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Abstract
This paper is motivated by a simple question: Can we design and

build battery-free devices capable ofmachine learning and inference

in underwater environments? An affirmative answer to this ques-

tion would have significant implications for a new generation of

underwater sensing and monitoring applications for environmental

monitoring, scientific exploration, and climate/weather prediction.

To answer this question, we explore the feasibility of bridging ad-

vances from the past decade in two fields: battery-free networking

and low-power machine learning. Our exploration demonstrates

that it is indeed possible to enable battery-free inference in under-

water environments. We designed a device that can harvest energy

from underwater sound, power up an ultra-low-power microcon-

troller and on-board sensor, perform local inference on sensed

measurements using a lightweight Deep Neural Network, and com-

municate the inference result via backscatter to a receiver. We

tested our prototype in an emulated marine bioacoustics applica-

tion, demonstrating the potential to recognize underwater animal

sounds without batteries. Through this exploration, we highlight

the challenges and opportunities for making underwater battery-

free inference and machine learning ubiquitous.

CCS Concepts
· Computing methodologies→ Supervised learning; · Hard-

ware → Sensor devices and platforms; Renewable energy;

Wireless integrated network sensors; · Applied computing

→ Environmental sciences.
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1 Introduction
In recent years, advances in battery-free sensing have enabled a

range of novel applications including localization and environmen-

tal sensing. These advances have enabled long-term use of wireless

sensors without the need for power supplies or batteries, hence en-

abling a transition towards a pollution-free sensing infrastructure

for a variety of environmental sensing and monitoring applications

such as detecting pollution and monitoring biodiversity. These ap-

plications are not limited to smart cities and urban environments,

but also extend to climate change monitoring and environmental

sensing in uninhabited areas such as forests, mines, remote areas,

and space [1, 41].

The vast majority of existing battery-free technologies have been

designed for land applications and very few have been engineered

for the ocean. Only recently have researchers started looking into

battery-free sensors for underwater environments. However, exist-

ing underwater battery-free technologies stop at energy harvest-

ing for powering up sensors and backscatter for communicating

raw sensory data [9, 11, 16]. Meanwhile, research into energy-

efficient edge-based machine-learning (ML) models have enabled

lightweight models to be used for on-device ML inference for a

variety of applications. There have been a number of advances in

model reduction, compression, and layer-wise quantization for var-

ious objectives such as privacy, energy, and efficiency [3, 21, 30]. A

fundamental challenge that remains is to perform time-series data

analysis and ML on underwater battery-free sensors. One benefit of

such capabilities is that they would enable us to limit data transmis-

sion, hence increasing the energy budget on underwater devices

and their operation longevity. This is particularly important for

usages of underwater battery-free sensors in ambient and remote

monitoring applications for the ocean, where communication band-

width is narrow and the sources for energy harvesting are limited

[31, 37].

In this paper, we propose and present a new challenge to the

community, investigating the feasibility of battery-freeML in under-

water environments, where extremely lightweight and task-specific
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Figure 1: Design of battery-free inference on underwater edge nodes

deep neural network (DNN) models are executed on dedicated and

highly-efficient underwater sensor nodes. We further investigate

the tradeoffs between lightweight on-device analytics requirements

for an exemplar case, which is marine mammal recognition in the

ocean. This use case has many applications including monitoring

biodiversity, understanding marine animal migration patterns, and

even supporting the discovery of new species [27].

Our investigation focuses on two critical aspects of underwater

battery-freeML, which are (1) the capability (i.e., model accuracy) of

lightweight DNN models on the tasks to be conducted in underwa-

ter environments, and (2) the feasibility of hosting the DNN models

on low-power underwater computational devices such as microcon-

trollers. Specifically on the task of marine mammal recognition, we

design an end-to-end pipeline (i.e., from recording sounds to classi-

fication results on an underwater battery-free device) and evaluate

our prototype’s accuracy and power consumption. Our preliminary

results indicate that, for a task of classifying four marine mammals,

lightweight DNN models can achieve decent accuracy. With the

help of existing energy harvesting technologies and customized

circuit design, it is possible to run lightweight ML on underwa-

ter battery-free devices. These results have important implications

for both the mobile and ML communities, and pose exciting new

opportunities for ubiquitous underwater battery-free ML.

