
This is a repository copy of A Subexponential Quantum Algorithm for the Semdirect 
Discrete Logarithm Problem.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/200230/

Version: Accepted Version

Proceedings Paper:
Battarbee, Christopher, Kahrobaei, Delaram orcid.org/0000-0001-5467-7832, Perret, 
Ludovic et al. (1 more author) (2024) A Subexponential Quantum Algorithm for the 
Semdirect Discrete Logarithm Problem. In: Post-Quantum Cryptography 
2024:proceedings. Post-Quantum Cryptography 2024, 12-14 Jun 2024 , GBR . (In Press) 

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence 
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the 
authors for the original work. More information and the full terms of the licence here: 
https://creativecommons.org/licenses/ 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



ar
X

iv
:2

20
9.

02
81

4v
4 

 [
cs

.C
R

] 
 2

5 
A

pr
 2

02
3

A Subexponential Quantum Algorithm for the

Semidirect Discrete Logarithm Problem

Christopher Battarbee1, Delaram Kahrobaei1,2,3,4, Ludovic Perret5, and
Siamak F. Shahandashti1

1 Department of Computer Science, University of York, UK
2 Departments of Computer Science and Mathematics, Queens College, City

University of New York, USA
3 Initiative for the Theoretical Sciences, Graduate Center, City University of New

York, USA
4 Department of Computer Science and Engineering, Tandon School of Engineering,

New York University, USA
5 Sorbonne University, CNRS, LIP6, PolSys, Paris, France

Abstract. Group-based cryptography is a relatively unexplored fam-
ily in post-quantum cryptography, and the so-called Semidirect Discrete
Logarithm Problem (SDLP) is one of its most central problems. However,
the complexity of SDLP and its relationship to more well-known hard-
ness problems, particularly with respect to its security against quantum
adversaries, has not been well understood and was a significant open
problem for researchers in this area. In this paper we give the first ded-
icated security analysis of SDLP. In particular, we provide a connection
between SDLP and group actions, a context in which quantum subexpo-
nential algorithms are known to apply. We are therefore able to construct
a subexponential quantum algorithm for solving SDLP, thereby classifying
the complexity of SDLP and its relation to known computational prob-
lems.

Introduction

The goal of Post-Quantum Cryptography (PQC) is to design cryptosystems which
are secure against classical and quantum adversaries. A topic of fundamental
research for decades, the status of PQC drastically changed with the NIST PQC

standardization process [10].
In July 2022, after five years and three rounds of selection, NIST selected a first
set of PQC standards for Key-Encapsulation Mechanism (KEM) and Digital Signa-
ture Scheme (DSS) protocols, based on lattices and hash functions. The standard-
ization process is still ongoing with a fourth round for KEM and a new NIST call
for post-quantum DSS in 2023. Recent attacks [5, 32, 1] against round-3 multi-
variate signature schemes, Rainbow [5] and GeMSS [7], as well as the cryptanalysis
of round-4 isogeny based KEM SIKE [8, 24], emphasise the need to continue the
cryptanalysis effort in PQC as well as to increase the diversity in the potential
post-quantum hard problems.



2 C. Battarbee, D. Kahrobaei, L. Perret and S. F. Shahandashti

A relatively unexplored family of such problems come from group-based cryp-
tography (see [20]). In particular we are interested in the so-called Semidirect
Discrete Logarithm Problem (SDLP), which initially appears in the 2013 work
[16] of Habeeb et al. Roughly speaking, we generalise the standard notion of
group exponentiation by employing products of the form φx−1(g) ⋅ . . . ⋅ φ(g) ⋅ g,
where g is an element of a (semi)group, φ is an endomorphism and x ∈ N is a
positive integer. Our task in SDLP is to recover the integer x given the pair g,φ
and the value φx−1(g) ⋅ . . . ⋅φ(g) ⋅ g. It turns out that products of this form have
enough structure to be cryptographically useful, in a sense we will expand upon
later - in particular, protocols based on SDLP are plausibly post-quantum, since
there is no known reduction of SDLP to a Hidden Subgroup Problem.
By far the most studied such protocol is known as Semidirect Product Key
Exchange (SPDKE), originally proposed in [16] (note that this is the same work
in which SDLP first appears). It is a Diffie–Hellman-like key exchange protocol
in which products of the form φx−1(g) ⋅ . . . ⋅ φ(g) ⋅ g are exchanged between two
parties in such a way as to allow both parties to recover the same shared key.
Clearly, the security of SPDKE and the difficulty of SDLP are heavily related - in
particular, an adversary able to solve SDLP is also able to break SPDKE.
There is therefore motivation to analyse the difficulty of SDLP. However, the
complexity of SDLP and its relationship to more well-known hardness problems,
particularly with respect to its security against quantum adversaries, has not
been well understood and was a significant open problem for researchers in this
area. In this paper we provide the first dedicated analysis of SDLP, obtaining
two key contributions. First, we demonstrate that a subset of all possible prod-
ucts of the form φx−1(g) ⋅ . . . ⋅ φ(g) ⋅ g is a set upon which a finite abelian group
acts; in other words, that SPDKE is, modulo some context-specific technicality,
a variant of the group action-based key exchange schemes originally proposed
by Couveignes [14]. In particular, solving SDLP can be translated into a problem
with respect to a group action. This surprising connection provides a sharper
classification of SPDKE than was previously known, and allows us to derive our
second contribution, an application of known tools that gives a quantum algo-

rithm for solving SDLP. The algorithm runs in subexponential time 2O(
√
log p),

where p is the security parameter.

Related Work

Examples of concrete proposals for SPDKE can be found in [16, 15, 21, 28, 29];
respective cryptanalyses can be found in [27, 19, 6, 25, 3, 4]. This body of work
proceeds more or less chronologically, in that proposed platforms are a response
to cryptanalysis addressing a weakness in an earlier version. As a brief summary:
the platform proposed in the first version of the scheme [16] is the multiplicative
semigroup of a matrix algebra formed of 3 × 3 matrices with entries in a group
ring. It was pointed out in [27] that the unused addition operation of the matrix
algebra was actually a vulnerability allowing for complete shared key recovery,
and that moreover any group with a sufficiently low-dimensional representation
as a matrix algebra would be vulnerable to a similar kind of attack. In response,



A Subexponential Quantum Algorithm for Semidirect Discrete Logarithm 3

in [21] certain classes of p-groups are proposed, since they admit only extremely
high-dimensional representations. Another method of counteracting this linear
vulnerability is to mix operations: in [28] the matrix algebraM3(Zp) is employed
for some prime p in such a way that both matrix multiplication and matrix
addition are called upon. It turns out, however, that this mixing of operations
opens the scheme up to a different type of attack [6, 3] based on the so-called
‘telescoping equality’. It appears at time of writing that one can get around this
vulnerability (as argued in [4]) by removing some structure; in particular, using
matrices over a semiring rather than a ring. An earlier attempt at utilising a
semiring is made in [15], though this particular case turned out to admit full
shared key recovery due to a partial order allowing for more efficient search
algorithms. A more detailed survey of the back-and-forth on this topic can be
found in [2].
Despite the relationship between SPDKE and SDLP, none of the works discussed
above provide an analysis of SDLP. Indeed, the general direction of research in this
area has been either to achieve shared key recovery by exploiting some underlying
linearity of a platform (semi)group, or to find examples of (semi)groups with
sufficiently lax structure to render these attacks less powerful. In particular,
none of the cryptanalyses in this area solve SDLP.
Ideas much closer to the spirit of our work appear in papers that, at first glance,
appear unrelated to SPDKE and SDLP. Our results are achieved in part by careful
synthesis of the techniques in the two papers [11, 12]: since the set of all products
of the form φx−1(g) ⋅ . . . ⋅ φ(g) ⋅ g admits some similarity to that of a monogenic
semigroup, we can adapt some ideas from a quantum algorithm in [12] that
solves the Semigroup Discrete Logarithm Problem. However, in our setting we
are lacking some key structure that allows the direct application of [12]. The
full algorithm is constructed by adapting ideas in [11], allowing us to show the
important quantum algorithms of Kuperberg [23] and Regev [30] can be used to
solve SDLP.
Finally, we note that the connection to group actions alluded to above allows
the application of a recent landmark result of Montgomery and Zhandry [26].
The implications of this result on our work are discussed in Section 3.3.

Organisation of the Paper and Main Results

The construction of the algorithm claimed in the title is, from a high-level per-
spective, achieved by two reduction proofs followed by an application of known
algorithms. With this in mind, we make the following contributions.

Section 1. We start with preliminaries in which the necessary background
is reviewed. In particular we give a brief discussion of the relevant algebraic
objects, a short note on quantum computation, and a full description of SPDKE
- including a discussion of appropriate asymptotic assumptions for the growth
of the semigroups we work with, derived from currently proposed platforms.
In particular we derive a notion of a parametrised family of semigroups called



4 C. Battarbee, D. Kahrobaei, L. Perret and S. F. Shahandashti

an ‘easy’ family of semigroups. The section finishes with a kind of glossary of
computational problems.

