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In this letter we present proof-of-concept implementation of quantum key distribution protocol
based on BB84 with imperfect devices. We show that using coincidence measurements to monitor
multiphoton pulses results in a higher secure key rate over longer distances. This key rate is higher
than the decoy state protocol, the most popular practical implementation of quantum key distribu-
tion protocol based on BB84. In the experiment, we obtained a key rate of 0.053934 ± 0.004088 per
signal pulse compared to 0.031051± 0.003303 for decoy state protocol with similar parameters.
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Quantum key distribution [1–3] is perhaps the most
remarkable application of quantum theory. It exploits
the principles of quantum mechanics to enable secure ex-
change of information. Quantum key distribution (QKD)
protocols allow two distant parties to share a secret ran-
dom key. Once the key has been established, the two can
exchange encrypted messages with the help of a one-time
pad. BB84 [4] was the first such protocol to be experimen-
tally realised [5] followed by proposals for implementation
of QKD with two nonorthogonal states [6] and the entan-
glement based protocol [7]. BB84 is proven to be uncon-
ditionally secure, based solely on the validity of the laws
of quantum mechanics [8–10]. It was later pointed out
that imperfection in practical implementations seriously
undermine the security of the QKD protocols [11]. This
led to proposals for various types of attacks exploiting
the imperfections in the components of the QKD system
[12–15]. This resulted in several innovative protocols [16–
25] and proof of security with practical implementations
[26–28]. Notable among the proposed protocols was the
decoy state protocol [16, 29] for its simpler implemen-
tation which did not require much additional hardware.
On the other hand, entanglement based protocols [21, 22]
suffered from very low key rates and problem of distribut-
ing entanglement over long distances reliably with high fi-
delity. As a result, the decoy state method emerged as the
preferred method for long distance quantum key distribu-
tion [30, 31] with a key rate that was substantially higher
than the estimated key rate for implementations with im-
perfect devices [27]. In this method, the sender, hereafter
called Alice, prepares a set of decoy pulses with vary-
ing intensities in addition to the standard BB84 states.
The decoy pulses are inserted randomly within the ac-
tual signal pulse train unknown to the receiver, hereafter
called Bob as well as any potential eavesdropper, here-
after called Eve. Without any prior knowledge regarding
the position of the decoy pulses, there is an equal proba-
bility of Eve attacking both the decoy as well as the BB84
signal pulses. By monitoring the quantum bit error rate
(QBER) of the decoy pulses, Alice and Bob can reliably
estimate a lower bound for the secret key rate.

The major contribution of this article is to demonstrate
that using present technology, similar security with an
increased key rate can be achieved without using decoy
pulses. This is done utilising the inherent randomness in
the number of photons per pulse of the source itself. Pres-
ence of multiphoton pulses sent by Alice can be tracked
by coincidence detections at Bob’s end. By accurately es-
timating the number of multi-photon pulses expected in a
given channel during a given window, the presence of Eve
can be detected by looking at the number of coincidences
between conjugate bases. If the number of coincidences is
less than an estimated threshold, the protocol is aborted.
Otherwise they form the key with the detection results
following standard error correction and privacy amplifi-
cation methods.
Following the treatment of [16], we denote phase random-
ized signal state of the weak coherent pulses as |√µeiθ〉.
Here µ stands for average number of photons per pulse
and the signal is assumed to be randomised over all θ. The
probability P (n) of each pulse carrying n photons is de-
rived from the Poissonian distribution as pn = e−µµn/n!.
Progressing onwards, the gain Qµ of each pulse is defined
as

Qµ =Y0e
−µ + Y1e

−µµ+ Y2e
−µ(µ2/2!) + ...