2 Underwater Battery-free Architecture
We design a wireless, battery-free underwater system to perform

sensing and inference on edge nodes and communicate with a

receiver. To this end, we prototype a system that can performmarine

mammal recognition in the ocean. Fig. 1 shows the system design for

our prototype. The system harvests energy from underwater sound

to power up its processor and on-board sensor that captures animal

sounds (ğ2.1), performs on-board inference (ğ2.2), and transmits

the result on the uplink via backscatter (ğ2.3).

2.1 Underwater Energy Harvesting
To enable battery-free operation, our sensor needs to harvest

energy from ambient underwater sources such as sound, waves, or

temperature gradients. Recent past research has demonstrated that

sound provides sufficient energy to power up low-power micro-

controllers [16]; hence, we design our node to harvest energy from

underwater sound. It is worth noting that our node architecture is

general and can be adopted to other underwater ambient energy

sources.

To harvest energy from sound, our node employs piezoelectric

materials, which convert mechanical energy (i.e. sound) to electrical

energy. Since the harvested signal is typically an alternating current

(sound is a wave), our sensor node rectifies it to a DC voltage using

a multi-stage rectifier. Once the node harvests sufficient energy, it

can power up an on-board microcontroller. The microcontroller

has an integrated ADC (analog to digital converter) which can be

interfaced to a hydrophone (as shown in Fig. 1). The ADC samples

received sound and stores it in memory.

2.2 Battery-free Underwater Inference
The next stage in our design is to recognize animals from the

recordings. To do this, one option is to program the node to trans-

mit its recordings to a remote receiver that has a dedicated power

source (e.g., an underwater drone or a coastal base station) and

perform inference there. However, such an approach is undesir-

able for multiple reasons. First, since the throughput of underwater

acoustic channels is limited, transmitting the full recording would

require our node to remain powered up for an extended period of

time, which will drain its harvested energy. Second, the limited

throughput would incur a large delay in data transmission, which

is detrimental in time-sensitive scenarios (e.g., detection of endan-

gered species). Furthermore, if a desired receiver is not within the

communication range of our node, the node would need to store

the recording in its constrained memory, which limits its ability to

process new recordings.

To overcome these challenges, instead of transmitting the record-

ings for inference at a powered base station, our node performs

on-board inference, as we describe in this section. This results in a

lower-power, time-and-resource efficient, and more scalable system

design (as we show in ğ3).

2.2.1 Offline Training: In order to have an accurate DNN model

that can recognize marine mammals from their sounds, we need

to use pre-collected audio clips (obtained from publicly available

databases) to train the model until it achieves acceptable accuracy.

Given the limited memory and computational resources of battery-

free devices, it is difficult to perform the training process on them.

Thus, we first train the high-level DNN models in a centralized

manner (e.g., in the cloud) with offline training and validating data.

To ensure that our model would perform well on the target

underwater battery-free device, we introduce a number of pre-

processing steps (e.g., re-sampling, normalization, and reshaping)

as shown in Fig. 2. These steps are necessary because the audio

files (from databases) were collected using different equipment

than our battery-free nodes (e.g., different ADC sampling rates and

resolution). To mitigate the impact of these differences, the raw

data from pre-collected clips is re-sampled with the sample rate of

the nodes. The re-sampled data is then normalized and converted

into a spectrogram through Short-Time Fourier transform (STFT).

To make the models work on a battery-free device, the high-level

models need to be converted into a low-level model that satisfies

the constraints of the architecture and memory of the target device.

Our model conversion process uses techniques such as model com-

pression and quantization to make the resulting low-level model

work on the target device independently without support from

run-time libraries.

2.2.2 On-board Edge Inference: After the model is trained and con-

verted, we can load the model parameters to the memory of the

target device and then use it for on-board inference. We use the

same pre-processing pipeline (normalization, STFT etc.) as for of-

fline training which was discussed in ğ2.2.1. One challenge with

ultra-low-power microcontrollers is that, unlike standard audio
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Figure 2: Overview of offline training and on-board inference. Initially, a high-level model is trained, validated, and evaluated offline on pre-collected audio clips from
different marine mammals. A model with acceptable offline accuracy is converted to a low-level model that can be supported by standard C libraries on a target battery-free device.
The converted model is then deployed in an end-to-end (i.e., from sounds received by a hydrophone to final classifications) marine mammal recognition pipeline on the target device.

