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Abstract
Catacondensed benzenoids (those benzenoids having no carbon atom belonging to

three hexagonal rings) form the simplest class of polycyclic aromatic hydrocarbons (PAH).
They have a long history of study and are of wide chemical importance. In this paper,
mathematical possibilities for natural extension of the notion of a catacondensed ben-
zenoid are discussed, leading under plausible chemically and physically motivated restric-
tions to the notion of a catacondensed chemical hexagonal complex (CCHC). A general
polygonal complex is a topological structure composed of polygons that are glued together
along certain edges. A polygonal complex is flat if none of its edges belong to more than
two polygons. A connected flat polygonal complex determines an orientable or nonori-
entable surface, possibly with boundary. A CCHC is then a connected flat polygonal
complex all of whose polygons are hexagons and each of whose vertices belongs to at
most two hexagonal faces. We prove that all CCHC are Kekulean and give formulas for
counting the perfect matchings in a series of examples based on expansion of cubic graphs
in which the edges are replaced by linear polyacenes of equal length. As a preliminary
assessment of the likely stability of molecules with CCHC structure, all-electron quantum
chemical calculations are applied to molecular structures based on several CCHC, using
either linear or kinked unbranched catafused polyacenes as the expansion motif. The
systems examined all have closed shells according to Hückel theory and all correspond
to minima on the potential surface, thus passing the most basic test for plausibility as
a chemical species. Preliminary indications are that relative energies of isomers are af-
fected by the choice of the catafusene motif, with a preference shown for kinked over
linear polyacenes, and for attachment by angular connection at the branching hexagons
derived from the vertices of the underlying cubic structure. Avoidance of steric crowding
of H atoms appears to be a significant factor in these preferences.

Keywords: Benzenoid, polygonal complex, (catacondensed) chemical hexagonal com-
plex, Kekulé structure.
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1 Introduction

The familiar classes of conjugated unsaturated hydrocarbon molecules, such as benzenoids,
coronoids, helicenes and more general fusenes, may all be regarded in a mathematical sense
as sets of graphs equipped with additional properties. In the simplest case, the hexagonal
rings of such molecules may be considered as faces of a map on the plane. In this note
we extend this notion by retaining the local properties of benzenoids but relaxing global
planarity. Since the first isolation of benzene almost 200 years ago, benzenoids and their
derivatives have had a significant, if not always benign, presence in the mainstream of organic
chemistry and its applications. Mathematical study of benzenoids also has a long history,
with central ideas [17, 1] contributed by pioneering experimental chemists such as Kekulé
[44], Fries [33] and Clar [13, 14, 15] feeding into an enormous primary literature codified in
influential textbooks [21, 20, 19, 41, 82]. The present paper is dedicated to another major
figure, Milan Randić, whose ideas on the use of conjugated circuits [65] for the description
of resonance energy have been influencing thinking in this area for nearly half a century
[63, 24, 62, 69, 61, 39, 83, 3, 4, 5, 64]. Most recently, his simple but insightful picture of ring-
current aromaticity of benzenoids has revived interest in ways of modelling and, especially, of
interpreting molecular currents [35, 66, 68, 67, 70, 71, 12, 51, 29, 31, 30].

The simplest structures, with many applications in chemistry, are benzenoids. Graphene
may be viewed as an infinite benzenoid. In this paper we are interested only in finite struc-
tures. There are several ways to describe a finite benzenoid: boundary-edges codes [38, 8, 22],
inner duals [54, 42], flag-graphs [49, 59], or through the coordinates of the hexagons in the
infinite hexagonal tesselation of the plane [6]. Benzenoids having no inner vertices (i.e. no
vertices common to three hexagons) are called catacondensed, whilst those having inner ver-
tices are called pericondensed. Among catacondensed benzenoids we distinguish branched and
unbranched benzenoids. The simplest unbranched benzenoids are linear benzenoids or linear
polyacenes.

If the structures are allowed to spiral we call them helicenes. These are still planar, in the
graph theoretical sense, and simply connected but no longer fit onto a hexagonal grid without
overlap. The term fusenes covers both benzenoids and helicenes. Note that the boundary
does not determine uniquely a general fusene; see for instance work by Brinkmann [9, 10].

Benzenoids with holes (i.e. those that are not simply connected) are coronoids. Again,
those that have no internal vertices are catacondensed coronoids (or perhaps more simply,
catacoronoids to correspond to catabenzenoids). Benzenoids and coronoids have both been
considered as maps on a surface with boundary [49, 59, 7]. Fusenes can be further generalised
to allow for structures that are not necessarily simply connected. In the literature, various
generalizations to surfaces of higher genus have been made. For instance, torusenes (also called
toroidal polyhexes or torenes) have been considered [46, 52, 47]. Since we may tile the Klein
bottle by hexagons [23], we may also speak of kleinbottlenes. There is a whole menagerie of
proposed finite and infinite theoretical carbon nanostructures, such as Möbiusenes, tubulenes,
hexagonal systems, hexagonal animals, toroidal benzenoids, Schwarzites, Haeckelites, etc.
[40, 73, 74, 81, 80, 79, 77, 78]. The theory of maps [36, 60] offers a toolbox for a general
treatment of these diverse structures.

