of the ground station.
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Appendix B: Proof of Lemma 1

Here we prove Lemma 1.

Proof. Under the conidtion of a quantum bob with access to B and F0 modes, the in-principle achievable asymptotic key rate of

the QKD protocol in Fig. 3 is given by the Devetak-Winter bound [14, 59]:

rk = H(X|E)k −H(X|BF0)k, k = a, b (B1)

where, for scenario k = a, b in Fig. 3, H(X|E)k is the conditional von Neumann entropy of Alice’s classical outcome X

given Eve’s quantum information E, whereasH(X|BF0) is the conditional entropy of Alice’s outcomeX given Bob’s quantum

information, which includes the joint state BF0 at the output of the telescope. This is effectively a classical-quantum-quantum

(CQQ) scenario, where Alice has a classical state, but Eve and Bob hold on to their quantum states.

The entropy functions in Eq. (B1) are computed on the quantum states ρXE and ρXBF0 , which in turn are the reduced density

operators of the single-round global quantum state ρXBF0F1F2E . In the following, we compute the latter state for the setups in

Figs. 3(a) and (b). We denote with B the map corresponding to the beam splitters, and add subscripts on the maps’ symbols to

indicate the subsystems on which they act.

The global state obtained after one round of the protocol in the setting of Fig. 3(a) is given by:

ρ
(a)
XBF0F1F2E

= ET ◦ BBF2
◦ E ′

F0F1
◦ EBE ◦ BBF0

◦MA

(|ψAB〉〈ψAB | ⊗ |0〉〈0|F0
⊗ |ψF 〉〈ψF | ⊗ |ψE〉〈ψE | ⊗ |0〉〈0|F2

). (B2)

Then the reduced state on subsystems XE, over which the entropy H(X|E) is computed, is given by:

ρ
(a)
XE = TrBF0F1F2 [ρ

(a)
XBF0F1F2E

]

= TrBF0
[EBE ◦ BBF0

◦MA(|ψAB〉〈ψAB | ⊗ |0〉〈0|F0
⊗ |ψE〉〈ψE |)], (B3)

where we used Kraus’ theorem to remove the outer quantum maps that act on the subsystems that are traced out.

Similarly, the global state for Fig. 3(b) is given by

ρ
(b)
XBF0F1F2E

= ET ◦ EV ◦ BBF2
◦ E ′

F0F1
◦ EBE ◦ BBF0

◦MA

(|ψAB〉〈ψAB | ⊗ |0〉〈0|F0 ⊗ |ψF 〉〈ψF | ⊗ |ψE〉〈ψE | ⊗ |0〉〈0|F2). (B4)

Note that, compared to Eq. (B2), it only presents the additional CPTP map EV . For the reduced state we obtain:

ρ
(b)
XE = TrBF0F1F2

[ρ
(b)
XBF0F1F2E

]

= TrBF0
[EBE ◦ BBF0

◦MA(|ψAB〉〈ψAB | ⊗ |0〉〈0|F0
⊗ |ψE〉〈ψE |)]. (B5)

From Eq. (B3) and Eq. (B5) we observe that the reduced states on XE are the same for both scenarios, i.e., ρ
(a)
XE = ρ

(b)
XE ,

which implies that:

H(X|E)a = H(X|E)b, (B6)

since the entropy functions are computed on the same quantum state.
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From Eq. (B2) and Eq. (B4) we observe that ρ
(b)
XBF0F1F2E

can be obtained from ρ
(a)
XBF0F1F2E

through the following CPTP

map:

ρ
(b)
XBF0F1F2E

= RBF0
(ρ

(a)
XBF0F1F2E

), (B7)

where

RBF0
:= ET ◦ EV ◦ E−1

T . (B8)

By tracing over F1F2E in Eq. (B7), the reduced state of XBF0 in Fig. 3(b) can be obtained by applying the CPTP map RBF0

to the reduced state of Fig. 3(a), that is:

ρ
(b)
XBF0

= RBF0
(ρ

(a)
XBF0

). (B9)

By the fact that quantum maps applied on the conditioning system can only increase the conditional von Neumann entropy [60],

we have that

H(X|BF0)a ≤ H(X|R(BF0))a = H(X|BF0)b. (B10)

Finally, by inserting Eq. (B6) and Eq. (B10) into Eq. (B1) we obtain

rb ≤ ra, (B11)

which concludes the proof.