(a) MSP430FR5994 MCU development board (b) Potted Transducer

Figure 3: Prototype Hardware (a) shows the processor that our design uses for
on-board inference. (b) shows one of our potted transducers which can be used for
energy harvesting and communication.

cards, their ADCs cannot sample audio with both positive and

negative amplitude. The lack of negative amplitude introduces an-

other discrepancy between the pre-collected audio files and sound

recordings collected using the microcontroller. To overcome this

challenge, our design adds a clamping circuit to hardware design

in order to passively add a DC offset to our input signal before we

feed it to the on-board ADC. This DC offset is subsequently filtered

in software by applying a high-pass filter; this ensures that the DC

offset does not bias the STFT output or negatively impact the model

performance.

2.3 From Inference to Communication
The last step in our design is to communicate the inference result

to a remote receiver. To do this, we leverage underwater backscatter

ś a net-zero power communication technology ś to communicate

on the uplink, which allows us to reuse the same piezoelectric ma-

terial for both harvesting (ğ2.1) and communication. In underwater

backscatter, the piezoelectric material is connected to an impedance

switch that modulates its reflection coefficient. At a high level, by

alternating between two impedance states, the node communicates

in binary. A remote receiver can sense changes in reflected power

and use them to decode the transmitted packet by applying standard

underwater decoding mechanisms.

3 Feasibility Study
We evaluated our prototype in terms of both its model accuracy

and its power requirements.

3.1 Prototype Hardware

Backscatter node. Each backscatter node consists of a piezoelec-

tric transducer and a hardware controller as shown in Fig. 3. To build

our transducers, we used piezo-ceramic cylinders with a nominal

resonance frequency of 17 KHz [38]. Similar to our previous work,

the nodes were potted, encapsulated for insulation and matching

to water, and housed in 3D-printed mold and end-caps [32].

Hardware controller. The node hardware is used for energy har-

vesting, processing/inference, and interfacing with a sensor (e.g.,

a hydrophone). Our harvesting architecture consists of a standard

multi-stage rectifier followed by a super-capacitor, and low dropout

voltage regulator which drives the digital logic unit. We imple-

mented the logic on a MSP430-FR5994 microcontroller [39]. The

microcontroller has a 12bit-ADC, which samples the (sound) signal

at the rate of 330 samples/sec and stores a window of 512 sam-

ples in its SRAM. The microcontroller logic, including the code

for downlink and uplink decoding as well as the inference model,

is all stored in the FRAM. The classifier output is transmitted on

the uplink by controlling the backscatter logic which modulates

the load impedance of the backscatter node to change between

reflective and non-reflective state.

Receiver. In addition to a backscatter node for energy harvesting

and communication, our design uses a hydrophone (Omnidirec-

tional Reson TC4014) that receives and decodes the FM0 encoded

backscatter packets [4] .

3.2 Offline Pipeline
For the evaluation, we used theWatkins Marine Mammal Sounds

Database [33] and chose the sounds from eight mammals includ-

ing Atlantic spotted dolphins, bearded seals, Beluga white whales,

bottlenose dolphins, bowhead whales, harp seals, narwhals, and

walruses. Overall we used 364 sound files and in each trial of our

offline evaluation, we shuffled and split them as 80%, 10%, and 10%

for training, validating, and testing. We re-sampled each file with

the sample rate (330) of our prototype’s input device. The decoded

sound signals were first normalized to [−1.0, 1.0] and then the first

512 signals were transformed into a spectrogram through STFT

(window size = 64, window step = 32).

We used TensorFlow to train high-level Keras models and then

used Keras2C [5] to convert them into low-level models that are

supported by standard C libraries. This library generates smaller
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Figure 5: Distribution (boxplots and kernel density) of offline test accuracy
CNN models with different input layer size (N) and number of mammal
classes (C). The converted model of (N-16, C-4) can be deployed on our prototype.

DNN models than TensorFlow Lite does and requires fewer third-

party libraries when generating models. We used a lightweight

convolutional neural network (CNN) model as shown in Fig. 4. The

spectrogram of normalized input signals is first reshaped as a 2-

D input layer with size of 𝑁 × 𝑁 . The input layer is connected

to a convolutional layer that has 8 filters, each of which has the

kernel size of 3 × 3 and strides of 2 × 2. The activated output of

the convolutional layer is flattened and connected to a dense layer,

which outputs the probability distribution of a classification.