Section 2. It will be immediately convenient to write s(g,φ, x) for φx−1(g)⋅...⋅g,
not only for clarity of notation but to aid the crucial shift in perspective offered
in this paper. Armed with this notation our first task is to study the set of
possible exponents {s(g,φ, i) ∶ i ∈ N}. In Theorem 1 we deduce, borrowing from
some standard ideas in semigroup theory, that this set is finite and has the form
{g, ..., s(g,φ,n), ..., s(g,φ,n+ r − 1)} where the integers n, r are a function of the
choice of (g,φ) (and may, when desirable, be written rg,φ, ng,φ to highlight this
point). The main result of this section is Theorem 3: an abelian group acts freely
and transitively on the set {s(g,φ,n), ..., s(g,φ,n+ r − 1)}. This set is called the
cycle of g,φ and is denoted by the calligraphic letter C. In particular, we show
the following:

Theorem. Fix (g,φ) ∈ G ×End(G) and let n, r be the index and period corre-
sponding to g,φ. Moreover, let C be the corresponding cycle of size r. The abelian
group Zr acts freely and transitively on C.

where Zr is the usual notion of a group of residues modulo r.

Section 3. If the set of exponents with respect to (g,φ) consisted entirely of
the cycle we would immediately have a reduction to the Group Action Discrete
Logarithm Problem (GADLP), also referred to as Group Action DLog in [26], or
the Parallelisation Problem in [14]. Roughly speaking, since we know that an
abelian group acts on the cycle, in this case the exponent x to be recovered is
precisely the group element acting on g to give s(g,φ, x). This is not, however,
generally the case, and to proceed it will be necessary to extract the pair n, r

from the base values g,φ. In Theorem 4 we show that one can achieve this in
efficient quantum time by using canonical quantum period-finding methods. We
can therefore deduce in Theorem 5 that one can solve SDLP efficiently given access
to a GADLP oracle; or, if s(g,φ, x) is not in the cycle of g,φ, by invoking a classical
procedure exploiting the knowledge of n, r. Indeed, we show the following:

Theorem. Let {Gp}p be an easy family of semigroups, and fix p. Algorithm 3
solves SDLP with respect to a pair (g,φ) ∈ Gp × End(Gp) given access to a
GADLP oracle for the group action (Zrg,φ ,Cg,φ,⊛). The algorithm runs in time
O((log p)4), makes at most a single query to the GADLP oracle, and succeeds with
probability Ω(1).

Clearly, many of the requisite notions in this statement have not yet been de-
fined. Roughly speaking, an easy family of semigroups is a family of semigroups
parameterised by p such that each of the functions taking p as an argument
grows polynomially in p.



A Subexponential Quantum Algorithm for Semidirect Discrete Logarithm 5

Section 4. In order to give a full description and complexity analysis of the
algorithm it remains to examine the state of the art for solving GADLP. It is
reasonably well-known (see [31], [11]) that GADLP reduces to the Abelian Hidden
Shift Problem if the action is free and transitive, though we provide a context-
specific reduction in Theorem 6. There are two popular choices to solve this
problem: an algorithm due to Kuperberg [23] and another due to Regev [30],
each of which has trade-offs with respect to time and space complexity. Finally,
the full algorithm is given in Theorem 9, though we are essentially assembling
the components we have developed throughout the rest of the paper. This main
result is the following:

Theorem. Let {Gp}p be an easy family of semigroups, and fix p. For any pair
(g,φ) ∈ Gp × End(Gp), there is a quantum algorithm solving SDLP with respect

to (g,φ) with time and query complexity 2O(
√
log p).

which proves the claim of a quantum subexponential algorithm for SDLP given
in the title.

1 Preliminaries

1.1 Notation

One need only be familiar with the standard O() and Ω() notations. Various
bespoke notations are introduced throughout the course of the paper, but these
will be defined in due course. We note also that all our logarithms are base-2.

1.2 Background Mathematics

We recall a number of group-theoretic notions used throughout this paper.
Recall that a group for which one is not guaranteed to have inverse with respect
to the group operation is a semigroup. Writing the operation multipicatively, the
semigroups G we are interested in all have an element 1 such that 1 ⋅ g = g = g ⋅ 1
for each g ∈ G - such a semigroup is also called a monoid. In this work we insist
that we do not have a full group, and so write semigroups without meaning to
refer to full groups.
We will deal with both abelian groups and non-abelian semigroups in this paper;
that is, for a non-abelian smeigroup G one cannot expect that g ⋅ h = h ⋅ g for all
g, h ∈ G. For the sake of clarity we will write abelian groups additively. In this
case, the operation g+h commutes, and we require an inverse for every element.
Note also that the identity is written as 0 in this case.
Consider a function from G to itself, say φ. If φ preserves multiplication - that
is, φ(g ⋅ h) = φ(g) ⋅ φ(h) for each g, h ∈ G - we call it an endomorphism. Cer-
tainly we can compose these functions according to the usual notion, and indeed
it is standard that the set of all endomorphisms under function composition
defines a semigroup. Since we allow for (and in some cases require) that the
endomorphisms are not invertible, we have a semigroup rather than a full group.



6 C. Battarbee, D. Kahrobaei, L. Perret and S. F. Shahandashti

In particular, every finite semigroup G immediately induces an endomorphism
semigroup, denoted End(G).
An important, and in this context frequently invoked source of semigroups come
from matrix algebras. The set of square matrices of fixed size with entries in
some ring R forms an R-module, since we can add matrices together and scale
each entry of a matrix by some r ∈ R. The necessary distributivity properties
are inherited from the properties of R. However, unlike in a usual R-module, we
can also multiply elements just by defining multiplication to be the usual notion
of matrix multiplication. The resulting matrix algebra is denoted Mn(R), where
n ∈ N is the fixed size of matrix, and R is the underlying ring. Indeed, consider
a matrix algebra under only the multiplication operation. It is again clear that
this object is a semigroup; we would have a full group if every matrix was
invertible, but of course this is not true. The all-zero matrix, for example, has no
multiplicative inverse. A matrix algebra considered only under its multiplication,
therefore, is a useful source for concrete examples of semigroups.
It will be useful for us to build a new semigroup from an existing semigroup. One
way of doing this is via a structure called the holomorph. Let G be a (semi)group
and End(G) its endomorphism semigroup. The holomorph is the set G×End(G)
equipped with multiplication

(g,φ) ⋅ (g′, φ′) = (φ′(g) ⋅ g′, φ ○ φ′)
where ○ refers to function composition. In fact, the holomorph is itself a special
case of the semidirect product, hence the terminology.

Group Actions. A key idea for us will be that of a group action, and in
particular a commutative group action. Roughly speaking such an object allows
one to map elements of a set to each other in a cryptographically useful fashion,
but in a less structured manner than in more classical settings. More formally:

Definition 1 (Commutative Group Action). Let G be a finite abelian group
and X be a finite set. Consider a function from G×X →X, written by convention
as g ⋆ x, with the following properties:

1. 1 ⋆ x = x
2. (g + h) ⋆ x = g ⋆ (h ⋆ x)
The tuple (G,X,⋆) is a commutative group action. If only the identity fixes an
arbitrary element of X the action is free, and if for any x, y ∈ X there is a g

such that g ⋆ x = y the action is transitive.

The group action defined in this paper is commutative, so we will sometimes
just write ‘group action’ to mean a commutative group action. It will remain
for us, however, to prove that this action is free and transitive. If the action is
indeed free and transitive, it follows that for any x ∈ X , all y ∈ X are such that
there exists a unique g ∈ G with g ⋆ x = y. Borrowing notation from Couveignes
[14], it will sometimes be convenient for us to write δ(y, x) to denote this value.



A Subexponential Quantum Algorithm for Semidirect Discrete Logarithm 7

1.3 Quantum Computation

In order to present our quantum algorithm for SDLP (Section 3), the reader needs
only be familiar with standard quantum tools, presented for example in [17]. We
give a brief summary of the required notions below.
Recall that n qubits can be represented by the complex vector space H2n , where
the basis states are exactly the n-fold tensor products of basis states of H2. An
ordered system of n qubits is called a quantum register of length n, and the basis
states are sometimes written {∣i⟩ ∶ 0 ≤ i < 2n} by identifying i with its binary
representation.
We say a state z ∈H2n is entangled if it cannot be written as the tensor product
of H2 states. In particular, an observation of one qubit in an entangled state
affects the state of the other: suppose integers {0, ...,M − 1} can be represented
by a quantum register of length l for some l,M ∈ N, and moreover that a function
f on {0, ...,M −1} is such that {f(0), ..., f(M −1)} can be represented similarly.
A state of the form

1√
M

M−1
∑
j=0
∣j⟩ ∣f(j)⟩

is such that when observation of the second register gives some Y ∈ {f(0), ..., f(M−
1)}, the first register is left in superposition

1√
L
∑

j∶f(j)=Y
∣j⟩

where L is the number of j ∈ {0, ...,M − 1} such that f(j) = Y . The factor 1/√L
is to normalise the probabilities, ensuring the state is a unit vector.
Finally, recall that we can create the uniform superposition efficiently with a
Hadarmard gate. For an l-qubit register, the computational basis vector ∣0⟩ is
such that the Hadamard gate (written H2l) is such that

H2l ∣0⟩ = 1√
2l

2l−1
∑
i=0
∣i⟩

Moreover, this transformation can be carried out efficiently, in time O(l).

