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Quantum key distribution is a way to distribute secret keys to distant users with information the-
oretic security and key rates suitable for real-world applications. Its rate-distance figure, however,
is limited by the natural loss of the communication channel and can never surpass a theoretical
limit known as point-to-point secret key capacity. Recently, a new type of quantum key distribution
with an intermediate relay was proposed to overcome this limit (M. Lucamarini, Z. L. Yuan, J. F.
Dynes and A. J. Shields, Nature, 2018). However, a standard application of the decoy state method
limited the security analysis of this scheme to hold under restrictive assumptions for the eavesdrop-
per. Hence, overcoming the point-to-point secret key capacity with an information-theoretic secure
scheme is still an open question. Here, we propose a novel way to use decoy states to answer this
question. The key idea is to switch between a Test mode and a Code mode, the former enabling the
decoy state parameter estimation and the latter generating a key through a phase encoding proto-
col. This way, we confirm the scaling properties of the original scheme and overcome the secret key
capacity at long distances. Our work plays a key role to unlock the potential of practical secure
quantum communications.

I. INTRODUCTION

Quantum key distribution (QKD) [1] makes it possible
to distribute cryptographic keys to remote users with
security that is independent of an attacker’s computa-
tional power [2], a feature denoted ‘information-theoretic
security’. After several years of development, QKD is
now gaining momentum and is being deployed worldwide,
mainly in the form of quantum networks [3]. To maintain
and reinforce this positive trend, it is important to look
at practical applications and tackle the problems that
currently limit this technology.

An often-mentioned obstacle in QKD is the circum-
scribed maximum distance at which keys can be dis-
tributed. Despite the intensive research on quantum
repeaters [4–6] and on relaxing their technological de-
mands [7–11], there are no cheap and efficient solutions
to repeat an unknown quantum signal along the trans-
mission line yet, in a fashion similar to a repeater in
standard optical communications. Without a quantum
repeater, the QKD signal unavoidably faces exponential
loss during the propagation in the optical medium and
becomes too small to be faithfully measured by the noisy
detectors at the receiving side.

Even with noiseless detectors, it is impossible, in fact,
to increase rate and distance of QKD beyond a certain
limit, a result recently proven in [12–14]. The point-
to-point secret key capacity of a quantum channel [13],
which we denote simply “SKC”, upper bounds the max-
imum secret information that can be transmitted via
QKD on an uninterrupted link characterised only by its
transmission η [12], irrespective of the amount of noise it
presents. To overcome the SKC, quantum repeaters were

believed to be necessary.

Recently, however, it was shown that it is possi-
ble to overcome the SKC without using quantum re-
peaters, with a scheme named “Twin-Field QKD” (TF-
QKD) [15] built only with presently available components
and an intermediate relay. TF-QKD is similar to the
decoy-state [16] measurement-device-independent (MDI)
QKD [17], but it allows for a much higher rate-distance
figure, as it is based on single-photon detections rather
than on two-photon detections. Quite remarkably, all the
other positive features of MDI-QKD, like its tolerance to
detectors vulnerabilities and its readiness for star net-
works [18], are retained by TF-QKD.

On the other hand, TF-QKD does not offer yet the
information-theoretic security demanded by QKD. In
fact, proving the full security of TF-QKD was left as
an important open question in the original paper [15].
Answering this question should clarify whether it is pos-
sible to overcome the SKC with an information-theoretic
secure scheme.

The difficulty encountered in [15] is related to the use
of decoy states [16], which are key to long-haul quan-
tum communications. To enable decoy states, the phase
of the states initially prepared by the users (Alice and
Bob) should be random and unknown to the eavesdrop-
per (Eve). Therefore the random phases are usually kept
secret and this guarantees that Eve can only see a mix-
ture of photon number states. In TF-QKD, however, the
random phases are revealed, to allow Alice and Bob rec-
oncile their data, and this could help Eve in her attacking
strategy.

This possibility has been ruled out in [15] by restrict-
ing Eve’s attack to those that commute with the photon
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FIG. 1. Schematics for the experimental setup for TF-QKD*.
The scheme is essentially the same as the one for the original
TF-QKD. Here, Alice and Bob’s lasers are phase locked, and
before sending a pulse, each of Alice and Bob’s pulse is phase-
randomized independently, and BS represents a 50:50 beam
splitter. If the detector corresponding to t = 1 (t = 2) clicks,
Charlie is supposed to announce tE = 1 (tE = 2), and if both
of the detectors click, then he is supposed to choose tE = 1
or tE = 2 at random and announces his choice.

number operator. However this prevents the information-
theoretic security of TF-QKD, which demands no as-
sumptions on Eve. It is then essential to show the se-
curity of this scheme with a rigorous security proof.

Here, we introduce a TF-QKD protocol, which we call
TF-QKD*, that overcomes the SKC limit and at the
same time is information-theoretic secure. Our key idea
is to select between a Test mode and a Code mode proba-
bilistically, allowing us to use decoy states and the phase
of the states. Similarly to TF-QKD, this protocol’s key
rate scales with the square-root of the channel trans-
mission,

√
η, thus entailing a major improvement in the

tolerance of the channel loss. Importantly, because this
protocol’s key rate represents a lower bound valid against
any attacks allowed by the laws of physics, we rigorously
prove that it is possible to surpass the SKC without using
quantum repeaters, as conjectured in [15].

II. TF-QKD* PROTOCOL

In this section we introduce our key idea, which
is to distinguish between a Test mode, in which the
phases are not disclosed by the users and the decoy-
state method [16] is applied, and a Code mode, where
the phases are disclosed and a key is generated. We start
from the description of the protocol, which is given be-
low. In it we assume that the random phases θA and θB

are automatically generated by the users with uniform
distribution. So we skip the step for generating these
phases in the protocol.

TF-QKD* protocol

1. Alice and Bob repeat Steps 2-3, N times. All the pub-
lic announcements by Alice and Bob are done over an
authenticated channel.

2. Alice (Bob) randomly chooses a bit value jA ∈ {0, 1}
(jB ∈ {0, 1}). Next, Alice (Bob) chooses the following
quantities with the following probabilities:

Basis: bA ∈ {ZA,YA} (bB ∈ {ZB,YB}) with probability
pZA and pYA (pZB and pYB), respectively. For simplic-
ity we set pZA = pZB and pYA = pYB .

Intensity: µA ∈ {µ1, µ2, µ3} (µB ∈ {µ1, µ2, µ3}) with
probability pµ1 , pµ2 , and pµ3 (pµ1 , pµ2 , and pµ3), re-
spectively.

Then, Alice (Bob) prepares a coherent signal

(|ei(θA+δA)√µA〉sg)E1 ((|ei(θB+δB)√µB〉sg)E2), where

δA = jAπ (δB = jBπ) for bA = ZA (bB = ZB) and
δA = 3π/2 − jAπ (δB = 3π/2 − jBπ) for bA = YA

(bB = YB). Here, the subscript ‘sg’ is added to empha-
size that this is a signal pulse to be transmitted.

Finally, Alice (Bob) measures the phase information
θA (θB) and sends system E1 (E2) over the quantum
channel.

3. Charlie measures the incoming signals. Ideally, he is
supposed to perform a single photon counting measure-
ment on systems sg in E1 and E2, and if he obtains a
double click, then he randomly decides 1 or 2 (see Fig.
1). However, he could do anything he pleases.

If Charlie obtains a detection event, he announces this
as well as the type of the outcome tE ∈ {1, 2} over a
public channel. If Charlie announces outcomes other
than 1 or 2, including a non-detection outcome, Alice
and Bob discard all the data associated with this event.

4. For each of the detection events, Alice and Bob an-
nounce their intensity selections. Also, depending on
whether µA = µB is satisfied or not, they conduct the
following operations:

(i) If µA 6= µB, they announce their basis selections.

(ii) If µA = µB, Alice randomly assigns each instance
to the Test mode or the Code mode, with probabilities
pT or pC, respectively, and announces her choice.

(ii-i) If the Test mode was selected, then Alice and Bob
announce their bases.

(ii-ii) If the Code mode was selected, Alice (Bob) an-
nounces the phase information θA (θB). Alice then
chooses one of two bases, ZC or XC, with probabilities
pZC and pXC = 1 − pZC , respectively, and announces
her selection.