Note that each map on a surface determines a graph, called the skeleton of the map, that
is obtained by discarding the faces of the map and retaining the vertices and edges. Whilst
the skeleton is uniquely determined by the map, the converse is not true. A given graph may
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be a skeleton of several non-isomorphic maps. This fact has long been known to geometers: it
was already Johannes Kepler who presented non-convex regular polyhedra [45]. For instance,
the great dodecahedron has the same skeleton as the icosahedron. Another example is the
skeleton of the tetrahedron, which is the complete graphK4. The graphK4 is also the skeleton
of the hemihexahedron (also called hemicube), a map with three quadrilateral faces in the
projective plane [16, 53]. In mathematical chemistry this problem is relevant when counting
the number of distinct toroidal polyhexes. One has to choose whether to count graphs or
maps. Pisanski and Randić [61] give the example of the cube graph (Q3), which has two
non-equivalent hexagonal embeddings in the torus; see also Figure 3 below.

In the next section, we present a flexible language for describing benzenoids and their
many generalisations.

2 Polygonal complex

2.1 Scheme

Following Ringel [72], one can describe a cellular embedding of a graph in a closed surface
by a scheme. Here we generalise Ringel’s approach in two directions. If we do not insist that
each symbol appears exactly twice, we may use such schemes to describe the combinatorial
structure of more general polygonal complexes in the sense of Schulte et al. [56, 57, 58, 75].
On the other hand, if we allow symbols with a single appearance, we may describe chemical
structures, such as benzenoids as graphs embedded in a surface with a boundary.

Assume we are given a finite alphabet A. To each symbol a ∈ A assign two literals a+, a−.
We say that a+ is inverse of a− and that a− is inverse of a+. Hence, if alphabet A has n
symbols, there are 2n literals. When there is no ambiguity, we will write a for a+. A word
over literals denotes an oriented polygon. A sequence of words, also called a scheme, denotes
a polygonal complex, i.e. collection of polygons, some glued along their edges. A double
appearance of a symbol represents the gluing. If the symbols appear in the same literal, the
gluing is parallel ; otherwise it is antiparallel. This terminology is used in the description
of polyhedral self-assembly in synthetic biology [25, 48]. Usually, we present a scheme in a
tabular form, where each row corresponds to a word.

Ringel [72] defines some operations on schemes that induce an equivalence relation such
that two equivalent schemes define the same polygonal complex. Two schemes are equivalent
if one can be obtained from the other by a sequence of transformations of the following types:

(T1) Permute the rows of a scheme (since we may always reorder the list of polygons);

(T2) Make a cyclic permutation of a row (since we may always start following the edges of a
polygon from any of its vertices);

(T3) Replace any symbol by an unused symbol while keeping the exponents (since we may
always relabel the edges of the polygonal complex);

(T4) Pick a symbol and replace each occurrence of a literal by its inverse (since we may
always reverse the direction of any edge);

(T5) Reverse the row and simultaneously replace each literal by its inverse (since we may
always reverse the orientation of any polygon).
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A scheme may satisfy some additional properties. For example:

(S1) A scheme is connected if it cannot be divided into two disjoint sub-schemes that have
no symbol in common;

(S2) A scheme is flat if each symbol appears at most twice in the scheme;

(S3) A scheme is closed if each symbol appears at least twice in the scheme;

(S4) A scheme is linear if each word that contains exactly two symbols that appear multiple
times in the scheme has them in antipodal positions;

(S5) A scheme is chemical if, whenever ab appears in the scheme such that a and b both have
multiple appearance, then there exists a literal c (different from a and b) such that b−c
(or, alternatively, c−b) and c−a (or, alternatively, a−c) appear in the same scheme;

(S6) A scheme is catacondensed if, whenever ab appears in the scheme, then at least one of
the symbols a and b appears only once;

(S7) A scheme is unbranched if every word of the scheme contains at most two symbols that
appear more than once in the scheme and if there are two in a given word, they are
non-adjacent. A catacondensed scheme is called branched whenever it is not unbranched;

(S8) A scheme is hexagonal if each word contains six literals;

(S9) A scheme is oriented if no literal appears in it twice (i.e. no symbol appears twice with
the same exponent). It is orientable if it is equivalent to an oriented scheme. A scheme
that is not orientable is nonorientable.

Note that (S4) implies (S7) and (S7) implies (S6). Also, every orientable scheme is flat. All
properties (S1) – (S8) are preserved under the aforementioned transformations (T1) – (T5)
and hence also apply to polygonal complexes. The property (S5) is equivalent to requiring
that the skeleton graph is a chemical graph (i.e. has maximum degree less than or equal to 3).
The property ‘oriented’ (S9) is not preserved under (T5), though it is still preserved under
(T1) – (T4). However, properties ‘orientable’ and ‘nonorientable’ are preserved under (T1) –
(T5). We know that a connected flat scheme represents a compact surface with a boundary.
The boundary is determined by symbols that appear only once in the scheme. If a connected
flat scheme is also closed then the surface itself is closed, i.e. it has no boundary. With these
definitions, a fullerene is a case of a closed chemical complex that is not hexagonal, since it
has 12 pentagonal faces [28].