Appendix C: A Typical Telescope Model

In this Appendix, we look at the implication of the two-mode model we have in Fig. 3, and deduce that the telescope action

can be modelled by a beam-splitter like operation, where only one output mode is accessible. The gist of the idea is as follows.

Let us denote by ar the field operator that will be collected by the telescope, after proper focusing, at point r on the outer surface

S of the receiver telescope. We then have [ar, a
†
r′ ] = δ(r − r′), and the corresponding annihilation operator for the collected

optical mode, in a particular polarization, is given by

a =

∫

S

drg(r)ar, (C1)

where
∫

S
dr|g(r)|2 = 1, hence [a, a†] = 1. Here, we have assumed that the collected light is coupled to a single-mode fiber.

In principle, the operator ET , acting in input modes B and F0 should give us the same output relationship as in Eq. (C1). In

reality, in addition to the bypass channel and Eve’s channel, the telescope could capture other background modes as well. In

the worst-case scenario, however, we can always assume that all these other modes are controlled by Eve, and she can decide

whether leave them as they are, or control them, via its operator E . The implication of this assumption is that we can assume ET
is a unitary map, which fully models the action of the telescope. In particular, the collected light from mode F0 combined with

the collected light from mode B must fully recover the action modeled by Eq. (C1). That is, if we model the collected light for

mode F0 by

aF =

∫

S

drf(r)ar, (C2)
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with
∫

S
dr|f(r)|2 = 1, and the collected light for mode B by

aB =

∫

S

drh(r)ar, (C3)

with
∫

S
dr|h(r)|2 = 1, we should then have [aF , aB ] = 0, as they originate from different spatial modes, and

a = αaF + βaB , (C4)

to make sure the two modes fully model the collected light by the telescope. The choice of linear combination above matches

what a typical telescope does to different impinging modes of light. The first condition implies that the weight functions f and

h must satisfy the orthogonality condition
∫

S
drf(r)h∗(r) = 0, whereas the second condition implies that

g(r) = αf(r) + βh(r), (C5)

which results in

α =

∫

S

drg(r)f∗(r), β =

∫

S

drg(r)h∗(r). (C6)

In addition, given that g, f and h are normalized and the latter two are orthogonal, we have |α|2 + |β|2 = 1, which results in the

following relationship

a =
√
ηTaB +

√

1− ηTaF , (C7)

where

ηT =

∫

S

drg(r)h∗(r) = 1−
∫

S

drg(r)f∗(r). (C8)

The expression in Eq. (C7) resembles one output of a beam splitter with transmissivity ηT, as we have used in the main text.

Appendix D: Covariance matrix calculations

In this Appendix, we calculate the covariance matrix (CM) for the setting given in Fig. 4. While this is a special channel

configuration, with proper choices of parameters, it can be used to model several cases of interest to our work. For instance, by

choosing ηS to be zero, we effectively remove the bypass channel, and the remaining setup would then correspond to an optimal

attack by Eve in the extended Alice-Bob model so long as the values assigned to ηAE, ηE, and ηT are within zero and one.

To calculate the CM between all parties involved, i.e., Alice, Bob, and Eve, we consider the entanglement-based picture in

Fig. 4 and start with the CM corresponding to the TMSV state |ψAB〉 with variance V , given by

VAB =





V ✶ cZ

cZ V ✶



 , (D1)

where c =
√
V 2 − 1. On one leg of this TMSV state, Alice performs a heterodyne measurement, while she sends the other

beam toward Bob. On its way, the latter beam experiences some pure loss, modelled by ηAE, which splits the signal into two

beams. One undergoes Eve’s attack, whereby it would interfere, at a beam splitter with transmissivity ηE, with Eve’s TMSV

state |ψEE′〉 with variance VE , and the following CM

VEE′ =





VE✶ cEZ

cEZ VE✶



 , (D2)
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where cE =
√

V 2
E − 1. The other output of ηAE beam splitter undergoes additional loss, which is modelled via the beam splitter

with transmissivity ηS. Eventually, the two beams reconcile at the last beam splitter with transmissivity ηT.