+ ...+ Yne
−µ(µn/n!),

(1)

where Yn is the conditional probability that Bob detects
an “n photon” signal state given that Alice has sent an “n
photon” state. Then, Qn becomes the joint probability of
Bob detecting “n photon” signal and Alice sending the
same “n photon” signal state. For realistic cases, in the
absence of an eavesdropper, the term Y0 gives the back-
ground rate of the system including detector dark counts,
pdark. For n ≥ 1 , yield Yn consists of two terms, the de-
tection of signal photons travelling through the channel
and the background rate. Assuming that the background
rate and the signal events are independent, the expres-
sion of Yn is seen to be dependent on the channel [16]
and approximated to

Yn ≈ [ηn + pdark]/2, (2)
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The transmission efficiency ηn of the channel is related
to the number of photons as

ηn = 1− (1− η)n, (3)

where η is the overall channel transmissivity. Now, the
quantum bit error rate (QBER) corresponding to each
signal state, Eµ, is defined as

EµQµ =

∞
∑

n=0

QnEn, (4)

where En is the error corresponding to the signal contain-
ing n photons. Even in the absence of any signal pulse,
Bob might record a detection due to background photons
or dark current of the detector. This error results in E0

and is equal to 1/4 since all four detectors have equal
probability of registering a dark count. If the signal has
n ≥ 1 photons, then the error En is given by

En =
(

ηn
Edetector

2
+ (1− ηn)

pdark
4

)

/Yn, (5)

where Edetector is independent of n and the values of En

and Yn can be experimentally derived from the measured
values of Qµ and Eµ. Major change in these values for a
specific channel will reveal the presence of eavesdropper.
Having defined all the necessary terms and variables, let
us briefly look at how the equations governing the secret
key rate evolves. It was shown in [9] that secret key rate
in an ideal implementation scenario with a perfect single
photon source and perfect detectors has the form

R ≥ [1− 2H2(Eb)], (6)

where H2 is the binary Shannon entropy defined as
H2(x) = −xlog2x − (1 − x)log2(1 − x) and Eb is the
QBER. This formula was later modified by [27] for a more
realisitic implementation with weak coherent pulses as

R ≥ qQµ

{

−f(Eµ)H2(Eµ)+
Q1

Qµ

[

1−H2

(QµEµ

Q1

)

]}

, (7)

where q is an implementation dependent factor. In case of
passive random basis selector, like balanced beam split-
ter, q = 1/2. f(Eµ) is the error correcting code efficiency.
A severe shortcoming of the above approach was in es-
timating the maximal value of µ. In order to minimise
the number of pulses with 2 or above photons, µ had
to be kept sufficiently small. This reduced the number
of single photon pules thereby greatly limiting the secret
key rate. At the same time, the protocol was vulnerable
against PNS attacks since the absence of multiphoton
pulses could not be ensured. In the decoy state protocol
[16], this was taken care of and the secret key rate was
modified to

R ≥ q{−Qµf(Eµ)H2(Eµ) +Q1[1−H2(E1)]}. (8)

Before proceeding with the derivation of the secret key
rate for our proposed protocol, let us first briefly out-
line the protocol as follows: Alice sends weak coherent
pulses to Bob prepared in the standard way for polar-
ization based implementations of BB84. Since the num-
ber of photons in each pulse is governed by poissonian
statistics, some of the pulses might contain more than
one photon. Neither Alice nor Bob has any control over
the occurrence of these pulses. Instead of looking at this
inherent randomness in the photon number distribution
as a drawback, we use it to our advantage. Bob, while
recording the measurement results, also records all the 2
and 3-fold coincidence events. The coincidence window is
set according to the pulse width of the signal pulses. The
total number of coincidences are matched with the ex-
pected number of coincidences which are calculated from
the value of µ. It was already shown in [14] that the coin-
cidences arising from multiphoton pulses can be tracked
to ensure no information is leaked to Eve. Any change
in the number of 2 and 3-fold coincidences than the ex-
pected value for a specific channel will reveal the pres-
ence of eavesdropper in the system assuming that Eve is
randomly attacking the pulse (no collective and coherent
attack). To estimate the number of 2 and 3-fold coinci-
dence events, it is essential to consider how the pulses
split at a balanced beam splitter. For n photon input
state, the photons are distributed between the reflected
and transmitted ports as

|n〉 →
n
∑

k=0

Cn
k |n− k〉R|k〉T (9)

where R(T ) corresponds to the reflected (transmitted)
port. |Cn

k |2 is the probability of getting n-k (k) photons
in the reflected (transmitted) port. The possible cases for
2 and 3 photon pulses are given below in the tables I and
II respectively.