Example 1. A typical example of a polygonal complex in the sense of Schulte et al. [56, 57,
58, 75] is a 2-dimensional skeleton of the tesseract (the 4-dimensional cube). This skeleton is
composed of 16 vertices, 32 edges and 24 quadrilateral faces. The eight facets of the tesseract
(which are all cubes) are discarded. A scheme describing the skeleton is given here (split into
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Figure 1: The tesseract showing edge labelling as in the scheme presented in Example 1.

two columns for convenience):

a f i− c−

a e k− d−

a g u− b−

b v j− c−

b w m− d−

c h l− d−

e n r f−

e o x− g−

f t z− g−

h p r i−

h q 4 j−

i t 6− j−

k n p− l−

k o y− m−

l q 1− m−

n s 2− o−

p s 3− q−

r t 5− s−

u x y− w−

u z 6− v−

v 4− 1− w−

z 5− 2− x−

3 5 6− 4−

1 3 2− y−

(1)

As we can see, each symbol appears three times, because each edge lies on the boundary of
three quadrilaterals. Since the scheme is not flat it is nonorientable. Note that the 1-skeleton,
i.e. the skeleton graph of the tesseract, is the 4-hypercube graph, Q4. ♦

From now on, we will only consider flat polygonal complexes. Originally the term polyg-
onal complex was reserved for flat polygonal complexes. See for instance chapter by Pisanski
and Potočnik in [60]. More information about maps can be obtained from [37]. The following
example shows how one can distinguish between a tetrahedron and a tetrahedron with one
face missing.

Example 2. Consider the scheme:

Θ =

a b c
a− f e
b− e− f
f− c− d−

(2)
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f

dc

a e
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Figure 2: Open and closed tetrahedra. The Schlegel diagram with the infinite face BCD
included represents the closed tetrahedron. In the open tetrahedron the final triangular face
cfd (BCD) has been removed.

This represents a tetrahedron. There are six edges and each row corresponds to a triangular
face. All symbols in Θ appear twice, and hence the corresponding surface is closed (has no
boundary). The surface in this case is a sphere. By removing a face, for instance the last one,
we obtain a connected scheme:

Θ′ =
a b c
a− e e
b− e− f

(3)

that represents a tetrahedron with one face missing. The symbols c, d, f each occur only once
and the corresponding surface is a disk. ♦

a

e

g

c

d h f b

(a) Σ

hgfeh

dcbad
ki

lj

lj

(b) Σ′

efghe

cbadc
ki

jl

jl

(c) Σ′′

Figure 3: Three embeddings of the cube graph Q3.
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Example 3. Here are three maps that all have the same skeleton, namely the cube graph,
Q3:

Σ =

a b c d
h− g− f− e−

a− i e j−

j f k− b−

g l− c− k
d− l h i−

(4)

Σ′ =

a b k f− e− i−

c d i h− g− k−

f g l− c− b− j
h e j− a− d− l

(5)

Σ′′ =

a b k g h i−

c d i e f k−

l g− f− j− a− d−

b c l h e j−

(6)

Note that Σ describes the usual hexahedron, i.e. the surface of the cube. Σ′ and Σ′′ describe
two non-equivalent toroidal polyhexes. All three maps share the same underlying skeleton,
the cube graph Q3. However, the embeddings Σ′ and Σ′′ are clearly distinct. Σ′′ has the
property that each pair of faces intersects in exactly two edges which are antipodal in each
face, whereas Σ′ does not. Σ′′ is a regular map [16, 53], a generalisation of Platonic polyhedra.

♦

The above example raises an interesting question: Which toroidal polyhexes are completely
determined by their skeleta?

3 Equilinear catacondensed chemical hexagonal complexes

Catacondensed chemical hexagonal complexes are characterized by the following rules: they
are connected (S1), flat (S2), hexagonal (S8) and catacondensed (S6). These rules imply
that such a complex is also chemical (S5). We may view such a complex as a collection of
branching hexagons that are connected by chains of hexagons. If each hexagonal chain is linear
(property (S4) holds for the complex), we say that such a structure is a linear catacondensed
chemical hexagonal complex. Moreover, if all linear hexagonal chains are of the same length,
i.e. contain the same number of hexagons, these structures are called equilinear. We denote
by l the common length of these linear chains.

In the unbranched case (where (S7) holds), for a given l, there are only three catacondensed
structures: Pl, Cl and Ml, as illustrated in Figure 4. In the branched case, there are three
types of hexagon: branching (attached to three hexagons, i.e. of type A3 in the notation of
[41]), connecting (attached to two hexagons, i.e. of type A2 or L2), and terminal (attached
to a single hexagon, i.e. of type L1). Such a structure defines a labelled 1-3 map (i.e. vertices
are of degrees 1 and 3), called the blueprint map. A map is a graph together with a rotation
projection [36]. The underlying graph is called the blueprint graph. In the map, each arc is
labelled by a pair (w, σ), where w is a word over the alphabet {L,R, S} and σ ∈ {+,−}.
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(a)

(b)

(c)

Figure 4: Unbranched catacondensed chemical hexagonal complexes: (a) linear polyacene P6,
(b) untwisted cyclacene C6, and (c) Möbius cyclacene M6. For the two cyclacene cases, the
arrowed left and right edges are to be identified.