1.4 Semidirect Product Key Exchange

We here define in full SPDKE. One verifies by induction that holomorph exponen-
tiation takes the form

(g,φ)x = (φx−1(g) ⋅ . . . φ(g) ⋅ g,φx)
where φx denoted the endomorphism φ composed with itself x times. Note that
this operation involves multiplying (semi)group elements, endomorphisms, and
applying an endomorphism to a semigroup element. If all these operations are



8 C. Battarbee, D. Kahrobaei, L. Perret and S. F. Shahandashti

efficient, the holomorph exponentiation is efficient since one can apply standard
square-and-multiply techniques.
The central idea of SPDKE is to use products of these form as a generalisation of
Diffie–Helman Key-Exchange. Suppose N is the number of all possible distinct
holomorph exponents - there are finitely many - then the protocol works as
follows:

1. Suppose Alice and Bob agree on a public (semi)group G and hence the
integer N , as well as a group element g and endomorphism of G, say φ.

2. Alice picks a secret integer x uniformly at random from {1, ...,N}, and cal-
culates the holomorph exponent (g,φ)x = (A,φx). She sends only A to Bob.

3. Bob similarly calculates (B,φy) corresponding to a random, private integer
y, and sends only B to Alice.

4. With her private automorphism φx Alice can now calculate her key as the
group element KA = φx(B) ⋅A; Bob similarly calculates his key KB = φy(A) ⋅
B.

We have

φx(B) ⋅A = φx(φy−1(g) ⋅ . . . ⋅ g) ⋅ (φx−1(g) ⋅ . . . ⋅ g)
= (φx+y−1 ⋅ . . . ⋅ φx(g)) ⋅ (φx−1(g) ⋅ . . . ⋅ g)
= (φx+y−1 ⋅ . . . ⋅ φy(g)) ⋅ (φy−1(g) ⋅ . . . ⋅ g)
= φy(A) ⋅B

so K ∶= KA = KB. Note that A ⋅B ≠ K as a consequence of our insistence that
the group operation is non-commutative.
Writing these products in full will quickly become rather cumbersome. We there-
fore introduce some non-standard notation, which is useful both for convenience
of exposition and the required shift in perspective we will introduce in this paper.

Definition 2. Let G be a finite, non-commutative (semi)group, g ∈ G, and φ ∈
End(G). We define the following function:

s ∶ G ×End(G) ×N → G

(g,φ, x) ↦ φx−1(g) ⋅ . . . ⋅ φ(g) ⋅ g
Notice that when g,φ are fixed - as in the case of the key exchange - the function
s is really only taking integer arguments, analogously to the standard notion of
group exponentiation. Indeed, a passive adversary observing a round of SPDKE
has access to the values s(g,φ, x) and s(g,φ, y) - in order to recover the shared
key s(g,φ, x+y) one strategy they might adopt is to recover the private integers
x, y from s(g,φ, x), s(g,φ, y) to allow calculation of s(g,φ, x + y). In short, the
security of SPDKE is clearly in some sense related to the Semidirect Discrete
Logarithm Problem alluded to in the introduction. We shall have much more to
say about this later on.



A Subexponential Quantum Algorithm for Semidirect Discrete Logarithm 9

1.5 Efficiency Considerations

The works discussed in the introduction, as well as the contents of the more
comprehensive survey [2], highlight that every extant proposal of a platform for
SPDKE suggests for use some variety of matrix algebra. In particular, insofar as
parameters are recommended, the convention is to fix a matrix size - usually 3 -
and adjust the size of an underlying ring in order to increase security. One very
good reason for this is that each scheme requires a user to repeatedly perform
matrix multiplication, the complexity of which scales exponentially with the size
of the matrix. Table 1 gives examples of platforms over 3×3 matrices, the size of
the platform, and the variable that can be considered the security parameter6.

Table 1. Growth of Proposed Platforms

Proposed Platform Size of Platform Security Parameter

M3(G[R]) ∣R∣9∣G∣ ∣R∣

Certain classes of p-group Polynomial in prime p Prime p

M3(Zp) p9 p

In other words, having defined SPDKE above relative to some semigroup G and
its endomorphism semigroup End(G), we can think of each such semigroup as
one of a family of semigroups {Gp}p, where the family {Gp}p is parameterised
by a security parameter p. Note that this immediately induces a family of endo-
morphism semigroups {End(Gp)}p, so we can talk about pairs (g,φ) from the
set Gp ×End(Gp) for each p. Moreover, each semigroup in this family has size
polynomial in p.
Another characteristic of the currently proposed platforms is that the endo-
morphisms suggested for use with SPDKE typically involve multiplication by one
or more auxiliary matrices; that is, for a particular semigroup Gp, if (g,φ) ∈
Gp × End(Gp) the group element φ(g) has the form A ⋅ g ⋅ B, where A,B ∈ G
are fixed. By the above discussion each application of φ therefore requires some
constant number of operations in the underlying ring of the matrix semigroup,
which we may assume has size polynomial in p. The complexity of this matrix
multiplication will be dominated by the multiplication in the underlying ring.
Since the size of the underlying ring is also polynomial in p, each multiplication
has complexity O((log p)2) (since bigOlogpoly(p) = O(log p)). We conclude that
both multiplication of element in Gp, and evaluation of φ(g), can be done in time
O((log p)2).
With these observations in mind, we define the following:

Definition 3. Let P some countable indexing set. A family of semigroups {Gp}p∈P
is said to be easy if

6 Note here that ∣R∣ is chosen as the parameter for reasons of efficiency of representa-
tion.



10 C. Battarbee, D. Kahrobaei, L. Perret and S. F. Shahandashti

1. ∣Gp∣ grows monotonically and polynomially in p

2. For any p, any tuple (g, h,φ) ∈ Gp×Gp×End(Gp) is such that g ⋅h and φ(g)
can be evaluated in time O((log p)2).

Many of the complexity results within the paper assume that we are dealing with
an easy family of semigroups, basically in an attempt to model the behaviour of
suggested examples of semigroup family.

1.6 Computational Problems

We have already alluded to some of the hard problems to be found in this paper.
Here we give full definitions of all of them to serve as a kind of ‘glossary’ section.

Definition 4 (Semidirect Discrete Logarithm Problem). Given a public
(semi)group G, its public endomorphism semigroup End(G) and a public pair
(g,φ) ∈ G × End(G), let N be the size of the set {s(g,φ, i) ∶ i ∈ N}. Choose
x from {1, ...,N} uniformly at random, calculate s(g,φ, x) and create the pair
((g,φ), s(g,φ, x)). The Semidirect Discrete Logarithm Problem (SDLP) with re-
spect to (g,φ) is to recover the integer x given the pair (g,φ) and s(g,φ, x).

Definition 5 (Semidirect Computational Diffie–Hellman). Given a pub-
lic (semi)group G, its public endomorphism semigroup End(G) and a public pair
(g,φ) ∈ G ×End(G), let N be the size of the set {s(g,φ, i) ∶ i ∈ N}. Choose x, y

from {1, ...,N} uniformly at random, compute the values
(s(g,φ, x), s(g,φ, y), s(g,φ, x+y)), and create the tuple ((g,φ), s(g,φ, x), s(g,φ, y)).
The Semidirect Computational Diffie–Hellman problem (SCDH) with respect to
(g,φ) is to recover the value s(g,φ, x + y).

The cognoscenti will notice that this version of a Computational Diffie–Hellman-
type problem is defined slightly differently than equivalent variants found in this
area. We choose this particular weaker form to illustrate the connection to SPDKE.

We now give the computational problems that we seek to reduce to. These
versions of the problems are taken from [26], but can be found as the vectorisation
and parallelisation problems, respectively, in [14].

Definition 6 (Group Action Discrete Logarithm). Given a public com-
mutative group action (G,X,⋆), sample g ∈ G and x ∈ X uniformly at random,
compute y = g ⋆ x and create the pair (x, y). The Group Action Discrete Loga-
rithm Problem (GADLP) with respect to x is to recover g given the pair (x, y).

Definition 7 (Group Action Computational Diffie–Hellman). Given a
public commutative group action (G,X,⋆), sample g, h ∈ G and x ∈X uniformly
at random. Compute y = g ∗ x and z = h ∗ x, and create the tuple (x, z, y).
The Group Action Computational Diffie–Hellman problem (GACDH) is to recover
(g + h) ⋆ y given the tuple (x, y, z).