TABLE I: Splitting of a two-photon pulse at a beam
splitter.

Possible

Cases

Number of

Photons at

Transmitted Port

Number of

Photons at

Reflected Port

Probability

1 2 0 1/4

2 0 2 1/4

3 1 1 1/2

Now, instead of discarding all the multiphoton pulses, we
systematically include a fraction of all such pulses in the
final secret key rate as

R ≥{−qQµf(Eµ)H2(Eµ) + C1Q1[1−H2(E1)]

+ C2Q2[1−H2(E2)] + C3Q3[1−H2(E3)]},
(10)

where Cn’s are the coefficients of the contributing single,
double and triple photons pulses with the implementa-
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FIG. 1: Experimental setup for coincident detection based quantum key distribution protocol.

TABLE II: Splitting of a three-photon pulse at a beam
splitter.

Possible

Cases

Number of

Photons at

Transmitted Port

Number of

Photons at

Reflected Port

Probability

1 3 0 1/8

2 0 3 1/8

3 1 2 3/8

4 2 1 3/8

tion dependent factor q absorbed into them. In order to
derive these coefficients, consider the following: a single
photon pulse can only end in the correct basis with proba-
bility 1/2 in case of passive basis selector like a balanced
beam spliter leading to C1 = 1/2. A two-photon pulse
will give rise to three cases as in Table I of which case 3
and only one of case 1 and 2 will contribute to the key.
So, C2 = 1/2 + 1/4 = 3/4. Similarly, from Table II we
obtain C3 = 3/8 + 3/8 + 1/8 = 7/8. In this case, both
cases 3 and 4 will contribute to the key since in both
cases at least one photon will be detected in the correct
basis. Substituting these values in Eq. 10 we arrive at the
final form of the secret key rate as follows

R ≥{−1

2
Qµf(Eµ)H2(Eµ) +

1

2
Q1[1−H2(E1)]

+
3

4
Q2[1−H2(E2)] +

7

8
Q3[1−H2(E3)]}.

(11)

As is evident, since some of the pulses with multiple pho-
tons also contribute to the secret key rate, we can achieve
a higher key rate compared to the decoy state protocol.
We have performed the proof of principle demonstration
of our protocol. The details of the experimental setup is
shown in Fig. 1. We have generated weak coherent pulses
by using variable optical attenuator at the output of a
pulsed laser (Coherent Vitara T (Ti-Sapphire)) with a
repetition rate of 80 MHz. After that the encoded state
is propagated in free space lossy medium in the labora-
tory with channel transmissivity estimated at 70%. At

Bob’s end we have usual polarization based BB84 detec-
tion setup: balanced beam splitter (passive random basis
selector) with polarizing beam splitter (PBS) on the re-
flected arm (measurement in {H,V}) and a combination
of half wave plate with PBS (measurement in {D, A})
at the transmitted arm. Photons at the output ports of
the PBS are detected by fiber coupled avalanche photo
diodes (Excelitas SPCM AQRH-14-FC). The avalanche
photo diodes are connected to a 8 channel time to digital
converter (IDQuantique ID-800) for recording the counts
per integration time. It records singles, 2-fold and 3-fold
coincidences between various detectors. The coincidence
window should be less than or equal to the temporal pulse
width of the signal pulse to minimize the probability of
a coincidence being recorded between two successive sig-
nal pulses or between a signal pulse and any stray pulse.
From mean photon number at the source, an estimation
can be made on the number of two fold and three fold
coincidences expected at Bob’s end assuming Alice and
Bob know their channel well.
The channel transmissivity is calculated as the ratio of
signals sent to signals received at the detector. This
comes out to be ηt = 0.70 ± 0.028. η can be found from
ηt by dividing it with the efficiencies of detector and the
fiber coupler. The yield Yn and Qµ can then be calcu-
lated by using equations (2) and (1) respectively. We use
the calculated value of η along with the value of µ to
estimate the number of coincidence events. We list the
expected numbers and the actual number of coincidences
in table III. As can be seen, the numbers agree within
acceptable tolerance and as expected, higher values of µ
lead to higher number of coincidences. By tracking these
number of coincidences we can monitor the presence of
the eavesdropper. If there is any substantial difference
between the predicted and measured values, the protocol
is adjourned. In Fig. 2, we study the secure key rate as
a function of the channel length for different values of µ.
We see that the secure key rate increases with increasing
values of µ due to increased presence of pulses contain-
ing photons. Next, we compare the secure key rates of
our protocol with that calculated from the decoy state