When the ZC basis was selected, Alice and Bob an-
nounce the basis information bA and bB that were se-
lected in Step 1. If bA 6= bB, Alice and Bob discard the
instance, and if bA = bB, they announce the bit values
jA and jB except for ZA = ZB. When the XC basis was
selected, Alice and Bob announce nothing.

Finally, when |θA−θB| ≤ ∆/2 (|θA−θB| > ∆/2), Alice
and Bob keep (discard) the corresponding outcomes.
However, they keep the record of the number of the
outcomes occurred even if they discard the data.

5. For each of the bit string with µA = µB = µ, if it origi-
nates from tE = 2 Alice flips her bit string, and if it orig-
inates from tE = 1 Alice does nothing on her bit string.
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Then, for each of the bit string with µA = µB = µ and
tE, Alice and Bob apply error correction by exchang-
ing a syndrome information encrypted by a previously
shared secret key. Then, Alice selects a hash function
randomly according to the result of a parameter esti-
mation based on the data in Step 4, and announces the
selected function. Alice and Bob perform privacy am-
plification based on the selected Hash function to share
a key.

There are some remarks about this actual protocol:

� In the Test mode, Alice and Bob do not announce
the phase information measured in Step 2. Rather
they keep it secret from Eve. This way, the state
that each of Alice and Bob sends in the Test mode
can be regarded as classical mixtures of number
states from Eve’s viewpoint, enabling Alice and
Bob to employ the decoy state method in the Test
mode.

� Although we made a redundant definitions of pZA ,
pZB , pYA , and pYB such that pZA = pZB and pYA =
pYB hold, we explicitly use these different variables
to denote Alice’s probability and Bob’s probability
for clarity of the discussions.

� TF-QKD* protocol generates a key separately de-
pending on µA = µB = µ and tE.

� In Step 4 (iii), the presence of the choice between
ZC and XC entails a loss of the generated key unless
ZC is chosen. Also, pZC

is a parameter that has to
be optimized in the finite key regime.

� When the XC basis is chosen in the Code mode,
Alice and Bob do not announce their bases. This
means that Alice and Bob do not know whether
their bases selections made in Step 2 coincide or
not. However, the number of this events can be
estimated from the event with the ZC basis in the
Code mode.

Let us now provide an intuitive picture of this protocol
and the main reason why it is secure. Suppose that Al-
ice transmits a phase-randomized coherent pulse over a
quantum channel, and Alice keeps the phase information
in her lab. From Charlie’s viewpoint, her state can be
described as ∫ 2π

0

dθ|eiθ√µ〉
E1
〈eiθ√µ| . (1)

Here, the subscript E1 refers to the system of the pulse,
and µ is the mean photon number of the pulse. In the
decoy state method, the fact that Alice’s state can be
regarded as a classical mixture of number states is fun-
damental. On the other hand, the phase of Alice’s state
plays a key role in a protocol where the phase of the en-
coded pulses is used to generate a key. Therefore, we
discuss two observables of the system E1, the photon
number and the phase, and by recalling that any ob-
servable is expressed through measurements in quantum

physics, it is convenient to introduce another system PA

which purifies the states as follows∫ 2π

0

dθ√
2π
|θ〉PA

|eiθ√µ〉
E1

= e−
µ
2

∞∑
n=0

√
µn
√
n!
|n〉PA

|n〉E1

=

∞∑
n=0

|n〉PA
P̂ (E1)
n |eiθ√µ〉

E1

(2)

where

|n〉PA
=

∫ 2π

0

dθ√
2π
einθ|θ〉PA

, (3)

and P̂
(E1)
n is a projection operator to a n photon space

of system E1. Here, θ is defined within the interval
[0, 2π), 〈θ′|θ〉 = δ(θ′ − θ) with δ(x) being the Dirac’s
delta function, and one can show the standard relation-
ship P〈m|n〉P = δm,n (see Appendix B for details).

From these equations, it is clear that when Alice ob-
tains the photon number information of system PA, then
the information about the phase is destroyed. A direct
consequence of this is that Alice cannot employ the de-
coy state method when she measures the phase. In other
terms, the two observables corresponding to global phase
and photon number of the same quantum system do not
commute [19].

Our key idea to overcome this problem is to introduce
a Test mode and a Code mode in the protocol, which are
probabilistically chosen by Alice after the transmission of
pulses. When the Code mode is chosen, Alice announces
the phase information, and the users employ a phase en-
coding scheme similar to phase-based MDI-QKD [17, 20]
to generate a key, but without resorting to the decoy
state method. On the other hand, when the Test mode
is selected, Alice does not announce the phase informa-
tion, so the users can employ the decoy state method to
estimate the parameters needed for the security of the
phase-based MDI-QKD in the Code mode.

In more detail, the main parameter to be estimated in
the Code mode is the bias of an X basis measurement
on a fictitious system called the “quantum coin”. This
bias is a key parameter to represent a basis dependency
of the pulses arising from the non-randomized phase [21–
23]. The smaller the bias, the better the key rate we can
achieve.

In the literature [20, 22], it is simply assumed the worst
case scenario, where Charlie enhances the bias of the
quantum coin by exploiting the channel loss. This re-
sults in a dramatic reduction of the key generation rate.
In contrast, with our idea, the decoy state method in
the Test mode provides a tight estimation of the bias
in the Code mode and we do not have to rely on the
worst case scenario, leading to a significant improvement
in key generation rate. This tight estimation is possible
because Alice chooses between the Code and Test modes
after Charlie announces his measurement outcome, and
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as a result, Charlie or Eve cannot behave differently be-
tween the two modes. Therefore, the bias in the Test
mode serves as a good sample of that in the Code mode,
and we can use the random sampling theory to estimate
the bias in the Code mode from the one in the Test mode
(see Appendix A for more detail). In the proof, we con-
sider that this bias is enhanced due to the post-selection
depending on whether |θA− θB| ≤ ∆/2 or not. Here, im-
portantly, unlike the worst case scenario in [20, 22], this
enhancement is not dependent on the channel losses, but
it depends only on a constant factor, 2π/∆. Therefore,
this enhancement does not affect the key rate drastically.

The security proof of TF-QKD* protocol is given in the
Appendix A. There, we assume the use of infinite number
of decoy states in the limit of large key size, for simplicity.
However, in Appendix D, we provide the complete infor-
mation theoretic security proof using three decoy states
in the finite key size. In the following section, we present
the result of a simulation for this protocol in the asymp-
totic case, for simplicity. Then, we conclude with the
final remarks in Sec. IV.

III. SIMULATION OF THE KEY RATE

In this section, we simulate the key generation rate
based on our security proof. For simplicity, we assume
that the number of the decoy states is infinite and the
number of pulses sent is large enough to neglect any sta-
tistical fluctuation, and furthermore, we consider that
Alice and Bob choose the Z and Y bases with the same
probability, i.e. pZA

= pZB
= pYA

= pYB
. In this case,

when Alice and Bob select the same intensity setting µ in
the Code mode and Charlie announces tE, we can write
the key rate as [24, 25]

lµ,tE = Nsif,Z,µ,tE [1− h (eph,µ,tE)]− λEC , (4)

where Nsif,Z,µ,tE is the length of the Z basis sifted key,
i.e. a bit string in which Alice and Bob agree with the Z
basis in the Code mode, they use a particular intensity
choice µ, Charlie announces tE, and |θA − θB| ≤ ∆/2.
h(x) := −x log2 x−(1−x) log2(1−x) is the binary entropy
and λEC is the amount of information exchanged for error
correction. An important parameter in Eq. (4) is the
phase error rate eph,µ,tE , which is related to the amount
of privacy amplification and is expressed by [22]

eph,µ,tE = eYer,µ,tE + 4∆bias(1−∆bias)(1− 2eYer,µ,tE)

+ 4(1− 2∆bias)
√

∆bias(1−∆bias)eYer,µ,tE

×
√

(1− eYer,µ,tE) . (5)

Here, eYer,µ,tE is an error rate in the the Y basis sifted
key, and ∆bias is the bias we estimate from the Test mode
by exploiting the decoy state method.