A Subexponential Quantum Algorithm for Semidirect Discrete Logarithm 11

These versions of GADLP and GACDH are slightly weaker than those found in [26],
which allow for x to be chosen according to any distribution. For the purposes of
our reduction, the uniform distribution will do. Note also that in our reductions,
SDLP and SCDH are defined relative to some fixed pair (g,φ), which will induce
some instances of GADLP, GACDH in which the value x ∈X is not sampled uniformly
at random and is instead fixed. We get around this by observing that for each
x ∈ X , fixing x defines a GADLP (resp. GACDH) problem with respect to this x.
Clearly, a GADLP (resp. GACDH) oracle for the group action (G,X,⋆) can solve the
GADLP (resp. GACDH) problem with respect to x for each x ∈X . The distinction is
sufficiently subtle for us to suppress this detail for the remainder of the paper.
Finally we give a seemingly unrelated problem requiring a small amount of in-
troduction. Let f, g ∶ A → S be injective functions, where S is a set and A is a
finite abelian group. We say that f, g hide some s ∈ A if one has g(a) = f(a + s)
for each a ∈ A.
Definition 8 (Abelian Hidden Shift Problem). Given a public abelian group
A and a set S, suppose two injective functions f, g hide some s ∈ A. The Abelian
Hidden Shift Problem (AHSP) is to recover the group element s.

2 Structure of the Exponents

All of the algorithms in this paper rely on the construction of a certain group
action - recall that such an object consists of a group, a set, and a function
(Section 1.2, Definition 1). As a general outline to our strategy, we first define
and deduce properties of a particular set, from which the appropriate group and
function will follow.
With this in mind, we make the following definition. For now we will dispense
with our notion of an easy, parameterised family of semigroups, since the results
presented in this section apply to any fixed semigroup. In fact, for compactness
of exposition, for the remainder of this section by G we mean an arbitrary finite
(semi)group, and by End(G) we mean its associated endomorphism semigroup.

Definition 9. For a pair (g,φ) ∈ G ×End(G), define
X(g,φ) ∶= {s(g,φ, i) ∶ i ∈ N}

We will often write X(g,φ) as X when clear from context. Certainly this object
is neither a group nor a semigroup - numerous counterexamples can be found
whereby multiplication of elements in this set are not contained in the set - but
we can make some progress by borrowing from the standard theory of monogenic
semigroups; presented, for example, in [18]. Since X ⊂ G, X is finite - the set {x ∈
N ∶ ∃y s(g,φ, x) = s(g,φ, y)} must therefore be non-empty, else it is in bijection
with the natural numbers. We may therefore choose its smallest element, say
n. By definition of n the set {x ∈ N ∶ s(g,φ,n) = s(g,φ,n + x)} must also be
non-empty, so we may again pick its smallest element and call it r.
The structure of X is further restricted by the following result:



12 C. Battarbee, D. Kahrobaei, L. Perret and S. F. Shahandashti

Lemma 1. Let (g,φ) ∈ G ×End(G) and x, y ∈ N, then
φx (s(g,φ, y)) ⋅ s(g,φ, x) = s(g,φ, x + y)

Proof. Note that s(g,φ, x+y) = φx+y−1(g)⋅. . .⋅g. Since φ preserves multiplication,
applying φx to s(g,φ, y) adds x to the exponent of each term. Multiplication on
the right by s(g,φ, x) then completes the remaining terms of s(g,φ, x + y). ⊓⊔

Remark 1. One can entirely symmetrically swap the roles of x and y in the above
argument, which gives two ways of calculating s(g,φ, x+y). In essence, therefore,
this result gives us a slightly more elegant proof of the correctness of SPDKE.

This method of inducing addition in the integer argument of s is sufficiently
important that we will invoke a definition for it.

Definition 10. Let (g,φ) ∈ G×End(G) and define a function f ∶ N×X → X by

f(i, s(g,φ, j)) = φi(s(g,φ, j)) ⋅ s(g,φ, i)
where f(i, s(g,φ, j)) may also be written as i ∗ s(g,φ, j).
Remark 2. If G is of the type discussed in Section 1.5, the value i∗s(g,φ, j) can
be computed in time O(log i). This is because computing φi(s(g,φ, j)) requires
calculating some fixed number of G-elements to the power i and multiplying,
which can be done with O(log i) operations by square and multiply; and, as we
have seen, computing s(g,φ, i) requires O(log i) operations.
Thus far we have established that corresponding to any fixed pair (g,φ) ∈ G ×
End(G) is a set Xg,φ = X and a pair of integers n, r. By Lemma 1 we know that
i ∗ s(g,φ, j) = s(g,φ, i + j) for any i, j ∈ N, so by definition of n, r we have

s(g,φ,n + 2r) = r ∗ s(g,φ,n + r)
= r ∗ s(g,φ,n)
= s(g,φ,n + r) = s(g,φ,n)

We conclude, by extending this argument in the obvious way, that s(g,φ,n+qr) =
s(g,φ,n) for each q ∈ N. In fact, we have the following:

Lemma 2. Fix (g,φ) ∈ G × End(G) and let n, r be the corresponding integer
pair as above. One has that

s(g,φ,n + x + qr) = s(g,φ,n + x)
for all x, q ∈ N.
We will frequently invoke Lemma 2. Indeed, we immediately get that the set X
cannot contain values other than {g, ..., s(g,φ,n), ..., s(g,φ,n + r − 1)}. If any of
the values in {g, ..., s(g,φ,n−1) are equal we contradict the minimality of n, and
if any of the values in {s(g,φ,n), ..., s(g,φ,n+r−1)} are equal we contradict the
minimality of r. We have shown the following:



A Subexponential Quantum Algorithm for Semidirect Discrete Logarithm 13

Theorem 1. Fix (g,φ) ∈ G ×End(G). The set X = {s(g,φ, i) ∶ i ∈ N} has size
n + r − 1 for integers n, r dependent on g,φ. In particular

X = {g, ..., s(g,φ,n), ..., s(g,φ,n + r − 1)}.
We refer to the set {g, ..., s(g,φ,n−1)} as the tail, written Tg,φ, of Xg,φ; and the
set {s(g,φ,n), ..., s(g,φ,n+ r−1)} as the cycle, written Cg,φ, of Xg,φ. The values
ng,φ and rg,φ are called the index and period of the pair (g,φ). We shall feel free
to omit the subscript at will when clear from context.
One can see that unique natural numbers correspond to each element in the
tail, but infinitely many correspond to each element in the cycle. In fact, each
element of the cycle corresponds to a unique residue class modulo r, shifted by
the index n. This is a rather intuitive fact, but owing to its usefulness we will
record it formally. In the following we assume the function mod returns the
canonical positive residue.

Theorem 2. Fix (g,φ) ∈ G ×End(G) and let x, y ∈ N. We have

s(g,φ,n + x) = s(g,φ,n + y)
if and only if x mod r = y mod r.

Proof. In the reverse direction, setting x′ = x mod r and y′ = y mod r, we have
by Lemma 2 that s(g,φ,n+x) = s(g,φ,n +x′) and s(g,φ,n + y) = s(g,φ,n+ y′).
By assumption x′ = y′, and 0 ≤ x′, y′ < r. The claim follows since we know values
in the range {s(g,φ,n), ..., s(g,φ,n + r − 1)} are distinct by Theorem 1.
On the other hand, suppose s(g,φ,n + y) = s(g,φ,n + x) but x /≡ y mod r.
Without loss of generality we can write y = x′ + u + qr for some q ∈ N,0 < u < r
and x′ = x mod r. By Lemma 2, since s(g,φ,n+y) = s(g,φ,n+x) we must have

s(g,φ,n + x′) = s(g,φ,n + x′ + u)
where s(g,φ,n+x) = s(g,φ,n+x′) also by Lemma 2. There are now three cases
to consider; we claim each of them gives a contradiction.
First, suppose x′+u = r, then s(g,φ,n+x′) = s(g,φ,n). Since x′ < r we contradict
minimality of r. The case x′ + u < r gives a similar contradiction.
Finally, if x′ + u > r, without loss of generality we can write x′ + u = r + v for
some positive integer v, so we have s(M,φ,n + x′) = s(M,φ,n + v). Since x′ ≠ v
(else we contradict u < r), and both values are strictly less than r, we have a
contradiction, since distinct integers of this form give distinct evaluations of s.

⊓⊔

2.1 A Group Action

It should be clear by now that we are interested in the argument of s in terms
of residue classes modulo r. Recall that the group of residue classes modulo r

is denoted Zr, and its elements are written as [i]r. We conclude the section by
constructing the action of Zr on the cycle {s(g,φ,n), ..., s(g,φ,n+r−1)}, where
we assume that the operator mod r returns the unique integer in {0, ..., r − 1}
associated to its argument.