The reverse of a label (w, σ) is the label (wρ, σ), where wρ is the reverse of the word in which
symbols L and R are interchanged. Labels are assigned to arcs (half-edges) and two opposite
arcs are assigned reverse labels. For instance, reverse of the label (RLSR,+) is the label
(LSRL,+). Degree 3 vertices correspond to branching hexagons, while vertices of degree 1
correspond to terminal hexagons. The connecting hexagons are implicitly described by the
labels; see Figure 5.

A3 A3

(a) (b)

A3 A3

Figure 5: Arc labelling in the blueprint map. In the untwisted (a) and the twisted (b) the
word w is RLSR taken in the direction from bottom to top or LSRL from top to bottom,
whilst σ = + and σ = −, respectively.

In the equilinear case, the description given above can be simplified. Words in labels on
arcs comprise only the letter S. Therefore each word can be described by giving its length,
and then only one integer parameter is needed.
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Figure 6 shows rotation projections for all blueprint maps on up to two trivalent vertices.
Note that in the case of zero vertices of degree 3, two cases are anomalous, as they are free
loops with no vertices at all.

(a) Zero vertices of degree 3:

M0
1,0 M0

2,0 M0
2,1

(b) One vertex of degree 3:

M1
1,0 M1

2,0 M1
2,1

(c) Two vertices of degree 3, one connecting edge:

M2
1,0 M2

2,0 M2
2,1 M2

3,0 M2
3,1 M2

3,2

(d) Two vertices of degree 3, two connecting edges:

M2
4,0 M2

4,1 M2
5,0 M2

5,1

(e) Two vertices of degree 3, three connecting edges:

M2
6,0 M2

6,1 M2
7,0 M2

7,1

Figure 6: The blueprint maps with n ≤ 2 trivalent vertices. The symbol on an edge
represents a half-twist. In mapsM2

7,0 andM2
7,1 the crossing edges are necessary, because the

order of edges around a vertex is significant and cannot be represented in a planar drawing.
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4 Kekulé structures in catacondensed coronoid complexes

A natural question to ask is which flat hexagonal complexes admit a Kekulé structure. It is
well known that all catacondensed benzenoids are Kekulean [41].

Theorem 1. Any catacondensed flat hexagonal complex B is Kekulean.

Note that any catacondensed flat hexagonal complex is also a chemical hexagonal complex.

Proof. The proof is constructive – we construct a perfect matchingM. A catacondensed flat
hexagonal complex contains only hexagons of type L1, L2, A2 and A3 (see [41, p. 21]). In the
first step we remove all hexagons of type A3 from B. Edges labelled a, b and c in Figure 7
will be single bonds (they are not in the matching M). By removing a hexagon of type A3

we mean deleting edges a, b and c. In the second step we remove all hexagons of type A2

A2A3

a

b

c

a

b

c

d

(a) (b)

Figure 7: Types of hexagons in catafused flat hexagonal complex B.

from B. Edges labelled a, b and c in Figure 7 will be single bonds, whilst the edge d will be
double (we add it to M).

L1 L1L2 L2L2

(a)

(b)

Figure 8: The complex B after deletion of hexagons of types A3 and A2.

What remains is a disjoint union of k linear polyacene chains P i (see Figure 8(a)) which
may be of different lengths, p untwisted cyclacenes Ci (see Figure 8(a)), q twisted cyclacenes
T i (see Figure 8(b)), and m isolated K2 fragments:

{P 1, P 2, . . . , P k} ∪ {C1, C2, . . . , Cp} ∪ {M1,M2, . . . ,M q} ∪ {K1
2 ,K

2
2 , . . . ,K

r
2}.

We add all isolated K2 fragments to the perfect matchingM. All linear chains and cyclacenes
are Kekulean. For each chain we may pick any of li + 1 perfect matchings. An untwisted
cyclacene has 4 perfect matchings, and a twisted cyclacene has 2 perfect matchings, hence
K(B) ≥ 4p2q

∏k
i=1(li + 1).
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This reasoning can be used as the basis of a simple procedure for counting the perfect
matchings for a flat hexagonal complex with a given rotation scheme. For the linear polyacene
motif, this leads to polynomial functions in l+ 1. The detailed form of these expressions, the
powers that appear and the coefficients that multiply them can be rationalised by thinking
about a set of forcing rules for replacements of edges of the cubic graph by linear chains of
polyacenes. In this case, three rules apply to allowed combinations of pairs of edges in the two
branching hexagons (see Figure 9). Rule (a) is the linear forcing rule, by which two double
bonds in A force a fixed matching in the chain and two single bonds in B. Rule (b) is the
crossover rule, by which a single/double pair in A forces a fixed matching in the chain and
a double/single pair in B. Rule (c) is the pairing rule, by which a pair of single bonds in A
is compatible with either a pair of single bonds or a pair of double bonds in B. The pair of
single bonds in B results from taking any of the (l + 1) perfect matchings of the intervening