As a channel model, we suppose that bit errors stem
from the dark count and/or the intrinsic bit errors of TF-
QKD∗ due to the phase difference |θA − θB| ≤ ∆/2, and

0 100 200 300 400 500 600 700
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FIG. 2. Log scale (with base 10) of the key rate l as a func-
tion of the distance between Alice and Bob. Our key rate is
shown with the black solid line, whereas the PLOB bound is
represented by the red solid line. Here, we used ηdet = 80%,
which is a figure reported by a commercial single-photon de-
tector [26], and pdark = 1.0 × 10−11, and the efficiency of an
error correcting code is assumed to be 1.1.

we neglect system errors, such as misalignment errors.
In the simulation, we assume that ∆ = 2π/8, and the
transmission rate of a quantum channel is represented by
e−αL/10 with α = 0.2 and L the length of an optical fibre.
Moreover, we assume the efficiency of the error correcting
code is 1.1. As for the detectors used by Charlie, we
assume rather a practical parameters [26] for detection
efficiency ηdet = 80%, and we assume dark count rate
pdark = 1.0× 10−11 per pulse [27].

With these parameters, we plot the resulting key rate
for a particular choice of an intensity in the Code mode
in Fig. 2 (black solid line). In the figure, we fix the
mean photon numbers as µA = µB = 0.0012, which
is almost optimal at 500 km. Importantly, our key
rate clearly shows the

√
η scaling property of TF-QKD*,

which makes it possible to overcome the SKC limit, repre-
sented by the red solid line, after about 500 km of a stan-
dard optical fibre. For the SKC, we use the bound known
as “PLOB” [13], which is given by − log2(1−e−αLAB/10)
where LAB is the distance between Alice and Bob [28].

IV. CONCLUSION

In this paper, we prove the information theoretic se-
curity of a variant of Twin-Field QKD [15] both in the
asymptotic and in the finite key size regime. Our key
idea is to probabilistically switch between the Test mode
and Code mode. This way we can exploit the decoy state
method in the Test mode and the phase encoding proto-
col in the Code mode to generate a key. The use of the
decoy state method allows us to tightly estimate an im-
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portant parameter that determines the key rate in the
Code mode, and we expect a higher key generation rate
than a QKD protocol without decoy states.

In fact, our simulation of the key rate in the asymptotic
scenario shows that our protocol can indeed outperform
the secret key capacity (SKC) bound using only presently
available components. We plan to complete this analysis
by applying our finite size security proof and estimate the
number of pulses needed for surpassing the SKC bound.

The attained key rate could be further enhanced in sev-
eral ways, e.g., by adopting a discrete randomisation [30].
of the global phase set by the users, or by removing the
requirement of phase randomisation in the Code mode.
These and other solutions are currently being investi-

gated and will be the subject of future studies.
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Appendix A: Security proof

In this section, we prove the information theoretic security of TF-QKD* protocol. For this, we first introduce
a fictitious protocol, which is mathematically equivalent to TF-QKD* protocol. After we explain an intuition of
our security proof, we move on to the security proof in the asymptotic limit, considering a large number of pulses.
However, in Appendix D, we provide the complete information theoretic security proof using three decoy states in the
finite key size.

1. A fictitious protocol for TF-QKD* protocol

Like many security proofs of QKD protocols [2], it is convenient to convert our TF-QKD∗ to an entanglement
based protocol, which we call the fictitious protocol. This protocol provides Eve with exactly the same quantum and
classical information as the actual protocol does, and Eve cannot behave differently between them. Moreover, Alice
and Bob’s data and data processing to generate a key is the same as the actual protocol. Therefore, we can employ
the fictitious protocol to prove the security of the actual protocol.

For the construction of the fictitious protocol, we first introduce systems C’, C, A, B, E1, and E2, and consider
their state |Ψ(θA, θB, µ)〉C′,C,A,B,E1,E2 expressed by

|Ψ(θA, θB, µA, µB)〉C′,C,A,B,E1,E2

:= |0〉C′
(√

pZA
pZB
|0Z〉C|ΨZA

(θA, µA)〉A,E1|ΨZB
(θB, µB)〉B,E2 +

√
pYA

pYB
|1Z〉C|ΨYA

(θA, µA)〉A,E1|ΨYB
(θB, µB)〉B,E2

)
+ |1〉C′

(√
pZA

pYB
|0Z〉C|ΨZA

(θA, µA)〉A,E1|ΨYB
(θB, µB)〉B,E2 +

√
pYA

pZB
|1Z〉C|ΨYA

(θA, µA)〉A,E1|ΨZB
(θB, µB)〉B,E2

)
,

(A1)

where

|ΨZA
(θA, µA)〉A,E1 :=

1√
2

(
|0Z〉A(|eiθA√µA〉ref

|eiθA√µA〉sg)E1 + |1Z〉A(|eiθA√µA〉ref
|ei(θA+π)√µA〉sg)E1

)
, (A2)

|ΨYA
(θA, µA)〉A,E1 :=

1√
2

(
|1Y〉A(|eiθA√µA〉ref

|ei(θA+π/2)√µA〉sg)E1 + |0Y〉A(|
√
eiθAµA〉ref |ei(θA+3π/2)√µA〉sg)E1

)
,

(A3)

|ΨZB
(θB, µB)〉B,E2 :=

1√
2

(
|0Z〉B(eiθB |√µB〉ref

|eiθB√µB〉sg)E2 + |1Z〉B(|eiθB√µB〉ref
|ei(θB+π)√µB〉sg)E2

)
, (A4)

|ΨYB(θB, µB)〉B,E2 :=
1√
2

(
|1Y〉B(|eiθB√µB〉ref

|ei(θB+π/2)√µB〉sg)E2 + |0Y〉B(|eiθB√µB〉ref
|ei(θB+3π/2)√µB〉sg)E2

)
.

(A5)

In these equations, {|0〉C′ , |1〉C′} is the ZC′ basis for system C’, which determines whether Alice and Bob’s bases for
state preparations coincide or not, {|0Z〉C , |1Z〉C} is the ZC basis for the quantum coin system C, and two systems ref
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and sg correspond to a reference pulse and a signal pulse, respectively. Alice and Bob send only system sg of systems E1
and E2 to Charlie, who is supposed to perform a single photon count measurement, while they keep systems C’, C, A, B,
and ref in their lab. We have introduced system ref for ease of security proof. Also, for later convenience, we define the

XC basis for the quantum coin system C as {|0X〉C, |1X〉C} where |0X〉C :=

√
p

(AB)
Z |0Z〉C +

√
p

(AB)
Y |1Z〉C and |1X〉C :=√

p
(AB)
Y |0Z〉C −

√
p

(AB)
Z |1Z〉C with p

(AB)
Z := pZApZB/(pZApZB + pYApYB) and p

(AB)
Y := pYApYB/(pZApZB + pYApYB).

Here, notice that this XC is not the standard X basis, and following GLLP [21], we have introduced system C as a
quantum coin to take care of Alice’s basis choice. We note that for systems except for systems C, we define the basis
states as |0Z〉 := (|0X〉 + |1X〉)/

√
2 and |1Z〉 := (|0X〉 − |1X〉)/

√
2 for the Z basis, and |0Y〉 := (|0X〉 + i|1X〉)/

√
2 and

|1Y〉 := (|0X〉 − i|1X〉)/
√

2 for the Y basis with i being the imaginary number, where {|0X〉, |1X〉} is an orthonormal
basis. Importantly, we emphasize that the four states in Eqs. (A2)- (A5) are chosen such that the probability of
observing XC = 1 for C′ = 0 is exactly zero for the emission of the vacuum and a single photon.