14 C. Battarbee, D. Kahrobaei, L. Perret and S. F. Shahandashti

Theorem 3. Fix (g,φ) ∈ G×End(G) and let n, r be the index and period corre-
sponding to g,φ. Moreover, let C be the corresponding cycle of size r. The abelian
group Zr acts freely and transitively on C.
Proof. First note that Theorem 2 immediately gives that j ∗ s(g,φ, i + n) =
s(g,φ, (i + j) mod r + n for any j ∈ N. Our current definition of s is not defined
for negative integer arguments; nevertheless, we can extend the range of the
operator ∗ as follows. Let ∗ ∶ Z × C → C be defined by

j ∗ s(g,φ, i) = φj mod r(s(g,φ, i + n)) ⋅ s(g,φ, j mod r)
Since j mod r ≥ 0, as usual we have j ∗ s(g,φ, i + n) = s(g,φ, i + j mod r + n);
but since s(g,φ, i + n) ∈ C, we know 0 ≤ i < r, so i mod r = i. It follows that
j ∗ s(g,φ, i + n) = s(g,φ, (i + j) mod r + n).
In fact, fix some i ∈ N, and let [j]r be a fixed element of Zr. By definition, every
k ∈ [j]r is such that k mod r = j′ for some j′ ∈ {0, ..., r − 1}; without loss of
generality, j′ = j. We may therefore define ⊛ ∶ Z × C → C by

[j]r ⊛ s(g,φ, i + n) = s(g,φ, (i + j) mod r + n)
where j is the unique element of [j]r such that k mod r = j for each k ∈ [j]r.
We claim that (Zr,C,⊛) is a free, transitive group action.
First, let us verify that a group action is indeed defined. Certainly [0]r fixes every
element in C, since s(g,φ, (i+0) mod r+n) = s(g,φ, i+n) for each i ∈ {0, ..., r−1}.
Moreover, one has

[k]r ⊛ ([j]r ⊛ s(g,φ, i + n)) = [k]r ⊛ s(g,φ, (i + j) mod r + n)
= s(g,φ, ((i + j) mod r) + k mod r + n)
= s(g,φ, (i + (j + k)) mod r + n)
= [j + k]r ⊛ s(g,φ, i + n)
= ([k]r + [j]r)⊛ s(g,φ, i + n)

It remains to check that the action is free and transitive. If [j]r ∈ Zr is such that
[j]r fixes an arbitrary element of C, say s(g,φ, i+n), then we have s(g,φ, (i+ j)
mod r+n) = s(g,φ, i+n). By Theorem 2, we must have i+j ≡ i mod r, so [j]r =
[0]r and the action is free. Moreover, for arbitrary s(g,φ, i+n), s(g,φ, j +n) ∈ C,
[k]r = [j − i]r ∈ Zr is such that [k]r ⊛ s(g,φ, i + n) = s(g,φ, j + n), so the action
is alsot transitive and we are done.

⊓⊔

We summarise the above by noting that for each (g,φ) ∈ G ×End(G) we have
shown the existence of a free, transitive, commutative group action (Zr,C,⊛),
where r and C depend on the choice of pair (g,φ).

3 Group Action Discrete Logarithms

Now that we have established the group action, we recall the Group Action
Discrete Logarithm Problem (GADLP) from the introduction. Roughly speaking,



A Subexponential Quantum Algorithm for Semidirect Discrete Logarithm 15

for a free transitive group action (G,X,⋆), and x, y sampled uniformly at random
from the set X , we are tasked with recovering the unique G-element g such that
g⋆x = y. In this section we will show that one can construct a quantum reduction
from SDLP to GADLP.
More precisely, we target the type of structure discussed in Section 1.5; that, is a
set of finite semigroups {Gp}p indexed by some parameter p, such that the size of
each Gp is polynomial in p - the so-called ‘easy’ families of semigroups. We know
that multiplication in each Gp requires a number of operations bounded above
by some constant independent of p, and that the complexity of these operations
is bounded above by O((log p)2)
With all this in mind let {Gp}p be such a family of semigroups. In the previous
section we have shown that for a fixed p, to each pair (g,φ) ∈ Gp ×End(Gp) is
associated a pair (n, r) and a set C. In this section we seek to show there is an
efficient quantum algorithm to solve SDLP with respect to an arbitrary choice of
(g,φ), provided one has access to a GADLP oracle for the group action (Zr,C,⊛).
Before giving this reduction there remains a significant obstacle to overcome: for
an arbitrary pair (g,φ) we have only proved the existence of the corresponding
values n, r, but we do not have a means of calculating them. In order to provide
a reduction to a GADLP oracle, however, we need to specify the appropriate group
action. We therefore require access to the values n, r - in the next section, we will
provide a quantum method of recovering these integers. We note that assuming
access to a quantum computer is, for our purposes, justified since the best-known
algorithms for GADLP are quantum anyway.

3.1 Calculating the Index and Period

In order to reason on the complexity of our algorithm we will use the following
worst-case indicator, defined as follows:

Definition 11. Let {Gp}p∈P be an easy family of finite semigroups parame-
terised by some set P . Define the following function on P :

N(p) = max
(g,φ)∈Gp×End(Gp)

∣Tg,φ + Cg,φ∣

The function N(p) gives a bound on the size of Xg,φ for any (g,φ) ∈ Gp ×
End(Gp). Since a crude such bound is the size of an easy semigroup Gp, which
is assumed polynomial in p, we have that N(p) is at worst polynomial in p.
Our method of calculating the index and period borrows heavily from ideas in
[12, Theorem 1], which is itself a slightly repurposed version of [13, Algorithm 5].
Indeed, after a certain point we will be able to quote methods of these algorithms
verbatim - nevertheless, to cater to our specific context it remains incumbent
upon us to justify the following.

Lemma 3. Let {Gp}p be an easy family of semigroups, and for an arbitrary p fix
a pair (g,φ) ∈ Gp ×End(Gp). For any l ∈ N, one can construct the superposition

1√
M

M−1
∑
k=0
∣k⟩ ∣s(g,φ, k)⟩



16 C. Battarbee, D. Kahrobaei, L. Perret and S. F. Shahandashti

in time O(logM(logp)2), where M = 2l.
Proof. When (g,φ) is fixed, notice that we can think of s(g,φ, i) ∶ G×End(G)×
N → G as a function sg,φ(i) ∶ N → G. Since N(p) is a bound on the size of
Xg,φ, taking m to be smallest integer such that 2m ≥ N(p) (note that m =
O(log(N(p)))), the set Xg,φ has binary representation in the set {0,1}m. By
definition the integers {0, ...,M − 1} have binary representation in {0,1}l, so we
can think of the restriction of sg,φ on {0, ...,M − 1} as a function from {0,1}l
into {0,1}m. There is therefore a Boolean circuit computing sg,φ; it is standard
(say, by [17, Theorem 2.3.2]) that one can construct a circuit implementing sg,φ
using reversible gates. Call this circuit Qsg,φ ; since the reversible circuit does
no worse than the classical circuit, we can assume a single application of Qsg,φ

takes at worst the time complexity of calculating sg,φ(M).
What is the time complexity of calculating sg,φ(M)? We know by definition
that (sg,φ(M), φM) = (g,φ)M , where the exponentiation refers to holomorph
exponentiation. Recall that since we have assumed we are working in an easy
family of semigroups, each multiplication in the holomorph involves one appli-
cation of φ, followed by some fixed constant number of matrix multiplications
independently of p. Calculating the holomorph exponentiation in the standard
square-and-multiply fashion, therefore, we expect to perform O(logM) holo-
morph multiplications. We know that evaluating φ takes time O((logp)2); since
a fixed number of matrix multiplications follow, the total time for calculating
s(g,φ,M) is O(logM(logp)2).
If we can show a single application of Qsg,φ gives the desired superposition we
are done. It is standard, however, that the uniform superposition of an M -bit
quantum register, together with an ancillary m-bit register in the state ∣0⟩, can
be inputted into Qsg,φ to produce the desired superposition. Since preparing the
appropriate uniform superposition can be done by applying a Hadamard gate in
time O(logM), we are done. ⊓⊔

Armed with the ability to efficiently calculate the appropriate superposition,
we will quickly find ourselves with exactly the kind of state arrived at in [13,
Algorithm 5], thereby allowing us to recover the period r in Algorithm 1. A
small adaptation of standard binary search techniques completes the task by
using knowledge of r to recover the index n.

Theorem 4. Let {Gp}p be an easy family of semigroups, and fix p. For any pair
(g,φ) ∈ Gp ×End(Gp):

1. For sufficiently large M ∈ N, PeriodRecovery((g,φ),M) recovers the period
r of (g,φ) in time O((logp)3), and with constant probability.

2. BinarySearch((g,φ),1,M, r) returns the index n of g,φ in time O((log p)4).
Proof. 1. Fix a pair (g,φ) ∈ Gp ×End(Gp) and let r be its period. Let ℓ ∈ N be

the smallest positive integer such that 2ℓ ≥ (N(p)2 +N(p)), and M = 2ℓ. In
steps 1-3 of Algorithm 1, we prepare the required superposition as described
in Lemma 3.