A B

d

d s

s

A B

d

s d

s

A B

d

d s

s

A B

s

s s

s

A B

d

s s

d

A B

s

s s

s

(a)

(b)

(c)

A B

s

s d

d

A B

s d

ds

AND AND

Figure 9: Basic Rules for perfect matchings of hexagonal complexes derived with linear poly-
acene strips (illustrated for strips of length 3). They are: (a) the linear forcing rule; (b)
the crossover rule; (c) the pairing rule. Hexagons A and B are derived from cubic vertices.
Fixing the illustrated endo bonds of hexagon A (denoted d or s for double or single) either
forces (rules (a) and (b)) or rules out ((c)) given pairings of the corresponding endo bonds in
hexagon B. The panels show (left) the untwisted chain and (right) the chain with a Möbius
half-twist.
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hexagons. The pair of double bonds of B arises from reversal of the linear forcing rule. (A
single/double pair in B is ruled out by the crossover rule.)

Note that if we make a complex from a cubic graph with m edges by using a straight
chain of length l on every edge, there is a term (l + 1)m in the Kekulé count. Kinks in the
chains will increase this leading term [2, 27]. E.g. fibonacene chains of length l would lead
to a term (Fl+2)

m, where Fl+2 is the (l + 2)-th Fibonacci number. Fibonacene chains also
allow favourable perfect matchings in which there are many hexagonal rings containing three
double bonds, thus conforming to classical models of stability based on the ideas of Fries [33]
and Clar [15]; see Figure 10.

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

Figure 10: A fully Fries hexagonal complex, i.e. one in which every hexagonal face includes
three matched edges, can be constructed by using either an odd or or an even zig-zag fi-
bonacene to inflate all edges of a cubic graph. Several attachment isomers are possible: for
example, a fully Fries attachment isomer could be built using any external double bond in
each terminal hexagon.

Some explicit formulas for Kekulé counts of complexes built from cubic graphs and linear
polyacenes are:

(i) For the theta graph for all distinct embeddings and sets of twists:

K(M2
6,0; l) = (l + 1)3 + 8 (7)

K(M2
6,1; l) = (l + 1)3 + 4 (8)

K(M2
7,0; l) = (l + 1)3 + 3 (l + 1) + 2 (9)

K(M2
7,1; l) = (l + 1)3 + (l + 1) + 2 (10)
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T0,0 T0,1 T0,2 T0,3

T1,0 T1,1 T1,2 T1,3

T2,0 T2,1 T2,2 T2,3

Figure 11: Maps derived from the embeddings of the graph K4, with and without twists.
Only 9 of the 12 drawings shown here are distinct, as (T0,3, T2,3), (T1,1, T2,2), and (T1,2, T2,1)
are isomorphic pairs. Conventions for edges as in Figure 6.

(ii) For the tetrahedron for all distinct embeddings and sets of twists:

K(T0,0; l) = (l + 1)6 + 4 (l + 1)3 + 3 (l + 1)2 (11)

K(T0,1; l) = (l + 1)6 + 4 (l + 1)3 + 3 (l + 1)2 + 2 (l + 1) (12)

K(T0,2; l) = (l + 1)6 + 4 (l + 1)3 + 2 (l + 1)2 + 3 (l + 1) (13)

K(T0,3; l) = K(T2,3; l) = (l + 1)6 + 5 (l + 1)3 + 3 (l + 1)2 + 6 (l + 1) + 2 (14)

K(T1,0; l) = (l + 1)6 + 4 (l + 1)3 + 3 (l + 1) (15)

K(T1,1; l) = K(T2,2; l) = (l + 1)6 + 5 (l + 1)3 + (l + 1)2 + 2 (l + 1) + 2 (16)

K(T1,2; l) = K(T2,1; l) = (l + 1)6 + 4 (l + 1)3 + 2 (l + 1)2 + 2 (l + 1) + 2 (17)

K(T1,3; l) = (l + 1)6 + 4 (l + 1)3 + 5 (l + 1)2 + 4 (l + 1) + 4 (18)

K(T2,0; l) = (l + 1)6 + 4 (l + 1)3 + 4 (19)

(iii) For the cube in the usual embedding, Σ (see Figure 3(a)), on the sphere, with no
twist and one twisted edge, and for the untwisted toroidal embeddings, Σ′ and Σ′′ (see
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Figures 3(b) and 3(c)), respectively:

K(Σ0; l) = (l + 1)12 + 8 (l + 1)9 + 32 (l + 1)6 + 64 (l + 1)3 + 64 (20)

K(Σ1; l) = (l + 1)12 + 8 (l + 1)9 + 26 (l + 1)6 + 40 (l + 1)3 + 32 (21)

K(Σ′0; l) = (l + 1)12 + 8 (l + 1)9 + 2 (l + 1)8 + 24 (l + 1)6 + 8 (l + 1)5 (22)