With these states, we will represent all of Alice’s selections in the actual protocol, including the selection of the
intensity setting and the one of the Test mode or the Code mode, by means of measurements on the following state

|Ψ〉PA,PB,Tes,IntA,IntB,C′,C,A,B,E1,E2 :=
∑

O,µA,µB

∞∑
nA=0

∞∑
nB=0

|nA〉PA
|nB〉PB

⊗
√
p(O,µA, µB)|O〉Tes|µA〉IntA

|µB〉IntB
P̂ (E1)
nA

P̂ (E2)
nB
|Ψ(θA, θB, µA, µB)〉C′,C,A,B,E1,E2 ,

(A6)

where nA (nB) refers to the photon number contained in systems ref and sg of E1 (E2), O ∈ {C,T}, system Tes
is a system to be measured with an orthonormal basis {|T〉Tes, |C〉Tes} to determines whether it is the Test mode
or the Code mode, and system IntA (IntB) is to be measured with an orthonormal basis {|µ1〉IntA

, |µ2〉IntA
, |µ3〉IntA

}
({|µ1〉IntB

, |µ2〉IntB
, |µ3〉IntB

}) to obtain Alice’s (Bob’s) intensity setting. Moreover, p(C, µA, µB) = 0 for µA 6= µB,

p(T|µA, µB) = pT for µA = µB, p(C|µA, µB) = pC for µA = µB, and P̂
(E1)
n (P̂

(E2)
n ) is a projection operator to a n

photon space of systems ref and sg of E1 (E2). One can see that the quantum information available to Charlie is the
same as the one of the actual protocol if Alice and Bob send only the signal systems of E1 and E2 to Charlie. We
note that by using Eq. (2), Eq. (A6) can be rewritten as

|Ψ〉PA,PB,Tes,Int,C′,C,A,B,E1,E2

=
∑

O,µA,µB

1

2π

∫ π

−π
dθA

∫ π

−π
dθB|θA〉PA

|θB〉PB

√
p(O,µA, µB)|O〉Tes|µA〉IntA

|µB〉IntB
|Ψ(θA, θB, µA, µB)〉C′,C,A,B,E1,E2 .

(A7)

Therefore, if Alice and Bob choose {|nA〉PA
|nB〉PB

} ({|θA〉PA
|θB〉PB

}) basis to measure systems PA and PB, then Alice
and Bob prepare systems sg and ref of E1 and E2 in a photon number state (a non-phase randomized state with the
phase).

Most importantly, since Alice and Bob do not disclose the phase information in the Test mode of the actual
protocol, the state of pulses remain exactly the same from Eve or Charliefs viewpoint even if Alice and Bob first
prepare |Ψ〉PA,PB,Tes,Int,C′,C,A,B,E1,E2, measure the photon number of systems PA and PB in the Test mode, and then
send only the signal systems of E1 and E2 to Charlie. This photon number measurement enables Alice and Bob to
employ the decoy state method because the state is a classical mixture of number states. On the other hand, since
Alice and Bob announce the phase information in the Code mode of the actual protocol, this mode is equivalently
described by the preparation of |Ψ〉PA,PB,Tes,Int,C′,C,A,B,E1,E2 followed by the phase measurements, sending only the
signal systems of E1 and E2 to Charlie, and the announcement of the phase information. Hence, Alice and Bob cannot
employ the decoy state method in the Code mode because the phase information is leaked to Eve or Charlie, and the
state is no longer regarded as the classical mixture of number states from the viewpoint of Eve or Charlie.

Below, we present how the fictitious protocol runs. Note that we assume that Alice and Bob are located in the
same lab in the fictitious protocol such that they can exchange some classical information without revealing it to Eve
or Charlie, however we design the protocol in such a way that all the quantum and classical information available to
Eve or Charlie as well as the key generated are the same as those in the actual protocol. Therefore, we can use this
protocol to prove the security.

Fictitious protocol
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1. Alice and Bob repeat Step 2-3, N times. All the public announcements by Alice and Bob are done over an
authenticated channel.

2. Alice and Bob prepare systems PA, PB, Tes, IntA, IntB, C′, C,A,B, E1, and E2 in the state
|Ψ〉PA,PB,Tes,IntA,IntB,C′,C,A,B,E1,E2 defined in Eq. (A6). Then, Alice measures system C’ with the {|0〉C′ , |1〉C′}
basis. Next, Alice and Bob measure mean photon numbers contained each of systems IntA and IntB, respec-
tively. Finally, Alice and Bob send only the signal pulses in systems E1 and E2 (see Eqs. (A2)-(A5)) to Charlie
over a quantum channel, while they keep all the other systems in the lab.

3. Charlie performs some measurement on the incoming signals. Ideally, he is supposed to perform a single photon
counting measurement on systems sg of E1 and E2, and if he obtains a double click, then he randomly decides
1 or 2. However, he could do anything he pleases.

If Charlie obtains a detection event, he announces this as well as the type of the outcome tE ∈ {1, 2} over a
public channel. If Charlie announces outcomes other than 1 or 2, including a non-detection outcome, Alice and
Bob discard all the data associated with this event.

4. For each of the detection events, Alice and Bob announce their intensity selections. Also, depending on whether
µA = µB is satisfied or not, they conduct the following operations:

(i) If µA 6= µB, then Alice and Bob measure systems PA and PB with {|nA〉} and {|nB〉} bases, respectively,
Alice measures system C with the ZC basis, and Alice and Bob announce their basis choices. That is, Alice
announces the ZA basis when ZC = 0 and the YA basis when ZC = 1, and Bob announces the ZB (YB) basis
when ZC = 0 and C’ outputs 0 (ZC = 1 and C’ outputs 0) or when ZC = 1 and C’ outputs 1 (ZC = 0 and C’
outputs 1).

(ii) If µA = µB, Alice measures system Tes to determine whether each of the systems are associated to the Test
mode or the Code mode, and announces the outcome.

(ii-i) If the Test mode was selected, then Alice and Bob measure systems PA and PB with {|nA〉} and {|nB〉}
bases, respectively, Alice measures system C with the ZC basis, and Alice (Bob) announces the basis choice ZA

(ZB) or YA (YB) with the same manner as in (i).

(ii-ii) If the Code mode was selected, Alice (Bob) measures systems PA (PB) with the phase base {|θA〉}
({|θB〉}) and announces the outcome θA (θB). Next, Alice and Bob measure systems A and B with the YA and
YB bases, respectively. Then, Alice chooses between ZC and XC with probabilities pZC

and pXC
, respectively,

and announces the selection.

When ZC was selected and |θA − θB| ≤ ∆/2 is satisfied, Alice measures system C with the ZC basis, and Alice
(Bob) announces the basis choice ZA (ZB) or YA (YB) with the same manner as in (i). Alice and Bob announce
the outcomes of the YA and YB bases measurements only when they announce the YA and YB bases.

When XC was selected and |θA − θB| ≤ ∆/2 is satisfied, Alice measures system C with the XC basis, and Alice
and Bob announce nothing.

Finally, when |θA − θB| ≤ ∆/2 (|θA − θB| > ∆/2), Alice and Bob keep (discard) the measurement outcomes.
However, they keep the record of the number of the outcomes occurred even if they discard the data.

5. Alice and Bob announce a small portion of a previously shared secret key (this is done to simulate the exchange
of the encrypted syndrome information in the actual protocol). Then, Alice selects a hash function randomly
according to the result of a parameter estimation based on the data in Step 4, and announces the selected
function.

The logical schematics of the fictitious protocol is shown in Fig. 3. We remark that the ZA and ZB bases have to
be used to generate sifted bits for ZC = 0 and C ′ = 0 in the Code mode. However, we considered to use YA and YB

bases, complementary observables of the ZA and ZB bases, to measure a phase error. This is so because in most of
the security proofs based on entanglement distillation [31], on the complementary scenario [23] and on the entropic
uncertainty relationship [33], it is widely known that we have to estimate the phase error rate eph, which is a fictitious
error rate that we would obtain if we employed the complementary basis for the measurement. This estimated rate
is later to be used in privacy amplification to generate a secure key (more precisely, the fraction of h(eph), where
h(x) is the binary entropy function, has to be sacrificed in privacy amplification in the limit of large sifted key). As
a consequence, the fictitious protocol does not produce a key, and this is only for estimating phase errors. However,
if needed, a key can be generated if Alice and Bob does not perform the YA and YB bases measurement on the
events with the announcement of the ZA and ZB bases and |θA − θB| ≤ ∆/2 in the Code mode, but instead they
run an entanglement distillation protocol [31, 32] for such events. In this case, we can remove the encryption of
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FIG. 3. Logical steps of the fictitious protocol, used to prove the security of the actual protocol. Note that this shows only the
case for C′ = 0, i.e. Alice and Bob’s bases used for their state preparations in the fictitious protocol coincide, and all the events
with C′ = 1 are not used in our proof. Here, “Mea” represent a measurement, and |n〉 (|θ〉) refers to a photon number (phase)
basis. Each branch represents that we have an outcome in a probabilistic manner. The superscript ∗ in X∗C means that we
consider the ZC basis in the fictitious protocol, however only for the purpose of estimating parameters needed in our security
proof, we are allowed to consider the XC basis instead. Finally, || (⊥) means that the Alice and Bob’s measurement outcomes
coincide (differ), and “decoy” represents that the numbers of instances subjected to the measurement for each photon number
space are estimated by the decoy state method.

the syndrome information for error correction in the actual protocol, and Alice and Bob are allowed to announce the
syndrome information without encryption both in the actual and fictitious protocols. But for simplicity of discussions,
we consider not to produce a key. Final remark on phase errors is; for tE = 1 (tE = 2), a phase error is a coincidence
(erroneous) event in the YA and YB bases measurement (see Appendix C for a more detail discussions on the definition
of the phase error rate).