3.3 Model Accuracy
We evaluated the offline accuracy of the model with different size

𝑁 of the input layer and number of mammal classes, as these two

hyperparameters affected the size of the model. For 4-mammal clas-

sification, we used the data from Atlantic spotted dolphins, bearded

seals, beluga white whales, and narwhals. Fig. 5 shows the offline

accuracy distribution of each model hyperparameter configuration

from 64 trials. For 4-mammal classification, the converted models

when 𝑁 = 8 and 𝑁 = 16 can fit in our prototype, while 𝑁 = 32

demands a larger model which didn’t fit in the memory of our mi-

crocontroller. The average accuracy for 𝑁 = 16 and 𝑁 = 32 is 84%

and 88% respectively. For 8-mammal classification, with 𝑁 = 32,

the average accuracy is 76%, which requires larger memory than

that on our prototype.

We further evaluated the model on the online data generated

from the ADC on our prototype. To this end, we deployed the

converted 4-mammal classification model into the pipeline on our

prototype. We then randomly selected 16 raw sound files (4 samples

for each mammal class) from the dataset. We used SIGLENT SDG

1032X function generator [35] to convert raw sound files (animal

sounds [33] of whales, seals, dolphins, and narwhals) to analog

signals that were fed to the ADC. For each input signal, the mi-

crocontroller sampled the input analogue signal at 330 samples/s,

normalized it, and computed the spectrogram of the processed data

before running inference on it. The average accuracy of the online

model was 63% (while random guess is 25%) which is lower than

the offline accuracy. The lower online accuracy can be attributed to

low number of testing samples and loss of data resolution during

sampling. Nonetheless, this result demonstrates that our prototype

was successful in on-board classification of four marine animals

with a reasonable accuracy at extremely low power, and this ac-

curacy may be improved as the research evolves and with more

comprehensive online evaluation.

3.4 Power Performance
Next, we used the MSP-EXP430FR5994 development kit board

to evaluate the power consumption of the microcontroller while

it was running the end-to-end pipeline. We computed the power

as the product of the current and the voltage when the board was

connected to a power supply. We used SIGLENT SDG 1032X func-

tion generator [35] to power on the board at 1.9 V. To measure

the current, we connected Nordic Semiconductor’s Power Profiler

kit [34] as an ammeter in series with the board. Table 1 shows the

power consumption of each stage of the pipeline. At 1.9 V input volt-

age, the microcontroller consumed 932 𝜇W during ADC sampling,

1.3 mW while running inference on the data, and 902 𝜇W when

it was backscattering the inference result. These power measure-

ments are in line with those expected from the microcontroller’s

datasheet. Since prior work has demonstrated the potential to har-

vest up to few milliwatts from underwater acoustic and ultrasonic

signals [12], these results demonstrate that it would be possible for

our node to operate entirely based on harvested energy.

Stage Power (𝜇W) Time (s) Energy (mJ)

ADC Sampling 932 1.6 1.49

Inference 1300 3.0 3.91

Backscatter 902 0.012 0.0108

Total Energy Consumption: 5.40 mJ

Table 1: On-board power and energy analysis of the battery-free inference
prototype with a data rate of 1 kbps and a sampling rate of 330 samples/s.

Since the power budget for ADC sampling and backscatter com-

munication is similar, one could argue that it may be more efficient

to send the entire data to the base station rather than performing

the on-board inference. However, recall from ğ2.2 that this approach

will be highly inefficient because of the limited throughput of the

underwater channel. To demonstrate this inefficiency, consider the

following example: For a backscatter node transmitting at 1 kbps

(which is standard throughput for underwater acoustic modems), it

will take around 6.14 seconds to send 512 samples of raw data (total

# of bits = 512×12). The ADC consumes 1.49 mJ of energy to sample

512 samples at a sampling rate of 330 samples/s. This translates to

7.03 mJ of required energy. On the other hand, performing on-board

inference, which typically takes 3 seconds (consuming 3.91 mJ) then

transmitting the 12-bit-long inference result (consuming 0.0108 mJ)



would require a total of 5.40 mJ, which makes sending raw data

30.19% more power hungry than sending inference data. This result

demonstrates that battery-free edge inference is feasible, and that

it makes on-board inference both more efficient and faster, even

with this preliminary inference model. We envision that the gains

can be significantly improved as the research evolves (see ğ5).

4 Related Work

Battery-free underwater sensing. The past few years have seen

multiple advances in underwater battery-free sensing and comput-

ing [8, 11, 15, 16]. These advances have been propelled by three

key trends. First is the downward trend in the power consumption

of electronics, which has resulted in ultra-low-power processors

(micro-controllers and FPGAs) that can operate in the micro-Watt

regime [23, 39]. The second trend is the development of ultra-low-

power underwater communication mechanisms, specifically piezo-

acoustic backscatter [8, 16], which operates at net-zero power. Third

is the continued improvement in the efficiency of energy harvest-

ing from ambient underwater sources (sound, movements [2], and

temperature gradients [20]). The combination of these factors has

led to underwater battery-free sensors that can compute and com-

municate while powering up entirely from harvested energy. Our

work builds on this line of research and extends it via battery-free

inference, paving the way for a new generation of underwater

battery-free devices capable of learning and inference.