+ 17 (l + 1)4 + 32 (l + 1)3 + 8 (l + 1)2 + 16

K(Σ′′0; l) = (l + 1)12 + 8 (l + 1)9 + 6 (l + 1)8 + 16 (l + 1)6 + 24 (l + 1)5 (23)

+ 9 (l + 1)4 + 16 (l + 1)3 + 24 (l + 1)2 + 16

(iv) For the dodecahedron on the sphere, with no twist and one twisted edge, respectively:

K(D0; l) = (l + 1)30 + 20 (l + 1)27 + 160 (l + 1)24 + 660 (l + 1)21 + 36 (l + 1)20 (24)

+ 1510 (l + 1)18 + 360 (l + 1)17 + 1972 (l + 1)15 + 1260 (l + 1)14

+ 120 (l + 1)13 + 1560 (l + 1)12 + 1800 (l + 1)11 + 636 (l + 1)10

+ 660 (l + 1)9 + 1020 (l + 1)8 + 600 (l + 1)7 + 125 (l + 1)6

K(D1; l) = (l + 1)30 + 20 (l + 1)27 + 160 (l + 1)24 + 2 (l + 1)23 + 2 (l + 1)22 (25)

+ 660 (l + 1)21 + 52 (l + 1)20 + 24 (l + 1)19 + 1512 (l + 1)18

+ 394 (l + 1)17 + 124 (l + 1)16 + 1984 (l + 1)15 + 1250 (l + 1)14

+ 428 (l + 1)13 + 1608 (l + 1)12 + 1738 (l + 1)11 + 936 (l + 1)10

+ 848 (l + 1)9 + 984 (l + 1)8 + 708 (l + 1)7 + 285 (l + 1)6 + 50 (l + 1)5

We note in passing that the corresponding formula for the untwisted embedding of the
Petersen graph in the projective plane, which is admittedly of less chemical interest, is

K(Petersen; l) = (l + 1)15 + 10 (l + 1)12 + 30 (l + 1)9 + 55 (l + 1)6 + 55 (l + 1)3 (26)

(v) For the k-prism Rk:
For k odd, the prism with linear polyacene motifs, embedded on the sphere without a
twist has

K(Rk0; l) = ((l + 1)3 + 2)k − 2k (27)

and for k even it has

K(Rk0; l) = [((l + 1)3 + 2)k/2 + 2k/2]2 (28)

We note that as the rules (a) to (c) apply without change to the limiting case of l = 0
hexagons in the linear polyene chain, the formulas for the untwisted chains apply to the
leapfrog [26] of an embedded cubic graph and hence give the Kekulé count of the leapfrog by
summation of coefficients of all powers of (l+ 1). For example, the formula for the untwisted
dodecahedron D0 gives the number of Kekulé structures of the icosahedral C60 fullerene as
K(D0; 0) = 12500. Simple results are also found for the numbers of perfect matchings of
leapfrog prisms, namely 3k − 2k and (3k/2 + 2k/2)2. The prism itself has Kekulé count given
by sequence A068397 [55], i.e. K for the k-prism is F (k + 1) + F (k − 1) + (−1)k + 1.
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5 Structural calculations

This section connects the foregoing mathematical development with possible realisations of
new unsturated hydrocarbon frameworks. Graph theoretical considerations based on Kekulé
counts, HOMO-LUMO gap and π energy can be valuable indicators of stability of a π system.
In particular, it is useful to know if a π system is predicted to have a closed shell (in which all
electrons are paired) and to characterise such shells in terms of whether this electron config-
uration is properly closed (having all bonding orbitals occupied and all antibonding orbitals
empty). HOMO-LUMO maps [32, 43] can give a useful picture of trends in frontier-orbital
energies and shell types for families of molecules. However, for a more reliable estimate of
the prospects for overall stability of an unsaturated hydrocarbon CxHy it is necessary to take
into account the full range of steric and electronic effects arising from both σ and π electronic
subsystems. This section reports a selection of preliminary all-electron structural calculations
using standard quantum chemical methods for various examples of chemical hexagonal com-
plexes. They serve to show that this generalisation of benzenoids is chemically as well as
mathematically plausible, and give clues to some of the factors that can influence absolute
and relative stabilities. The systems chosen for study are linear polyacene expansions of the
three cubic Platonic polyhedra, and a wider choice of isomeric expansions of the simplest
cubic graph, the theta graph (see Figure 12). All these structures correspond to the standard
embedding on the sphere; twisted systems and alternative embeddings were left for future
investigations.

(a) (b) (c) (d)

Figure 12: Cubic graphs used as the basis for flat hexagonal complexes: (a) the theta graph,
(b) the tetrahedron, (c) the cube, (d) the dodecahedron. In cases (b) to (d), each edge is
decorated with an anthracene chain; for case (a) see Figures 13, 14 and 15.