A crucial difference of the fictitious protocol from the actual protocol is that Alice and Bob generate a reference
pulse, but they do not send it, whereas Alice and Bob do not even generate such a reference pulse in the actual
protocol. The reason for considering a double pulse is that the bias can be made small, and therefore we can
achieve higher performance. Importantly, from Eqs. (A1)-(A7), one can see that the statistics of Alice and Bob’s
observables that are directly available in the actual protocol, i.e. Alice and Bob’s basis choices, the bit value choices,
the intensity settings, the choice between the Test and Code modes, and the phase information, do not change with
the preparation of the reference pulse. Considering that the reference pulses are not sent to Eve, meaning that
Eve’s accessible information remains exactly the same, we conclude that as long as Alice and Bob’s data processing,
especially privacy amplification, are the same between the actual protocol and the fictitious protocol, the security of
the actual protocol directly follows from the security of the fictitious protocol. Hence, we are allowed to focus on the
security proof of the fictitious protocol.

Another remark on the fictitious protocol is that measurements on systems PA, PB, Tes, IntA, IntB, C’, C, A, B,
E1, and E2 in the fictitious protocol commute with each other since they are measurements on different systems, and
therefore it does not matter which system is measured before or after the other systems. However, we have chosen the
order of the measurements as prescribed. In particular, system C’ and systems IntA and IntB are measured first, that
is, whether Alice and Bob’s bases coincide or not and Alice and Bob’s intensity settings, are predetermined before
Alice and Bob send the signal systems of E1 and E2.



9

2. Intuition of our security proof

Here, we describe an intuition of our proof. As we have discussed, our central problem is to estimate the phase
error rate, and in so doing, we generalize the security proof in [20, 22]. In such a proof, an important quantity is the
bias of the quantum coin (system C), i.e. the number of XC = 1 for the events in the Code mode with ZC′ = 0 (that
is, Alice and Bob’s bases selections coincide), µA = µB, |θA − θB| ≤ ∆/2, and tE. Here, note that the bias is defined
by the XC = 1 basis, whereas our fictitious protocol employs only the ZC basis for measuring system C in the Test
mode. In what follows and throughout the security proof, we consider a Gedanken measurement, in which we replace
all the ZC basis in the Test mode with the XC basis, and we will estimate how many bias we could have obtained if
Alice had measured such systems C in the Test mode with the XC basis rather than the ZC basis. Most importantly,
as we will see later, this XC basis measurements correspond to independent trials whose probability can be readily
obtained. Therefore, once we know the number of such instances, which is in fact possible in our protocol thanks to
the basis announcement made when the ZC is selected, we can readily estimate the number of XC = 1 using some
probability inequalities, such as Chernoff bound [34] or Hoeffding’s inequality [35]. This is the reason why we are
allowed to consider the Gedanken measurement.

Intuitively, the bias represents how differently Eve could behave between the Z and Y bases states. One can see
this, for instance, by considering

C′〈0|Ψ(θA, θB, µA, µB)〉C′,C,A,B,E1,E2

=
√
pZApZB |0Z〉C|ΨZA(θA, µA)〉A,E1|ΨZB(θB, µB)〉B,E2 +

√
pYApYB |1Z〉C|ΨYA(θA, µA)〉A,E1|ΨYB(θB, µB)〉B,E2,

= |0X〉C(pZA
pZB
|ΨZA

(θA, µA)〉A,E1|ΨZB
(θB, µB)〉B,E2 + pYA

pYB
|ΨYA

(θA, µA)〉A,E1|ΨYB
(θB, µB)〉B,E2)

+
√
pZA

pZB
pYA

pYB
|1X〉C(|ΨZA

(θA, µA)〉A,E1|ΨZB
(θB, µB)〉B,E2 − |ΨYA

(θA, µA)〉A,E1|ΨYB
(θB, µB)〉B,E2) (A8)

which is obtained from Eq. (A1). From this equation, we observe that if Alice and Bob’s state are the same between
the two bases, i.e. they are basis independent, then the probability of obtaining XC = 1 is exactly zero, whereas it

is not zero for basis dependent states (here recall the definition |0X〉C :=

√
p

(AB)
Z |0Z〉C +

√
p

(AB)
Y |1Z〉C and |1X〉C :=√

p
(AB)
Y |0Z〉C −

√
p

(AB)
Z |1Z〉C with p

(AB)
Z = pZApZB/(pZApZB + pYApYB) and p

(AB)
Y = pYA

pYB
/(pZA

pZB
+ pYA

pYB
)).

Hence, one may presume that the bias in a detection event has to be small for better key rate because it becomes
difficult for Eve to behave differently between the two bases with a smaller bias (recall that roughly speaking, the
data from one basis monitors a disturbance that Eve caused in the other basis, i.e. the key generation basis). In the
analyses presented in [20, 22], however, they simply assume the worst case scenario that by carefully selecting which
signals to measure, Eve can detect signals only for the events with XC = 1, whereas she does not detect signals for
the events with XC = 0. This way, an enhancement of the bias could occur by exploiting channel losses, resulting in
a poor key generation rate.

Our key idea to circumvent this worst case scenario is to ask Alice to choose between the Test and Code modes after
Charlie announces a detection event, as was described in the fictitious protocol. We will show that states conditional
on the Test mode and on the Code mode are exactly the same, following that Charlie or Eve cannot behave differently
between the two modes. This is natural because Alice sends out the same state between the Code and Test modes,
and moreover the choice between the two modes is made after Charlie announces his measurement outcome. These
lead us to a random sampling argument that detected events with XC = 1 is probabilistically assigned, according to
the probability of choosing between the two modes, to the Test or the Code modes after a detection event (see Sec.
A 3 for the detail). Here, recall that we consider the Gedanken measurement in which we replace all the ZC basis in
the Test mode with the XC basis. Now one may deduce that if the bias is small in the Test mode, so is in the Code
mode, and the question is whether the bias in the Test mode is small or not. This is where the importance of the
state selections made in Eqs. (A1)-(A5) comes into our analysis. That is, we have chosen those states such that the
probability of observing XC = 1 for C′ = 0 (where Alice and Bob’s bases selections coincide) is exactly zero for the
emission of the vacuum and a single photon, which are dominant contributions to a detection event. By recalling that
Alice and Bob perform the photon number measurement in the Test mode, we are allowed to consider each photon
number space separately, we may conclude that the bias in the Test mode should be small, resulting in the high key
generation rate.

The security proof proceeds as follows; First we rigorously prove the fair sampling argurment. Next, we introduce
an inequality for obtaining phase errors, which is essentially the same as the one presented in [20, 22]. Next, we
present how to estimate the number of XC = 1 in the Code mode from the one in the Test mode. Then, we employ
the decoy state method to estimate the number of XC = 1 in the Test mode, which is a good estimate of the number
of XC = 1 in the Code mode, and by plugging this quantity into the inequality for obtaining the phase error rate, we
conclude the security proof.
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For convenience, below we define ξµ,µ,C
′=0

Code,tE
(ξµA,µB,C

′=0
Test,tE

) as a parameter to identify a set of the event {µA = µ, µB =

µ,ZC′ = 0,Code, tE} ({µA, µB,ZC′ = 0,Test, tE}), and other parameters are defined with a similar manner. Moreover,

we use a notation such as XC|ξµA,µB,C
′=0

Test,tE
in order to emphasize the Gedanken XC measurement on system C, which

plays a central role in our proof.