Using linear optics algebra, we have modeled the above beam splitter operations using relevant matrices to find the CM of the

purified state between all modes, i.e., ABEE′F0F1. After tracing out modes F0 and F1, as they are assumed inaccessible to all

parties, we obtain

VABEE′ =















V ✶ CABZ 0✶ CAE′Z

CABZ VB✶ CBEZ CBE′✶

0✶ CBEZ VE✶ CEE′Z

CAE′Z CBE′✶ CEE′Z VE′✶















, (D3)

where the first row and column correspond to mode A and its covariance elements with other modes, the second to B, and the

third and forth to E and E′, respectively. In Eq. (D3),

CAB =
√

Teqc

CAE′ =−
√

ηAE(1− ηE)c

VB =Teq(V − 1) + 1 + ξRx
eq

CBE =
√

(1− ηE)ηTcE

CBE′ =
√

ηE(1− ηE)ηT

(

−
(

ηAE(V − 1) + 1
)

+ VE

)

−
√

ηAE(1− ηAE)(1− ηE)ηS(1− ηT)(V − 1)

CEE′ =
√
ηEcE

VE′ =(1− ηE)[ηAE(V − 1) + 1] + ηEVE

(D4)

where

Teq =
(√

ηAEηEηT +
√

(1− ηAE)ηS(1− ηT)
)2

, (D5)

appearing in the coefficient of CAB entry, is the observed value of transmissivity in the link, and

ξRx
eq = Teqξ = (1− ηE)ηT (VE − 1) (D6)

is effectively the observed value of excess noise at the receiver, with ξ being its equivalent at the transmitter end. As one would

expect, the excess noise is a function of Eve’s variance VE and is simply the amount of noise that enters Bob’s receiver via

the two beam splitters on the path between Bob and Eve. Similarly,
√

Teq in Eq. (D5) is the sum of the amplitudes in the two

pathways from Alice to Bob. Similar calculations show that, if instead of the pure-loss bypass channel, we assume a thermal-loss

bypass channel with a noise variance VS , there would be an additional term for ξRx
eq , given by (1− ηS)(1− ηT)(VS − 1), which

accounts for the noise coming from the bypass channel, with no change in Teq.

The above CM can be used to calculate the key rate in different scenarios. For any given observed value of Teq ≤ 1 and ξ ≥ 0,

we can search the ηS− ηT space for the minimum guaranteed key rate. One could also account for other sources of trusted noise

at the receiver, such as electronic noise, by adjusting the above parameters, but for the purpose of our discussion on CV-QKD in
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the restricted case, the above framework is sufficiently detailed.
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and T. Jennewein, New Journal of Physics 16, 069502 (2014).

[5] K. Boone, J.-P. Bourgoin, E. Meyer-Scott, K. Heshami, T. Jennewein, and C. Simon, Phys. Rev. A 91, 052325 (2015).

[6] N. Hosseinidehaj, Z. Babar, R. Malaney, S. X. Ng, and L. Hanzo, IEEE Communications Surveys Tutorials , 1 (2018).

[7] R. Bedington, J. M. Arrazola, and A. Ling, Nat. Commun. 3, 30 (2017).

[8] S. Nauerth, F. Moll, M. Rau, C. Fuchs, J. Horwath, S. Frick, and H. Weinfurter, Nat. Photon. 7, 382 (2013).

[9] J.-Y. Wang, B. Yang, S.-K. Liao, L. Zhang, Q. Shen, X.-F. Hu, J.-C. Wu, S.-J. Yang, H. Jiang, Y.-L. Tang, B. Zhong, H. Liang, W.-Y. Liu,

Y.-H. Hu, Y.-M. Huang, B. Qi, J.-G. Ren, G.-S. Pan, J. Yin, J.-J. Jia, Y.-A. Chen, K. Chen, C.-Z. Peng, and J.-W. Pan, Nat. Photon. 7,

387 (2013).