In each case, the structure was optimised at the DFT level using the B3LYP functional
and, in all but one, the 6-31G* basis for C and 6-31G for H. (In the case of the dodecahedral
complex, C420H180, the basis was reduced to 6-31G for all atoms, on grounds of computational
cost.) Candidate minima were checked in most cases in the usual way, by diagonalization of
the Hessian. (For the largest cases, of the expanded cube and dodecahedron, stability of
the candidate minimum structure was checked by relaxation of several nearby unsymmetri-
cally perturbed structures.) Calculations were carried out with the QChem and Gaussian 16
packages [76, 34]. Energies and lowest harmonic frequencies are reported in Tables 1 and 2,
together with geometric parameters and three graph invariants (Kekulé count, Hückel bind-
ing energy per carbon atom, and Hückel HOMO-LUMO gap). Snapshots of some optimised
structures are shown in Figure 16.
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Base graph l Formula K (Eπ/n)β ∆HLβ E/eV ν̃/cm−1

Theta graph 3 C42H18 72 1.439933 0.54778 −43836.415 76
4 C54H24 133 1.431856 0.39425 −56381.449 52
5 C66H30 224 1.426646 0.29932 −68925.208 34

Tetrahedron 3 C84H36 4356 1.439017 0.56885 −175391.522 39
Cube 3 C168H72 19009600 1.443904 0.54778 −175390.812 —
Dodecahedron 3 C420H180 1561300213688815616 1.439049 0.55627 −438398.859 —

Table 1: Hexagonal chemical complexes based on inflation of cubic graphs with linear poly-
acene chains along edges. All isomers are based on linear annelation to alternate edges of
the branching hexagons corresponding to vertices of the cubic graph. l is the length of the
chain motif, K is the number of Kekulé structures, (Eπ/n) is the Hückel π energy per carbon
centre, in units of the β resonance parameter, ∆HL is the Hückel HOMO-LUMO gap, in the
same units, E is the total all-electron energy in eV (see text for the level of theory), and ν̃ is
the wavenumber in units of cm−1 of the vibrational mode of lowest energy.

Formula Isomer K (Eπ/n)β ∆HLβ E/eV ∆E/eV ν̃/cm−1

C42H18 Aa 72 1.439933 0.54778 −43836.415 1.789 76
Ab 108 1.445495 0.81078 −43837.062 1.142 117
Ac 144 1.450217 0.85153 −43836.830 1.373 70
Ad 144 1.450269 0.85153 −43836.782 1.422 118
Pa 208 1.455866 1.09287 −43834.363 3.840 74
Pb 160 1.450380 1.09287 −43838.204 0.000 117
Pc 208 1.456138 1.09287 −43836.842 1.362 124
Pd 176 1.452603 1.09287 −43836.495 1.708 102
Pe 208 1.455940 1.09287 −43835.822 2.382 136
Pf 176 1.452827 1.03801 −43837.000 1.204 102

C66H30 Fa 224 1.426646 0.29932 −68925.208 2.610 34
Fb 1088 1.436307 0.75569 −68927.219 0.599 52
Fc 2500 1.444639 0.91215 −68927.818 0.000 50

Table 2: Attachment isomers of hexagonal chemical complexes based on inflation of the theta
graph with catafusenes composed of 3 and 5 hexagons (for formulas C42H18 and C66H30,
respectively). The isomers are depicted in Figures 14 and 15. K is the number of Kekulé
structures, (Eπ/n) is the Hückel π energy per carbon centre, in units of the β resonance
parameter, ∆HL is the Hückel HOMO-LUMO gap, in the same units, E is the total all-
electron energy in eV (see text for the level of theory), and ν̃ is the wavenumber in units of
cm−1 of the vibrational mode of lowest energy.

Structures based on the theta graph (Figure 12(a)) with all edges inflated to linear poly-
acene chains of l hexagons were optimised successively for chains of length l = 3, 4, 5. These
correspond to molecular formulas C42H18, C54H24, and C66H30, respectively. All were found
to occupy minima on the potential energy surface within the model chemistry. The optimised
structures are barrels, with CC bond lengths in the expected range for polycyclic aromatic
systems in this model chemistry, and low-frequency vibrational modes consistent with the
flexibility expected of their open cage structures. Attempts to optimise the putative molecule
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3 3

(a) (b)

Figure 13: A ‘polymer’ molecular notation for (a) anthracene and (b) phenanthrene expansions
of the theta graph into flat hexagonal complexes of formula C42H18. Each monomer is to be
repeated twice more to give a cyclic molecular structure with three-fold symmetry, topped
and tailed by a hexagonal ring. Only graph vertices corresponding to carbon atoms are
shown: vertices of degree two each carry a single H atom, and the graph is filled out with
an appropriate Kekulé system of double bonds. The illustrated isomers are those denoted Aa
and Pf, respectively, in the notation of Figure 14.

(a)

(b)

Aa Ab

Pc Pe Pf

Ac Ad

Pa Pb Pd

Figure 14: Schematic notation for attachment isomers of three-hexagon catafusene expansions
of the theta graph. Each vertical block represents a possible strip in a three-fold symmetric
isomer based on either anthracene (A) or phenanthrene (P). Notation: a black circle denotes
a C centre that has three C neighbours; a white circle denotes a C centre that has two C
neighbours and one H neighbour. For simplicity, the catafusene strip is shown as vertical; in
the molecule the strip must bend in order to keep parallel the median planes of the hexagons
centred on the C3 axis of the hexagonal complex. Double bonds can be added, for example
in any way consistent with internal Kekulé structures of the parent catafusene.
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with l = 2, C30H12, failed to yield converged structures that corresponded to the initial molec-
ular graph. The equivalent inflations using l = 3 with the three cubic polyhedra (Figure 12)
were also used to generate optimised molecular structures with formulas C84H36, C168H72,
and C420H180, respectively (see Table 1 and Figure 12).