3. Fair sampling argument

Here we prove the fair sampling argument for the events with XC = 1 between in the events ξµ,µ,C
′=0

Code,tE
and in those

ξµ,µ,C
′=0

Test,tE
. For this, we invoke the predetermination property of the fictitious protocol, and we consider the instances

where Alice and Bob obtain ZC′ = 0 and µA = µA = µ in Step 1 (here µ ∈ {µ1, µ2, µ3}). The resulting state is given
by

∞∑
nA=0

∞∑
nB=0

|nA〉PA
|nB〉PB

⊗

 ∑
O∈{Test,Code}

√
p(O|µ, µ)|O〉Tes


⊗ |µ〉IntA

|µ〉IntB
P̂ (E1)
nA

P̂ (E2)
nB
|Ψ(θA, θB, µA, µB)〉C′,C,A,B,E1,E2 . (A9)

Here, importantly, the state of system Tes is decoupled from all the other states, and therefore its measurement
outcome, i.e. the choice of the Test mode or the Code mode, is independent of any other outcomes that could be
obtained by any measurement on all the other systems, including Eve’s measurement. In other words, the states of
pulses conditional on the Test mode and the Code mode are exactly the same, and Eve cannot behave differently

between the two modes. This means in particular that the events with the XC = 1 in ξµ,µ,C
′=0

Code,tE
and the ones in

ξµ,µ,C
′=0

Test,tE
(the Gedanken measurement) are sampled with probabilities p(Code|µ, µ) = pC and p(Test|µ, µ) = pT,

respectively, which concludes our fair sampling argument.

4. Security of the Code mode and formula for the key generation length in the asymptotic limit

In this subsection, we establish the inequality for obtaining the number of phase errors. The starting point is to
recall the commutation property, i.e. measurements on systems PA, PB, Tes, IntA, IntB, C’, C, A, B, E1, and E2 in the
fictitious protocol commute with each other. With this property, we are allowed to imagine that Alice and Bob finish
the measurements on systems C, A, and B to obtain the outcomes of ZC′ = 0, µA = µB = µ, and |θA − θB| ≤ ∆/2
before they send the signal systems of E1 and E2. This instance can equivalently be represented by the following
state

|Ψ(θA, θB, µ, µ)〉C,A,B,E1,E2

:=

√
p

(AB)
Z |0Z〉C|ΨZA

(θA, µ)〉A,E1|ΨZB
(θB, µ)〉B,E2 +

√
p

(AB)
Y |1Z〉C|ΨYA

(θA, µ)〉A,E1|ΨYB
(θB, µ)〉B,E2 ,

(A10)

with µA = µB = µ and |θA − θB| ≤ ∆/2, and then Eve or Charlie applies some operations on systems E1 and E2.
In particular, we imagine that Charlie announces tE as her outcome. We remark that any correlations that Eve or
Charlie could cause between this state and states associated to all the other measurement outcomes can be properly
taken into account through the use of the Azuma’s inequality. This is so because this inequality is valid even under
any correlations [24, 36]. Therefore, we are allowed to concentrate only on the preparation of this state and consider
Charlie’s action on this state.

In order to consider the phase error rate, we consider the Bloch sphere bound, and by applying the Azuma’s
inequality we have in the asymptotic limit that (see Eq. (D8) in Appendix D 1 where we also present the inequality
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in the finite key size regime)

N
ZC|ξµ,µ,C

′=0
Code,tE

,≤∆/2
− 2

pZC

pXC

N
XC=1,XC|ξµ,µ,C

′=0
Code,tE

≤ 2(p
(AB)
Z − p(AB)

Y )

(
pZC

N
ξµ,µ,C

′=0
Code,tE

,≤∆/2
−N

YA,ZC|ξµ,µ,C
′=0

Code,tE
,≤∆/2

)
+ 4

√
p

(AB)
Z p

(AB)
Y

√
N
Y⊥,YA,ZC|ξµ,µ,C

′=0
Code,tE

,≤∆/2
N
Y⊥,ZA,ZC|ξµ,µ,C

′=0
Code,tE

,≤∆/2

+ 4

√
p

(AB)
Z p

(AB)
Y

√
N
Y||,YA,ZC|ξµ,µ,C

′=0
Code,tE

,≤∆/2
N
Y||,ZA,ZC|ξµ,µ,C

′=0
Code,tE

,≤∆/2
, (A11)

Here, we consider that this bias is enhanced due to the post-selection depending on whether |θA − θB| ≤ ∆/2 or not,
which is reflected by N

XC=1,XC|ξµ,µ,C
′=0

Code,tE

≥ N
XC=1,XC|ξµ,µ,C

′=0
Code,tE

,≤∆/2
where N

XC=1,XC|ξµ,µ,C
′=0

Code,tE
,≤∆/2

is the number of

the events XC = 1 and XC among the events specified by ξµ,µ,C
′=0

Code,tE
and ≤ ∆/2. Moreover, N

Y⊥,YA,ZC|ξµ,µ,C
′=0

Code,tE
,≤∆/2

is the number of the events where Alice selects the YA basis for measuring systems A, ZC is selected, and a Y basis

error occurs among the events ξ
µ,µ,C′=0,≤∆/2
Code,tE

. Other numbers in the inequality are defined in a similar manner. Note

that the subscript || means that the outcome of the Y basis measurements coincide, and the inequality in Eq. (A11)
can be simplified to the inequality as Eq. (5) in the main text when pZA = pYA = pZB = pYB .

In this inequality, N
Y⊥,YA,ZC|ξµ,µ,C

′=0
Code,tE

,≤∆/2
and N

Y||,YA,ZC|ξµ,µ,C
′=0

Code,tE
,≤∆/2

are quantities we can obtain in the actual

protocol, and the important number, i.e. the one of phase errors for tE = 1 is given by N
Y⊥,ZA,ZC|ξµ,µ,C

′=0
Code,tE=1,≤∆/2

:=

N
Y⊥,YA,ZC|ξµ,µ,C

′=0
Code,tE=1,≤∆/2

, and the one for tE = 2 is given by N
Y||,YA,ZC|ξµ,µ,C

′=0
Code,tE=2,≤∆/2

:= N
Y||,YA,ZC|ξµ,µ,C

′=0
Code,tE=2,≤∆/2

(recall the discussion on the definition of a phase error in Appendix C).
For obtaining the upper bound of the number of phase errors, we need to know the number N

XC=1,XC|ξµ,µ,C
′=0

Code,tE

,

however Alice and Bob do not have a direct access to this number in the actual protocol. Therefore, we have to
estimate this number, and we denote its upper bound by N

XC=1,XC|ξµ,µ,C
′=0

Code,tE

. As we have explained, this number will

be estimated via the random sampling theory from the number XC = 1 that Alice could have obtained if she had
chosen the XC basis in the Test mode. This number and its upper bound are denoted by N

XC=1,XC|ξµ,µ,C
′=0

Test,tE

, and

N
XC=1,XC|ξµ,µ,C

′=0
Test,tE

, respectively. We will present this estimation in the following subsections.

Given the upper bound of the number of phase errors, the key length l is expressed as [24, 25]

lµ,tE=1 = N
ZA,ZC|ξµ,µ,C

′=0
Code,tE=1,≤∆/2

1− h

NY⊥,ZA,ZC|ξµ,µ,C
′=0

Code,tE=1,≤∆/2

N
ZA,ZC|ξµ,µ,C

′=0
Code,tE=1,≤∆/2

− λEC,µ , (A12)

lµ,tE=2 = N
ZA,ZC|ξµ,µ,C

′=0
Code,tE=2,≤∆/2

1− h

NY||,ZA,ZC|ξµ,µ,C
′=0

Code,tE=2,≤∆/2

N
ZA,ZC|ξµ,µ,C

′=0
Code,tE=2,≤∆/2

− λEC,µ , (A13)

where, h(x) is the binary entropy function, and λEC,µ is the amount of information exchanged for error correction.