4

TABLE III: Comparison between expected and actual
number of coincidences for the given channel.

µ Cexp Cact

0.13 3178 3189 ± 53

0.19 6414 6249 ± 69

0.22 8828 8756 ± 85

0.32 18657 18367 ± 111

0.41 30337 30140 ± 237

FIG. 2: Secure key rate as function of the channel
length with µ as a parameter.

protocol for the same set of parameters, in Fig. 3. The
results show that we have higher key rate along with in-
crease in the transmission distance. For the given chan-
nel and µ =0.41, we expected a key rate of 0.054327 per
pulse. From the experimental data, we obtained 0.053934
± 0.004088. This matches very well with our theoretical
model. For the same set of parameters, in case of the de-
coy state protocol, the expected key rate was 0.031735
per pulse and the experimentally obtained key rate was
0.031051 ± 0.003303. The increase in key rate is due

FIG. 3: Comparison of secure key rates between decoy
state protocol and CD protocol for the same set of

parameters.

to the fact that some of two and three photon pulses

FIG. 4: Optimal mean photon number µ for decoy state
and CD protocol.

also contribute to the key. In addition, this protocol has
greater tolerance to higher values of µ as compared to
the decoy state protocol. We study this tolerance in Fig.
4. In general, the secure key rate starts decreasing when
multiphoton pulses start dominating over single photon
pulses. Since coincidence measurements can successfully
track and extract key from two-photon and three-photon
pulses as well as from all the single photon pulses, this
results in a much higher tolerance of mean photon num-
ber.
In this article we have proposed Coincidence Detec-
tion based BB84 quantum key distribution protocol with
WCP. We call this the CD protocol in short. We have pro-
posed and derived an analytical expression for the secret
key rate taking into account the contribution of pulses
with more than one photon in the final key. We argue that
by closely monitoring the number of coincidence events
arising at the receiver end and matching it with the ex-
pected number of coincidences, any attempt at channel
tampering can be monitored. The expected number of
coincidences is calculated with the help of mean photon
number, µ and the probability P(n) of a pulse contain-
ing n photons along with the channel transmissivity η.
We have shown that this results in a higher key rate over
longer distances compared to the much used decoy state
protocol for the same set of parameters. We have also
performed a proof-of-principle experiment to verify our
predictions. The numbers obtained from the experiment
agree quite well with the predicted results. One possible
demerit might be the need for accurate characterization
of the channel which might limit the implementation sce-
nario to clear line of sight situations. While conceding
that this is true, we further point out that the clear line
of sight needs to be maintained while characterizing the
channel before the start of the actual protocol. Once the
channel has been characterized there is no further need
to maintain the line of sight since any tampering of the
channel will affect the asymptotic statistics of the coin-
cidences thereby exposing the presence of an adversary.



5

Also, the protocol will require a good spectral and tem-
poral filtering mechanism. For spectral filtering, narrow
bandwidth band pass filter has to be used. For accurate
temporal filtering, a high speed event timer has to be
used with a resolution of picoseconds. The overall sim-
pler setup is beneficial for free space lossy channel since
it can achieve higher key rates over longer distances.
This work is partially supported by DST through

QuEST program. R. K. acknowledge the support
from UK EPSRC through Quantum Technology Hub
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