Whilst these results are already encouraging, it is not to be expected that the use of the
mathematically simple linear polyacene fragments to inflate graph edges will automatically
lead to the isomer of the hexagonal complex that has the highest chemical stability. There are
at least two variations to the construction recipe that might be expected on electronic and/or
steric grounds to improve stability. The more obvious of these is that for l ≥ 3 we have choice
for the isomer of the catafused benzenoid to be used in the inflation procedure. Considered as
isolated molecules, bent catafusenes are typically more stable than their linear counterparts.
Figure 13 illustrates this degree of freedom for the l = 3 expansions of the theta graph, where
phenanthrene offers a plausible alternative to anthracene. However, even once we fix on a
given catafusene as our favoured structural motif, there are still different possibilities for its
mode of annelation to the branch-point hexagons (of type A3) that represent the vertices of
the original cubic graph. We can, for example, construct ‘attachment isomers’ by choosing any
contiguous pair −CH−CH− on the catafusene perimeter as the site of the shared connection
with the branch-point hexagonal ring. Figure 14 illustrates the variety of possible attachment
isomers for the case of three-hexagon chains, with the added constraint of threefold rotational
symmetry around the branching hexagons.

Optimisation shows that both variations on the basic recipe for construction are significant
(see Table 2). Compared to direct linear annelation, the linear anthracene fragment gives a
more stable isomer when attached to the branching hexagons in non-linear fashion (Ab).
However, a further improvement in total energy comes from switching to the phenanthrene
motif in the construction of the complex, again with a significant energetic preference for one
particular attachment mode (Pb).

Preference for a phenanthrene over an anthracene motif is consistent with the relative
stabilities of the isomeric C14H6 compounds [50]. Higher stability of the bent polyacene
system is attributed in part to π resonance effects, although these are hard to quantify uniquely

(a)

3 3

(b)

Figure 15: Two isomers of hexagonal complexes based on decoration of the theta graph with
five-hexagon catafusenes. The diagrams represent three-fold symmetric decorations of the
graph with (a) a singly kinked polyacene chain (Fb), and (b) a zig-zag fibonacene chain (Fc).
Double bonds can be filled in ad lib to correspond with internal perfect matchings of the
respective catafusenes. Both isomers share molecular formula C66H30 with the straight-chain
isomer (Fa).
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[11, 18], and are offset by steric effects, such as H-H repulsion in the bay region. The computed
relative energy of 1.142 eV (∼ 110 kJ mol−1) of isomers Ab and Pb, each containing three
copies of the respective motifs, is compatible with the differential stability estimated from
the difference of 23 kJ mol−1 in the standard formation enthalpies of the pure compounds
[50], but points to a significant role for relief of steric crowding in the more open structure of
the phenanthrene hexagonal complex Pb (see Figure 14 (b)). In support of this hypothesis
of a major role for steric effects, we note that the indicators of pure π electronic stability
do not show any clear correlation with the computed relative energies of attachment isomers
(Table 2, Aa-Ad, Pa-Pf). For example, whilst it is true that the isomer Pb, which has the
lowest all-electron energy, has a higher Kekulé count, larger π energy per electron and bigger

(a) (b)

(c) (d)

Figure 16: Ball-and-stick representations of some optimised molecular structures based on
hexagonal complexes. (a) Isomer of C42H18 based on the anthracene expansion of the theta
graph shown in Figure 13(a); (b) Isomer of C42H18 based on the phenanthrene expansion Pb
of the theta graph (see Figure 14(b); (c) Top view of C66H30 isomer based on the fibonacene
expansion of the theta graph shown in Figure 15(b); (d) View down the two-fold axis of a
hexagonal complex, C84H36, based on the anthracene expansion of the tetrahedron.
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HOMO-LUMO gap than its nearest competitor, Ab, it does not stand out on any of qualitative
measures from the mass of the phenanthrenoid and anthracenoid isomers. Again, Pb has a
large but not maximum Fries number. An overall trend to lower π energy per electron and
smaller HOMO-LUMO gap, countered by a rapidly increasing Kekulé count, is evident for
CHCCs with longer linear polyacene motifs, and frequency calculations suggest increasing
flexibility in larger cages with longer catafusene motifs.

These considerations may also be promising for the prospects of larger hexagonal com-
plexes based on cubic polyhedra, where the face sizes are typically larger, and there should
be more room for avoidance of steric clashes. With larger faces and longer chains, the com-
plexes with twisted Möbius catafusenes along polyhedral edges may also become less sterically
disfavoured. There are clearly many possibilities to be explored. Although by no means com-
plete, this short survey has shown that at least some generalised hexagonal complexes survive
the initial test of chemical plausibility in that they occupy minima on the potential surface.
Synthetic accessibility is of course another matter.
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