In the next section, we explain the estimation of N
XC=1,XC|ξµ,µ,C

′=0
Test,tE

in the following sections.

5. Estimation of N
XC=1,XC|ξ

µ,µ,C′=0
Code,tE

from N
XC=1,XC|ξ

µ,µ,C′=0
Test,tE

In this section, we explain the estimation of N
XC=1,XC|ξµ,µ,C

′=0
Code,tE

. First, recall the discussion in Sec. A 3 that the

choice between the Code and the Test modes within the events ZC′ = 0 and µA = µA = µ is independent of any other
events, and we employ this argument in estimating N

XC=1,XC|ξµ,µ,C
′=0

Code,tE

from N
XC=1,XC|ξµ,µ,C

′=0
Test,tE

. For this, observe that

N
XC=1,XC|ξµ,µ,C

′=0
Code,tE

and N
XC=1,XC|ξµ,µ,C

′=0
Test,tE

remain unchanged even if we perform the XC basis measurement on systems

C in the Code mode with the selection of ZC basis. This is so because measurements on different systems commute.
Therefore, only for the purpose for estimating N

XC=1,XC|ξµ,µ,C
′=0

Code,tE

from N
XC=1,XC|ξµ,µ,C

′=0
Test,tE

, we are allowed to suppose

that Alice measures systems C with the XC basis, and then each of the instances with XC = 1 is assigned either to the
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Test mode or to the selection of XC basis in the Code mode with probabilities sXC
and 1 − sXC

, respectively. Here,
sXC

:= pT/(pT + pCpXC
). That is, we have N

XC=1,XC|ξµ,µ,C
′=0

Code,tE

+ N
XC=1,XC|ξµ,µ,C

′=0
Test,tE

of 1’s and these 1’s are assigned

either to the Test or Code modes with the Bernoulli trials, and we have that

N
XC=1,XC|ξµ,µ,C

′=0
Code,tE

=
1− sXC

sXC

N
XC=1,XC|ξµ,µ,C

′=0
Test,tE

(A14)

holds. Next problem is to estimate N
XC=1,XC|ξµ,µ,C

′=0
Test,tE

by using the decoy state method, which we present in the next

section.

6. Estimation of N
XC=1,XC|ξ

µ,µ,C′=0
Test,tE

using the decoy state method in the asymptotic limit

In this section, we present how to estimate N
XC=1,XC|ξµ,µ,C

′=0
Test,tE

. For this, recall that in the Test mode systems PA and

PB are measured with the photon number basis, and therefore states of composite systems of the signal and reference
pulses in E1 and E2 are classical mixtures of photon number states. Therefore, we can decompose N

XC=1,XC|ξµ,µ,C
′=0

Test,tE

into

N
XC=1,XC|ξµ,µ,C

′=0
Test,tE

=
∑
nA,nB

N
XC=1,XC|ξµ,µ,C

′=0
Test,tE

,nA,nB
.

(A15)

Here, N
XC=1,XC|ξµ,µ,C

′=0
Test,tE

,nA,nB
is the number of the events with XC = 1 and the selection of XC among the events

where the event specified by ξµ,µ,C
′=0

Test,tE
occurred, and Alice and Bob respectively emitted nA and nB photons. We define

N
XC=1,XC|ξ

µA,µB,C
′=0

Test,tE
,nA,nB

in the same manner. Here, recall that the subscript XC| is to emphasize the Gedanken

measurement, in which we replace all the ZC basis in the Test mode with the XC basis. Next, in order to compute
N

XC=1,XC|ξµ,µ,C
′=0

Test,tE

, we further decompose Eq. (A15) into

N
XC=1,XC|ξµ,µ,C

′=0
Test,tE

=
∑

nA,nA|(nA,nB)/∈{(0,0),(1,0),(0,1),(1,1)}

N
XC=1,XC|ξµ,µ,C

′=0
Test,tE

,nA,nB

≤
∑

nA,nA|(nA,nB)/∈{(0,0),(1,0),(0,1),(1,1)}

N
XC|ξµ,µ,C

′=0
Test,tE

,nA,nB
. (A16)

where N
XC|ξµ,µ,C

′=0
Test,tE

,nA,nB
is the same as the number of events with nA and nB photons emitted and ξµ,µ,C

′=0
Test,tE

in

the fictitious protocol. Here, the inequality is due to the fact that the event specified by XC = 1 is a subset of the
one specified by XC = 0 ∪ XC = 1, which is denoted by XC. In Eq. (A16), we have used the fact that we have
chosen the states in Eqs. (A2)-(A5) such that the probability of observing XC = 1 for C′ = 0 is exactly zero for
(nA, nB) ∈ {(0, 0), (1, 0), (0, 1), (1, 1)} (see Appendix G for more detail). Eq. (A16) means that once we can estimate
the number N

XC|ξµ,µ,C
′=0

Test,tE
,nA,nB

, then we can estimate the quantity of our interest that we do not measure in the

fictitious protocol. Importantly, in estimating N
XC|ξµ,µ,C

′=0
Test,tE

,nA,nB
, it does not matter which basis we use for the

measurements. This confirms the justification of the use of the Gedanken measurement.
From Eqs. (A16), one can see that our problem is to estimate N

XC|ξµ,µ,C
′=0

Test,tE
,nA,nB

. For this, recall the standard

decoy state argument that when Alice and Bob respectively emit nA and nB photons to Charlie, those photons do not
contain any information about the intensity setting. This is so because we assume that there is no state preparation
flaw and side channel. Therefore, one can imagine that Alice and Bob perform the photon number measurements
first, and then they probabilistically assign their intensity settings after Charlie announces his detection result tE.
With this observation, we have ∑

nA,nB

NnA,nB|ξC
′=0

Test,tE

qµA,µB|nA,nB
= N

XC|ξ
µA,µB,C

′=0

Test,tE

, (A17)

where qµA,µB|nA,nB
, is a probability that Alice and Bob respectively select an intensity setting µA and µB, given that

Alice and Bob respectively emit nA and nB photons (the explicit form of qµA,µB|nA,nB
is given in Appendix H). Thanks
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to the assumption of the infinite decoy states, which we have assumed for simplicity of discussions, we can obtain
NnA,nB|ξC

′=0
Test,tE

using the experimentally available data. After obtaining this, we consider to probabilistically assign

intensity settings to those photon number instances to have

N
XC|ξµ,µ,C

′=0
Test,tE

,nA,nB
= NnA,nB|ξC

′=0
Test,tE

qµ,µ|nA,nB
. (A18)

By substituting this into Eq. (A16) we can express N
XC=1,XC|ξµ,µ,C

′=0
Code,tE

from N
XC=1,XC|ξµ,µ,C

′=0
Test,tE

through Eq. (A14).

This concludes the security proof in the asymptotic limit.

Appendix B: Relationship between the phase states and the number states

In this Appendix, we prove Eq. (2). For this, first, we show the identity 〈m|n〉 = δm,n as

〈m|n〉 =
1

2π

∫ 2π

0

∫ 2π

0

dθ′dθei(−mθ
′+nθ)δ(θ′ − θ) =

1

2π

∫ 2π

0

dθ′ei(−m+n)θ′ = δm,n . (B1)

Next, we prove Eq. (2). Let us define

|Ψ〉P,B :=
1√
2π

∫ 2π

0

dθ|θ〉P|eiθ
√
µ〉

B
, (B2)

and we calculate P〈n|Ψ〉P,B using Eq. (3) to obtain

P〈n|Ψ〉P,B =
1

2π

∫ 2π

0

∫ 2π

0

dθ′dθe−inθP〈θ′|θ〉P|eiθ
√
µ〉

B

=
1

2π

∫ 2π

0

dθ′e−inθ
′
|eiθ′√µ〉

B

= e−µ/2
∞∑
m=0

√
µm
√
m!

(
1

2π

∫ 2π

0

dθ′e−i(n−m)θ′
)
|m〉B

= e−µ/2
√
µn
√
n!
|n〉B . (B3)

Therefore, by noting that
∑∞
n=0 |n〉P〈n| = 1̂1P, we have the relationship as

|Ψ〉P,B = 1̂1P|Ψ〉P,B = e−µ/2
∞∑
n=0

√
µn
√
n!
|n〉P|n〉B , (B4)

which concludes the proof.