A Subexponential Quantum Algorithm for Semidirect Discrete Logarithm 17

Algorithm 1 PeriodRecovery(((g,φ),M))
Input: Pair (g,φ) ∈ Gp ×End(Gp), upper bound on size of superposition to create M

Output: Period r of (g,φ) or ’Fail’

1: R0 ← ∣0⟩ ∣0⟩
2: R1 ← Hadamard transform applied to first register
3: R2 ← appropriate quantum circuit applied to R1

4: Measure second register leaving collapsed first register R3

5: R4 ← QFT over ZM applied to R3

6: R5 ← measure R4

7: r ← continued fraction expansion of R5/M
8: if r ∗ s(g,φ,M) ≠ s(g,φ,M) then
9: return ‘Fail’
10: else

11: return r

12: end if

Algorithm 2 BinarySearch((g,φ), start, end, r)
Input: Pair (g,φ), integers start, end where start ≤ end, period r of g,φ
Output: Index n of (g,φ)

1: if start = end then:
2: return start

3: end if

4: left ← start

5: right← end

6: mid← ⌊(left + right)/2⌋
7: if r ∗ s(g,φ,mid) ≠ s(g,φ,mid) then
8: return BinarySearch((g,φ),mid + 1, right, r)
9: else

10: return BinarySearch((g,φ), left,mid, r)
11: end if

In Step 4, we measure the second register. With probability n/M doing
so will cause us to observe an element of the tail; that is, some s(g,φ, i)
such that i < n. In this case, by the laws of partial observation, the first
register is left in a superposition of integers corresponding to this value -
but by definition there is only one of these, so the first register consists of a
single computational basis state and the algorithm has failed. On the other
hand, with probability (M − n)/M measuring the second register gives an
element of C. Now, since M ≥N(p)2+N(p), we observe an element of C with
probability

M − n

M
= 1 − n

M
≥ 1 − n

N(p)2 +N(p)

Since by definition one has n ≤ N(p), it follows that the relevant probability
is better than N(p)/(N(p)+1) ≥ 1/2. In other words, we observe an element



18 C. Battarbee, D. Kahrobaei, L. Perret and S. F. Shahandashti

of the desired form with constant, positive probability. Provided such an
element was observed, after measuring the second register, the superposition
of corresponding integers in the first register is the following:

1√
sr

sr−1
∑
j=0
∣x0 + jr⟩

To see this, note that the function s is periodic of period r, and by Theorem 1
each s(g,φ, i) such that i ≥ n can only assume one of the distinct values
s(g,φ,n), ..., s(g,φ,n + r − 1). In particular, the integers in {1, ...,M} that
give a specific value of the cycle under s are of the form x0 + jr for some
x0 ∈ {n, ..., n + r − 1}. The largest such integer, by definition, is x0 + srr,
where sr is just the largest integer such that x0 + srr < M . Note that the
superposition is normalised by this factor so that the sum of the squares of
the amplitudes is 1.
We now have exactly the same kind of state found in [13, Algorithm 5]7, so
we may proceed exactly according to the remaining steps in this algorithm.
In Step 5 we apply a Quantum Fourier Transform (QFT) over ZM to the
state, which can be done in time O((logM)2). In step 6 we measure the
state R4; it is shown in [13, Algorithm 5, Step 5] that with probability at
least 4/π2, measuring the resulting state leaves one with the closest integer
to one of the at most r multiples of M/r (note that M/r is not necessarily
an integer) with probability better than 4/π2. Writing this closest integer as
⌊jM/r⌉ for some j ∈ N, one checks that the fraction j/r is a distance of at
most 1/2M from (⌊jM/r⌉)/M ; by [17, Theorem 8.4.3], j/r will appear as
one of the convergents in the continued fraction expansion of (⌊jM/r⌉)/M
provided 1/2M ≤ 1/2r2. Certainly this holds, since r < N(p) <M . Provided
we have observed an integer of the appropriate form, then, it remains to
carry out a continued fraction expansion on (⌊jM/r⌉)/M , which we can do
with repeated application of the Euclidean algorithm.
Let us summarise the complexity of the algorithm. The dominating factors
are the creating of the relevant superposition in time

O((logM)(logp)2) = O((logN(p)(logp)2 = O((log p)3))
where the last equality follows from the easy property of the relevant semi-
group family; that is, one has that N(p) is at worst polynomial in p. Sim-
ilarly, the application of QFT can be done in time O((log p)2), so we have
the complexity estimate claimed at the outset. Note also that the algorithm
succeeds provided an element of the cycle is observed after the first measure-
ment, and that the second measurement gives an appropriate integer. Since
both of these events occur with probability bounded below by a constant,
the algorithm succeeds with probability Ω(1).

2. We prove correctness of the algorithm by proving that any values start, end
such that start ≤ n ≤ end will return n, which we accomplish by strong

7 This type of state also occurs in Shor’s factoring algorithm.



A Subexponential Quantum Algorithm for Semidirect Discrete Logarithm 19

induction on k = start−end+1. To save on cumbersome notation we assume
(g,φ) and r are fixed, and write

BinarySearch((g,φ, ), start, end, r) = BS(start, end)

First, suppose k = 1 and start ≤ n ≤ end. Either n = start or n = start+1, and
we know that mid = start after the floor function is applied. In the first case,
r∗s(g,φ,mid) = s(g,φ,mid), so BS(start,mid) is returned; but since start =
mid, start = n is returned. Otherwise, one has r ∗ s(g,φ,mid) ≠ s(g,φ,mid)
and BS(mid + 1, end) is returned, and we are done since mid + 1 = end = n.
Now for some k > 1 suppose all positive integers start′, end′ such that start′ ≤
n ≤ end′ and end′ − start′ + 1 < k have BS(start′, end′)=n. We should like
to show that an arbitrary choice of start, end with start ≤ n ≤ end and
end − start + 1 = k enjoys this same property. To see that it does we can
again consider the two cases.
The algorithm first calculatesmid = ⌊(end−start)/2⌋. Suppose r∗s(g,φ,mid) =
s(g,φ,mid), then BS(start,mid) is run. Since n is the smallest integer such
that r ∗ s(g,φ,n) = s(g,φ,n) and n ≥ start by assumption, we know start ≤
n ≤ mid. Moreover, mid − start + 1 < end − start + 1 < k. By inductive hy-
pothesis BS(start,mid) returns n.
The other case is similar; this time, if r∗ s(g,φ,mid) ≠ s(g,φ,mid) we know
n ≥ mid + 1 by definition of n. We also know that end − (mid + 1) + 1 =
end −mid < end −mid + 1 = k, so the algorithm returns BS(mid + 1, end)=n

by inductive hypothesis.
Notice that each time BinarySearch is called the calculation of r∗s(g,φ,mid)
is required. We know already that s(g,φ,mid) can be calculated in time
O(logmid(logp)2) = O((logp)3). Given φr, s(g,φ, rg,φ) and s(g,φ,mid),
the calculation of r ∗ s(g,φ,mid) requires evaluating an endomorphism and
a semigroup multiplication - we have argued already that this can be done
in time O((log p)2). Recall that in the proof of Lemma 3, we showed that
one can calculate the holomorph exponent (g,φ)r = (s(g,φ, r), φr) in time
O(log r(log p)2), so the total calculation is done in time O((log p)3) since
r <M . Clearly, BinarySearch will be called O(logM) = O(log p) times, since
the size of the interval to search halves at each iteration, and we conclude
that BinarySearch recovers the index in time O((log p)4).

⊓⊔

3.2 From SDLP to GADLP

Let us assemble the components developed so far in this section into a reduction
of SDLP to GADLP.

Theorem 5. Let {Gp}p be an easy family of semigroups, and fix p. Algorithm 3
solves SDLP with respect to a pair (g,φ) ∈ Gp ×End(Gp) given access to a GADLP

oracle for the group action (Zr,

mathcalC,⊛). The algorithm runs in time O((log p)4), makes at most a single
query to the GADLP oracle, and succeeds with probability Ω(1).