[10] J.-P. Bourgoin, N. Gigov, B. L. Higgins, Z. Yan, E. Meyer-Scott, A. K. Khandani, N. Lütkenhaus, and T. Jennewein, Phys. Rev. A 92,

052339 (2015).

[11] G. Vallone, D. Bacco, D. Dequal, S. Gaiarin, V. Luceri, G. Bianco, and P. Villoresi, Phys. Rev. Lett. 115, 040502 (2015).

[12] H. J. Kimble, Nature 453, 1023 (2008).

[13] S. Pirandola and S. L. Braunstein, Nature 532, 169 (2016).

[14] S. Pirandola, U. L. Andersen, L. Banchi, M. Berta, D. Bunandar, R. Colbeck, D. Englund, T. Gehring, C. Lupo, C. Ottaviani, J. L. Pereira,

M. Razavi, J. S. Shaari, M. Tomamichel, V. C. Usenko, G. Vallone, P. Villoresi, and P. Wallden, Adv. Opt. Photon. 12, 1012 (2020).

[15] C. Liorni, H. Kampermann, and D. Bruß, New Journal of Physics 23, 053021 (2021).

[16] S. Wang, Z.-Q. Yin, D.-Y. He, W. Chen, R.-Q. Wang, P. Ye, Y. Zhou, G.-J. Fan-Yuan, F.-X. Wang, Y.-G. Zhu, P. V. Morozov, A. V.

Divochiy, Z. Zhou, G.-C. Guo, and Z.-F. Han, Nature Photonics 16, 154 (2022).

[17] M. Pittaluga, M. Minder, M. Lucamarini, M. Sanzaro, R. I. Woodward, M.-J. Li, Z. Yuan, and A. J. Shields, Nature Photonics 15, 530

(2021).

[18] J.-P. Chen, C. Zhang, Y. Liu, C. Jiang, W. Zhang, X.-L. Hu, J.-Y. Guan, Z.-W. Yu, H. Xu, J. Lin, M.-J. Li, H. Chen, H. Li, L. You,

Z. Wang, X.-B. Wang, Q. Zhang, and J.-W. Pan, Phys. Rev. Lett. 124, 070501 (2020).

[19] Q. Zhang, F. Xu, Y.-A. Chen, C.-Z. Peng, and J.-W. Pan, Opt. Express 26, 24260 (2018).

[20] S.-K. Liao, W.-Q. Cai, W.-Y. Liu, L. Zhang, Y. Li, J.-G. Ren, J. Yin, Q. Shen, Y. Cao, Z.-P. Li, F.-Z. Li, X.-W. Chen, L.-H. Sun, J.-J. Jia,

J.-C. Wu, X.-J. Jiang, J.-F. Wang, Y.-M. Huang, Q. Wang, Y.-L. Zhou, L. Deng, T. Xi, L. Ma, T. Hu, Q. Zhang, Y.-A. Chen, N.-L. Liu,

X.-B. Wang, Z.-C. Zhu, C.-Y. Lu, R. Shu, C.-Z. Peng, J.-Y. Wang, and J.-W. Pan, Nature 549, 43 (2017).

[21] S.-K. Liao, W.-Q. Cai, J. Handsteiner, B. Liu, J. Yin, L. Zhang, D. Rauch, M. Fink, J.-G. Ren, W.-Y. Liu, Y. Li, Q. Shen, Y. Cao, F.-Z.

Li, J.-F. Wang, Y.-M. Huang, L. Deng, T. Xi, L. Ma, T. Hu, L. Li, N.-L. Liu, F. Koidl, P. Wang, Y.-A. Chen, X.-B. Wang, M. Steindorfer,

G. Kirchner, C.-Y. Lu, R. Shu, R. Ursin, T. Scheidl, C.-Z. Peng, J.-Y. Wang, A. Zeilinger, and J.-W. Pan, Phys. Rev. Lett. 120, 030501

(2018).

[22] S.-K. Liao, H.-L. Yong, C. Liu, G.-L. Shentu, D.-D. Li, J. Lin, H. Dai, S.-Q. Zhao, B. Li, J.-Y. Guan, W. Chen, Y.-H. Gong, Y. Li, Z.-H.