Low-powermachine learning. The past few years have also seen

significant advances in low-power machine learning models. Re-

searchers have developed techniques to reduce the size and power

consumption of advanced learning models to make them suitable

for running on mobile and edge devices. These techniques include

knowledge distillation, model pruning, quantization, or replacing a

model’s structure with a suitable one through network architecture

searching [6, 14, 25]. Motivated by these advances, multiple research

projects have explored the potential to perform machine learning

and inference on battery-free devices [10, 18, 26, 29]. However, none

of these past systems are suitable for underwater environments

since they rely on RF and/or large solar panels to harvest energy -

neither of which are available in the deep sea. Our research is moti-

vated by a similar desire to enable battery-free machine learning

and inference, and is the first to bring such capabilities to underwa-

ter environments.

Machine learning for underwater applications. Finally, there

has been significant interest in applying machine learning for vari-

ous underwater problems, such as recognition of marine animals

using their sound or images [22, 43], classifying seabeds [7], robotic

navigation [13], and image enhancement [40]. However, past sys-

tems for underwater ML required instruments with dedicated en-

ergy sources (typically underwater drones). Our research builds on

this line of work and is the first to demonstrate the potential for

battery-free underwater inference and machine learning.

5 Open Problems and Opportunities
In this paper, we proposed and prototyped battery-free ML in-

ference in underwater environments as an exciting challenge for

the community. We have shown that a lightweight CNN model

can achieve decent accuracy while its on-board energy require-

ments can be supported by these devices. Our initial results indicate

feasibility of performing sensing and inference. Future potential

directions include:

Battery-free on-device personalization. Our design assumed

that the same low-level model would be deployed on all battery-

free devices deployed underwater. However, when implementing

battery-free ML at a large scale, we expect that the sensed data by

different underwater devices may differ at different locations (e.g.,

animal sounds near or far from a coast) and with environmental

factors (e.g., temperature, pressure, multipath all impact sounds).

Therefore, models on the devices would need to be locally tuned to

fit different testing data distributions. Previous research [24] pro-

poses to use early exit during offline training so that an end-device

can personalize a part of the model to improve its testing accuracy.

To enable such on-device personalization, light-weight model train-

ing algorithms that can satisfy the computational constrains on

battery-free devices are needed.

Model-optimized hardware/software design. Currently there

are limited compilers that can build DNN models on ultra-low

power MCUs (e.g., the MSP430 class) such as [36]. Co-design of

task-specific hardware components alongside the ability to com-

pile advanced models for lower-power MCUs can enable a wealth

of new environmental monitoring applications. Specifically, one

direct approach is to adopt existing optimization techniques for

online inference on a target platform, such as post-training quan-

tization [19, 28]. It can reduce the sizes of on-board models and

increase computational efficiency by avoiding floating operations.

Another łengineeringž solution is to optimize the implementations

of online inference for different target platforms by using hardware-

specific instructions and libraries that offer faster or more energy-

efficient operations. An auto-design pipeline for such individualiza-

tion would be worthwhile considering the diversity of IoT devices

and used low-power MCUs.

Battery-free distributedML training.Given the potentially large

scale deployment of low-cost and low-pollution battery-free nodes

in the ocean, another future direction is to continuously sense data

and train ML models in a decentralized manner among participat-

ing nodes. This will enable life-long ML with up-to-date data that

reflects the changing nature of underwater environments, which is

critical for many application domains including climate change and

biodiversity monitoring. Similar to on-device personalization, the

key challenge is to have light-weight ML training algorithms on

the devices. Another challenge is the difficulty of obtaining labelled

data from underwater environments. One option is to use unsu-

pervised ML to only train feature extractors (e.g., autoencoders)

that can help train classifiers on a cloud server [42]; another option

is to generate pseudo labels on local data through data augmenta-

tion [17]. In addition, distributed/federated ML solutions that can

coordinate devices, stations, and cloud servers are also needed to

manage the local training tasks, to make sure that they can satisfy

the energy constraints of battery-free underwater devices.
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