20 C. Battarbee, D. Kahrobaei, L. Perret and S. F. Shahandashti

Algorithm 3 Solving SDLP with GADLP oracle

Input: (g,φ), s(g,φ,x)
Output: x

1: r ←PeriodRecovery((g,φ),M) for sufficiently large M

2: if r=’Fail’ then
3: return ‘Fail’
4: end if

5: n←BinarySearch((g,φ),1,M, r)
6: if r ∗ s(g,φ,x) = s(g,φ,x) then
7: d← s(g,φ,n)
8: x′ ← GADLP oracle applied to d, s(g,φ,x)
9: x← n + x′

10: else

11: t←BinarySearch2(s(g,φ,x),1, n, r)
12: x← n − t
13: end if

14: return x

Proof. Consider an instance of SDLP whereby we are given the pair (g,φ) and the
value s(g,φ, x), for some x sampled uniformly at random from the set {1, .., n +
r − 1}. We show that Algorithm 2 recovers x.
We start by applying Algorithms 1 and 2 to the pair (g,φ), recovering the pair
n, r with constant probability. By Theorem 4, we can do so in time O((log p)4).
Now, s(g,φ, x) might be in tail or in the cycle - but with our knowledge of r we
can check in Step 6 which is true by verifying whether r ∗ s(g,φ, x) = s(g,φ, x).
As discussed in the proof of Theorem 4, we can perform this check in time
O((log p)3).
There are now two cases to consider. First, suppose that the check in Step 6 is
passed, then s(g,φ, x) is in the cycle, and we may proceed as follows. Compute
s(g,φ,n) in timeO((log p)3), and query the GADLP oracle on input s(g,φ,n), s(g,φ, x)
(Step 8) to recover the Zr element [y]r. Without loss of generality the smallest
positive representative of this class, say x′, is such that n +x′ = x, so we recover
x in Step 9.
Now suppose that s(g,φ, x) is in the tail. We run the algorithm BinarySearch2
to recover t, the smallest integer such that t ∗ s(g,φ, x) is invariant under r. Bi-
narySearch2 is precisely the same as Algorithm 2, except that in the verification
step, we check if r ∗ (mid ∗ s(g,φ, x)) =mid ∗ s(g,φ, x). It is not hard to adapt
the proof of correctness to show that BinarySearch2 does indeed return t in time
O((log p)4). Moreover, by minimality of n and the additivity of ∗, we must have
x + t = n, from which we recover x = n − t.
Finally, we note that the only probablistic step of this algorithm is the application
of Algorithm 1, so we successfully recover x with the same success probability
as Algorithm 1, and we are done. ⊓⊔

In summary, we have an efficient quantum reduction from SDLP to GADLP: an
efficient quantum procedure extracts the period r, and from there a classical



A Subexponential Quantum Algorithm for Semidirect Discrete Logarithm 21

procedure gives the index n. In order to recover x, it remains to either carry out
an efficient classical procedure, or recover x with a single query to a GADLP oracle.
Moreover, assuming the GADLP oracle always succeeds, the success probability
is precisely that of Algorithm 1 - that is, bounded below by a positive constant
independently of p.

Remark 3. The factor logp in the complexity estimate is really coming from the
‘length’ of a binary representation of Gp; that is, the number of bits required
to represent Gp. In our case the size of Gp happens to be polynomial in p, and
therefore the relevant ‘length’ is of order O(logp). One might be used to see-
ing the complexity of similar period-finding routines, such as Shor’s algorithm,
presented as cubic in the length of a binary representation of the relevant pa-
rameters - see for example [17, Section 3.3.3]. In our case, the total complexity
is quartic in the length of a binary representation, essentially because after the
quantum part of the algorithm we still need to compute O(log p) evaluations of
the function s in order to compute the index. In a sense, then, we can think of this
extra logp factor as the extra cost incurred from the slightly more complicated
scenario inherent to the problem.

3.3 Towards equivalence of SCDH and SDLP

Let us briefly recall the classical setting for the Discrete Logarithm Problem. It
is well-known (see, for example, [22]) that the relationship between the Discrete
Logarithm Problem and the Computational Diffie–Hellman Problem is not well
understood. In particular, one can certainly solve the Computational Diffie–
Hellman Problem provided one can solve the Discrete Logarithm Problem, but
the converse is not known.
The situation in the group action setting is rather clearer. In recent work [26],
Montgomery and Zhandry demonstrate full quantum equivalence of GADLP and
GACDH. This remarkable result clarifies the landscape of complexity problems
as summarised by the following diagram, where a directed arrow between two
nodes indicates the problem in the former node can be solved by an oracle
for the problem in the latter. Moreover, a solid arrow indicates a reduction
demonstrated in this paper, whereas a dashed arrow denotes a reduction that
was already known.

SDLP

GADLP GACDH

SCDH

Theorem 5

[26, Theorem 9]

clear

Fig. 1. Landscape of known reductions.



22 C. Battarbee, D. Kahrobaei, L. Perret and S. F. Shahandashti

The relationship between GACDH and SCDH as we have defined them remains
unclear and is left open to further study.

4 Quantum Algorithms for GADLP

Now that we have shown SDLP can be efficiently solved with access to an ap-
propriate GADLP oracle it remains to examine the state of the art for GADLP. It
is here that the Abelian Hidden Shift Problem (Definition 8) comes in to play.
Roughly speaking, we are given two injective functions f, g from a group A to a
set S that differ by a constant ‘shift’ value, and our task is to recover the shift
value.
It is reasonably well-known (see [31, 11]) that GADLP reduces to AHSP. In this
section, we provide a context-specific proof of this fact, before discussing the
best known algorithms for AHSP.

4.1 Group Actions to Hidden Shift

The following result is found more or less verbatim in, for example, [11]. We here
give a context-specific reduction, for completeness.

Theorem 6. Let {Gp}p be an easy family of semigroups and fix p. For some
pair (g,φ) ∈ Gp ×End(Gp) let (Zr,C,⊛) be the associated group action defined
in Theorem 3. One can efficiently solve GADLP in (Zr,C,⊛) given access to an
AHSP oracle with respect to Zr,C.
Proof. Suppose we are given an instance of GADLP in (Zr,C,⊛); that is, we are
given a pair (s(g,φ,n + i), s(g,φ,n + j)) ∈ C for some i, j ∈ {1, ..., r} and tasked
with finding the unique [k]r ∈ Zr such that [k]r ⊛ s(g,φ,n + i) = s(g,φ,n + j).
Our strategy is to construct injective functions fA, fB ∶ Zr → C that hide [k]r,
and use the AHSP oracle to recover this value.
Set fA, fB ∶ Zr → C as fA([x]r) = [x]r ∗ s(g,φ,n + i) and fB([x]r) = [x]r ∗
s(g,φ,n + j). Then

fB([x]r) = [x]r ∗ s(g,φ,n + j)
= [x]r ∗ ([k]r ∗ s(g,φ,n + i))
= ([x]r + [k]r) ∗ s(g,φ,n + i)
= fA([x]r + [k]r)

In other words, fA, fB hide [k]r. To complete the setup of an instance of AHSP
we require the functions to be injective, which follows from the action being free
and transitive. ⊓⊔

Note that we have in this case left out complexity estimates. This is because in
order to give a full description of the functions fA, fB we need to compute the
group Zr, which can be done efficiently with knowledge of r. However, since we
have already described a method of recovering r, we will discuss the complexity
in the full SDLP algorithm at the end of this section.



A Subexponential Quantum Algorithm for Semidirect Discrete Logarithm 23

4.2 Hidden Shift Algorithms

We have finally arrived at the problem for which there are known quantum algo-
rithms. The fastest known is of subexponential complexity, and is presented in
[23, Proposition 6.1] as a special case of the Dihedral Hidden Subgroup Problem.

Theorem 7 (Kuperberg’s Algorithm). There is a quantum algorithm that

solves AHSP with respect to Zr,C with time and query complexity 2O(
√
log r).

Kuperberg’s algorithm also requires quantum space 2O(logr). For a slower but less
space-expensive algorithm, we can also use a generalised version of an algorithm
due to Regev [30]. The generalised version appears in [11, Theorem 5.2].

Theorem 8 (Regev’s Algorithm). There is a quantum algorithm that solves
AHSP with respect to Zr,C with time and query complexity

e
√
2+o(1)

√
ln r ln ln r

and space complexity O(poly(log r)).
We note that both Kuperberg’s and Regev’s algorithms succeed with constant
probability.

4.3 Solving SDLP

We finish the section by stitching all the components together into an algorithm
that solves SDLP. For brevity of exposition we include only complexity estimates
for using Kuperberg’s algorithm - but finding the bounds in the case of Regev’s
algorithm is very similar.

Theorem 9. Let {Gp}p be an easy family of semigroups, and fix p. For any pair
(g,φ) ∈ Gp × End(Gp), there is a quantum algorithm solving SDLP with respect

to (g,φ) with time and query complexity 2O(
√
log p).

Proof. Let (g,φ) ∈ Gp ×End(Gp) and suppose we are given the value s(g,φ, x)
for some x sampled uniformly from the set {1, ...,N}, where N is the size of
Xg,φ. The following steps recover x:

1. Run Algorithms 1 and 2 on the pair (g,φ). By Theorem 4, with positive
probability we recover the index and period of (g,φ), the pair (n, r), in time
O((log p)4).

2. By Theorem 5, either we are done efficiently, or it remains to solve an instance
of GADLP with respect to the group action (Zr,C,⊛).

3. By Theorem 6, once we have computed the group action (Zr,C,⊛) it remains
to solve an instance of AHSP with respect to Zr ,C. This can be done with
access to the index and period n, r.

4. Solve AHSP using Kuperberg’s algorithm or Regev’s algorithm.



24 C. Battarbee, D. Kahrobaei, L. Perret and S. F. Shahandashti

In summary, the total quantum complexity of solving an SDLP instance for any
pair in Gp × End(Gp) is either O((logp)4), or if a call to the GADLP oracle is

required, 2O(
√
log r) = 2O(

√
logp) since Gp is from an easy family of semigroups.