Lin, G.-S. Pan, J. S. Pelc, M. M. Fejer, W.-Z. Zhang, W.-Y. Liu, J. Yin, J.-G. Ren, X.-B. Wang, Q. Zhang, C.-Z. Peng, and J.-W. Pan,

Nat. Photon. 311, 509 (2017).

[23] J.-G. Ren, P. Xu, H.-L. Yong, L. Zhang, S.-K. Liao, J. Yin, W.-Y. Liu, W.-Q. Cai, M. Yang, L. Li, K.-X. Yang, X. Han, Y.-Q. Yao, J. Li,

H.-Y. Wu, S. Wan, L. Liu, D.-Q. Liu, Y.-W. Kuang, Z.-P. He, P. Shang, C. Guo, R.-H. Zheng, K. Tian, Z.-C. Zhu, N.-L. Liu, C.-Y. Lu,

37



38

R. Shu, Y.-A. Chen, C.-Z. Peng, J.-Y. Wang, and J.-W. Pan, Nature 549, 70 (2017).

[24] S. Pirandola, Phys. Rev. Research 3, 013279 (2021).

[25] S. Pirandola, Phys. Rev. Research 3, 023130 (2021).

[26] M. Ghalaii and S. Pirandola, arXiv:2107.12415 (2021).

[27] T. Vergoossen, R. Bedington, J. A. Grieve, and A. Ling, “Satellite quantum communications when man-in-the-middle attacks are ex-

cluded,” (2019).

[28] Z. Pan, K. P. Seshadreesan, W. Clark, M. R. Adcock, I. B. Djordjevic, J. H. Shapiro, and S. Guha, Phys. Rev. Applied 14, 024044 (2020).

[29] A. Vázquez-Castro, D. Rusca, and H. Zbinden, Phys. Rev. Applied 16, 014006 (2021).

[30] M. Sasaki, Quantum Science and Technology 2, 020501 (2017).

[31] A. D. Wyner, Bell System Technical Journal 54, 1355 (1975), https://onlinelibrary.wiley.com/doi/pdf/10.1002/j.1538-

7305.1975.tb02040.x.

[32] Proceedings of IEEE International Conference on Computers Systems and Signal Processing (1984).

[33] M. Legre and B. Huttner, “Quantum-enhanced physical layer cryptography: A new paradigm for free-space key distribution,” (2017),

qCrypt 2017.

[34] V. Scarani and R. Renner, Phys. Rev. Lett. 100, 200501 (2008).

[35] M. Tomamichel, Quantum Information Processing with Finite Resources (Springer International Publishing, 2016).

[36] F. Grosshans and P. Grangier, Phys. Rev. Lett. 88, 057902 (2002).

[37] F. Grosshans, G. Van Assche, J. Wenger, R. Brouri, N. J. Cerf, and P. Grangier, Nature 421, 238 (2003).

[38] S. Pirandola, C. Ottaviani, G. Spedalieri, C. Weedbrook, S. L. Braunstein, S. Lloyd, T. Gehring, C. S. Jacobsen, and U. L. Andersen,

Nature Photonics 9, 397 (2015).

[39] D. Dequal, L. Trigo Vidarte, V. Roman Rodriguez, G. Vallone, P. Villoresi, A. Leverrier, and E. Diamanti, npj Quantum Information 7,

3 (2021).

[40] R. Garcı́a-Patrón and N. J. Cerf, Phys. Rev. Lett. 97, 190503 (2006).

[41] M. Navascués, F. Grosshans, and A. Acı́n, Phys. Rev. Lett. 97, 190502 (2006).

[42] S. Pirandola, S. L. Braunstein, and S. Lloyd, Phys. Rev. Lett. 101, 200504 (2008).

[43] C. Weedbrook, S. Pirandola, R. Garcı́a-Patrón, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, Rev. Mod. Phys. 84, 621 (2012).

[44] C. H. Bennett and G. Brassard, Theor. Comput. Sci. 560, 7 (2014).

[45] D. Gottesman, H.-K. Lo, N. Lutkenhaus, and J. Preskill, in International Symposium onInformation Theory, 2004. ISIT 2004. Proceed-

ings. (IEEE, 2004) p. 136.
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