Depending on constants, we expect this latter term to dominate the complexity.
Moreover, we note that since both our algorithm to extract the period and Ku-
perberg’s algorithm succeed with constant probability, we expect our algorithm
to succeed with constant probability also. ⊓⊔

5 Conclusion

We have provided the first dedicated analysis of SDLP, showing a reduction to
a well-studied problem. Perhaps the most surprising aspect of the work is the
progress made by a simple rephrasing; we made quite significant progress through
rather elementary methods, and we suspect much more can be made within this
framework.
The reader may notice that we have shown that SPDKE is an example of a com-
mutative action-based key exchange, and that breaking all such protocols can
be reduced to the Abelian Hidden Shift Problem. Indeed, this work shows the
algebraic machinery of SPDKE is a candidate for what Couveignes calls a hard
homogenous space8 [14], which was not known until now. In line with the naming
conventions in this area we propose a renaming of SPDKE to SPDH, which stands
for ‘Semidirect Product Diffie–Hellman’, and should be pronounced spud.
We would also like to stress the following sentiment. The purpose of this paper is
not to claim a general purpose break of SPDKE (or, indeed, SPDH) - the algorithm
presented is subexponential in complexity, which has been treated as tolerable
in classical contexts. Instead, the point is to show a connection between SDLP

and a known hardness problem, thereby providing insight on a problem about
which little was known.

References

[1] John Baena, Pierre Briaud, Daniel Cabarcas, Ray A. Perlner, Daniel Smith-
Tone, and Javier A. Verbel. “Improving Support-Minors rank attacks:
applications to GeMSS and Rainbow”. In: IACR Cryptol. ePrint Arch.
(2021), p. 1677. url: https://eprint.iacr.org/2021/1677.

[2] Christopher Battarbee, Delaram Kahrobaei, and Siamak F Shahandashti.
“Semidirect Product Key Exchange: the State of Play”. In: arXiv preprint
arXiv:2202.05178 (2022).

[3] Christopher Battarbee, Delaram Kahrobaei, and Siamak F. Shahandashti.
“Cryptanalysis of Semidirect Product Key Exchange Using Matrices Over
Non-Commutative Rings”. In: Mathematical Cryptology 1.2 (2022), pp. 2–
9.

8 Another major example of which arises from the theory of isogenies between elliptic
curves - see, for example, [9]



A Subexponential Quantum Algorithm for Semidirect Discrete Logarithm 25

[4] Christopher Battarbee, Delaram Kahrobaei, Dylan Tailor, and Siamak F
Shahandashti. “On the efficiency of a general attack against the MOBS
cryptosystem”. In: arXiv:2111.05806; to appear in Journal of Mathemati-
cal Cryptology (2022).

[5] Ward Beullens. “Breaking Rainbow Takes a Weekend on a Laptop”. In:
IACR Cryptol. ePrint Arch. (2022), p. 214. url: https://eprint.iacr.org/2022/214.

[6] Daniel Brown, Neal Koblitz, and Jason Legrow. “Cryptanalysis of ‘MAKE’”.
In: Journal of Mathematical Cryptology 16.1 (2022), pp. 98–102.

[7] Antoine Casanova, Jean-Charles Faugere, Gilles Macario-Rat, Jacques Patarin,
Ludovic Perret, and Jocelyn Ryckeghem. “GeMSS : a great multivariate
short signature”. PhD thesis. UPMC-Paris 6 Sorbonne Universités; IN-
RIA Paris Research Centre, PolSys Team, 2017.

[8] Wouter Castryck and Thomas Decru. An efficient key recovery attack on
SIDH (preliminary version). Cryptology ePrint Archive, Paper 2022/975.
2022. url: https://eprint.iacr.org/2022/975.

[9] Wouter Castryck, Tanja Lange, Chloe Martindale, Lorenz Panny, and
Joost Renes. “CSIDH: an efficient post-quantum commutative group ac-
tion”. In: International Conference on the Theory and Application of Cryp-
tology and Information Security. Springer. 2018, pp. 395–427.

[10] Lily Chen, Stephen Jordan, Yi-Kai Liu, Dustin Moody, Rene Peralta, Ray
Perlner, and Daniel Smith-Tone. Report on Post-Quantum Cryptography.
Research report NISTIR 8105. NIST, 2016. url: http://csrc.nist.gov/publications/drafts/nistir

[11] Andrew Childs, David Jao, and Vladimir Soukharev. “Constructing elliptic
curve isogenies in quantum subexponential time”. In: Journal of Mathe-
matical Cryptology 8.1 (2014), pp. 1–29.

[12] Andrew M Childs and Gábor Ivanyos. “Quantum computation of discrete
logarithms in semigroups”. In: Journal of Mathematical Cryptology 8.4
(2014), pp. 405–416.

[13] Andrew M Childs and Wim Van Dam. “Quantum algorithms for algebraic
problems”. In: Reviews of Modern Physics 82.1 (2010), p. 1.

[14] Jean-Marc Couveignes. “Hard homogeneous spaces”. In: Cryptology ePrint
Archive (2006). url: https://eprint.iacr.org/2006/291.pdf.

[15] Dima Grigoriev and Vladimir Shpilrain. “Tropical cryptography II: exten-
sions by homomorphisms”. In: Communications in Algebra 47.10 (2019),
pp. 4224–4229.

[16] Maggie Habeeb, DelaramKahrobaei, Charalambos Koupparis, and Vladimir
Shpilrain. “Public key exchange using semidirect product of (semi) groups”.
In: International Conference on Applied Cryptography and Network Secu-
rity. Springer. 2013, pp. 475–486.

[17] Mika Hirvensalo.Quantum computing. Springer Science & Business Media,
2003.

[18] John Mackintosh Howie. Fundamentals of semigroup theory. 12. Oxford
University Press, 1995.



26 C. Battarbee, D. Kahrobaei, L. Perret and S. F. Shahandashti

[19] Steve Isaac and Delaram Kahrobaei. “A closer look at the tropical cryp-
tography”. In: International Journal of Computer Mathematics: Computer
Systems Theory (2021), pp. 1–6.

[20] Delaram Kahrobaei, Ramon Flores, and Marialaura Noce. “Group-based
Cryptography in the Quantum Era”. In: The Notices of American Mathe-
matical Society, to appear (2022). url: https://arxiv.org/abs/2202.05917.

[21] Delaram Kahrobaei and Vladimir Shpilrain. “Using semidirect product of
(semi) groups in public key cryptography”. In: Conference on Computabil-
ity in Europe. Springer. 2016, pp. 132–141.

[22] Jonathan Katz and Yehuda Lindell. Introduction to modern cryptography.
CRC press, 2020.

[23] Greg Kuperberg. “A subexponential-time quantum algorithm for the di-
hedral hidden subgroup problem”. In: SIAM Journal on Computing 35.1
(2005), pp. 170–188.

[24] Luciano Maino and Chloe Martindale. An attack on SIDH with arbitrary
starting curve. Cryptology ePrint Archive, Paper 2022/1026. 2022. url:
https://eprint.iacr.org/2022/1026.

[25] Chris Monico. “Remarks on MOBS and cryptosystems using semidirect
products”. In: arXiv preprint arXiv:2109.11426 (2021).

[26] Hart Montgomery andMark Zhandry. “Full Quantum Equivalence of Group
Action DLog and CDH, and More”. In: Cryptology ePrint Archive (2022).

[27] Alexei Myasnikov and Vitalǐı Roman’kov. “A linear decomposition attack”.
In: Groups Complexity Cryptology 7.1 (2015), pp. 81–94.

[28] Nael Rahman and Vladimir Shpilrain. “MAKE: A matrix action key ex-
change”. In: Journal of Mathematical Cryptology 16.1 (2022), pp. 64–72.

[29] Nael Rahman and Vladimir Shpilrain. “MOBS: Matrices Over Bit Strings
public key exchange”. In: https://eprint.iacr.org/2021/560 (2021).

[30] Oded Regev. “A subexponential time algorithm for the dihedral hidden
subgroup problem with polynomial space”. In: arXiv preprint quant-ph/0406151
(2004).

[31] Anton Stolbunov. “Constructing public-key cryptographic schemes based
on class group action on a set of isogenous elliptic curves”. In: Advances
in Mathematics of Communications 4.2 (2010), p. 215.

[32] Chengdong Tao, Albrecht Petzoldt, and Jintai Ding. “Efficient Key Re-
covery for All HFE Signature Variants”. In: Advances in Cryptology -
CRYPTO 2021 - 41st Annual International Cryptology Conference, CRYPTO
2021, Virtual Event, August 16-20, 2021, Proceedings, Part I. Ed. by Tal
Malkin and Chris Peikert. Vol. 12825. Lecture Notes in Computer Science.
Springer, 2021, pp. 70–93. url: https://doi.org/10.1007/978-3-030-84242-0%5C_4.


	A Subexponential Quantum Algorithm for the Semidirect Discrete Logarithm Problem