Appendix C: Definition of a phase error

In this section, we consider a situation in which Charlie behaves honestly, that is, we see how the state evolves
when there is no channel losses and noises and Charlie performs a single photon counting measurement. For this, we
present the relationship between an input state and an output state of Charlie’s beam splitter as

|α〉E1|β〉E2 → |(α+ β)/
√

2〉E1′ |(α− β)/
√

2〉E2′ . (C1)

Here, E1’ and E2’ denote the output modes of the beam splitter, and α and β are complex numbers for representing
coherent states. We define that Charlie announces tE = 1 (tE = 2) when he observes a detection event only in E1’
(E2’), and he announces the non-detection event for all the other cases. With this relationship, one can see up to the
normalization factor that

|ΨZA(θ, µ)〉A,E1|ΨZB(θ, µ)〉B,E2

→ |0Z〉A|0Z〉B|
√

2µ〉E1′ |0〉E2′ + |1Z〉A|1Z〉B| −
√

2µ〉E1′ |0〉E2′

+ |0Z〉A|1Z〉B|0〉E1′ |
√

2µ〉E2′ + |1Z〉A|0Z〉B|0〉E1′ | −
√

2µ〉E2′ ,
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and

|ΨYA
(θ, µ)〉A,E1|ΨYB

(θ, µ)〉B,E2

→ |0Y〉A|0Y〉B| − i
√

2µ〉E1′ |0〉E2′ + |1Y〉A|1Y〉B|i
√

2µ〉E1′ |0〉E2′

+ |0Y〉A|1Y〉B|0〉E1′ | − i
√

2µ〉E2′ + |1Y〉A|0Y〉B|0〉E1′ |i
√

2µ〉E2′ ,

where we consider the case with θA = θB = θ and µA = µB = µ for simplicity. These equations suggest that when
Charlie observes a single-photon in the event tE = 1, we obtain the state |0Z〉A|0Z〉B − |1Z〉A|1Z〉B from the Z basis
and |0Y〉A|0Y〉B − |1Y〉A|1Y〉B from the Y basis. On the other hand, when Charlie observes a single-photon in the
event tE = 2, we obtain the state |0Z〉A|1Z〉B − |1Z〉A|0Z〉B from the Z basis and |0Y〉A|1Y〉B − |1Y〉A|0Y〉B from the
Y basis. From this, one can see that Alice and Bob obtain the same bit value if Alice flips her bit value only when
Charlie announces tE = 2.

Next, we consider how we should define the phase error. For this, we first consider tE = 1. Note that |0Z〉A|0Z〉B −
|1Z〉A|1Z〉B can be rewritten as |0Y〉A|0Y〉B − |1Y〉A|1Y〉B, where we have used |0Z〉 = e−iπ/4(|0Y〉 + i|1Y〉)/

√
2 and

|1Z〉 = eiπ/4(|0Y〉 − i|1Y〉)/
√

2. This may lead us to a conclude that for tE = 1, we adopt the definition of the phase
error such that it is an erroneous event in Alice and Bob’s fictitious Y basis measurements given the Z basis state
preparation.

Similarly, as for tE = 2, by noting that |0Z〉A|1Z〉B − |1Z〉A|0Z〉B can be rewritten as |0Y〉A|1Y〉B − |1Y〉A|0Y〉B, we
may conclude that for tE = 2, we adopt the definition of the phase error such that it is a coincidence event in Alice
and Bob’s fictitious Y basis measurements given the Z basis state preparation.

Appendix D: Security proof in the finite key size regime

In this Appendix, we present an information theoretic security proof in the finite key size regime.

1. The key length in the finite key size regime

The security proof in the finite key size regime is based on the fictitious protocol we introduced in Appendix A 1.
In particular, we directly borrow results and arguments made in Appendix A 1-A 3, and we start with considering an
event with C ′ = 0, µA = µB = µ in the Code mode, and the state corresponding to this event is

|Ψ(θA, θB, µ, µ)〉C,A,B,E1,E2

=

√
p

(AB)
Z |0Z〉C|ΨZA

(θA, µ)〉A,E1|ΨZB
(θB, µ)〉B,E2 +

√
p

(AB)
Y |1Z〉C|ΨYA

(θA, µ)〉A,E1|ΨYB
(θB, µ)〉B,E2 , (D1)

which can be rewritten as

|Ψ(θA, θB, µ, µ)〉C,A,B,E1,E2

= |0X〉C
(
p

(AB)
Z |ΨZA(θA, µ)〉A,E1|ΨZB(θB, µ)〉B,E2 + p

(AB)
Y |ΨYA(θA, µ)〉A,E1|ΨYB

(θB, µ)〉B,E2

)
+ |1X〉C

√
p

(AB)
Z p

(AB)
Y

(
|ΨZA

(θA, µ)〉A,E1|ΨZB
(θB, µ)〉B,E2 − |ΨYA

(θA, µ)〉A,E1|ΨYB
(θB, µ)〉B,E2

)
. (D2)

Here, p
(AB)
Z := pZA

pZB
/(pZA

pZB
+ pYA

pYB
), p

(AB)
Y := pYA

pYB
/(pZA

pZB
+ pYA

pYB
), |0X〉C :=

√
p

(AB)
Z |0Z〉C +√

p
(AB)
Y |1Z〉C , and |1X〉C :=

√
p

(AB)
Y |0Z〉C −

√
p

(AB)
Z |1Z〉C . Next, we consider a probability pZC=1 (pXC=1) of ob-

taining the bit value 1 from measuring system C with the {|0Z〉C, |1Z〉C} ({|0X〉C, |1X〉C}) basis. Recalling that the
length of a Bloch vector is equal to or less than 1 [22], we have

(1− 2pZC=1)
2

+
1

sin2 Θ
[(1− 2pXC=1)− (1− 2pZC=1) cos Θ]

2 ≤ 1 , (D3)

where sin Θ = 2

√
p

(AB)
Z p

(AB)
Y and cos Θ = p

(AB)
Z − p(AB)

Y with 0 ≤ Θ ≤ π. This inequality can be simplified to

1− 2pXC=1 ≤ (p
(AB)
Z − p(AB)

Y )(1− 2pZC=1) + 4

√
p

(AB)
Z p

(AB)
Y

√
pZC=1(1− pZC=1) . (D4)
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In the analysis in [22], the starting inequality for the analysis is not this inequality but

1− 2pXC=1 ≤ 2
√
pZC=1(1− pZC=1) , (D5)

which is a special case of Eq. (D4) with p
(AB)
Z = p

(AB)
Y = 1/2. Now, we directly employ Eq. (D4) in the analysis

in [38] (note that the condition “sb” in the analysis in [38] is guaranteed in our case because we are considering Eq.
(D1) in which Alice and Bob’s state preparations coincide) and we obtain

pZC
− 2

pZC

pXC

p
(i)

XC=1,XC|ξµ,µ,C
′=0

Code,tE
,≤∆/2

≤ (p
(AB)
Z − p(AB)

Y )

(
pZC
− 2p

(i)

Y⊥,YA,ZC|ξµ,µ,C
′=0

Code,tE
,≤∆/2

)
+ (p

(AB)
Z − p(AB)

Y )

(
pZC
− 2p

(i)

Y||,YA,ZC|ξµ,µ,C
′=0

Code,tE
,≤∆/2

)
+ 4

√
p

(AB)
Z p

(AB)
Y

√
p

(i)

Y⊥,YA,ZC|ξµ,µ,C
′=0

Code,tE
,≤∆/2

p
(i)

Y⊥,ZA,ZC|ξµ,µ,C
′=0

Code,tE
,≤∆/2

+ 4

√
p

(AB)
Z p

(AB)
Y

√
p

(i)

Y||,YA,ZC|ξµ,µ,C
′=0

Code,tE
,≤∆/2

p
(i)

Y||,ZA,ZC|ξµ,µ,C
′=0

Code,tE
,≤∆/2

= 2(p
(AB)
Z − p(AB)

Y )

(
pZC − p

(i)

YA,ZC|ξµ,µ,C
′=0

Code,tE
,≤∆/2

)
+ 4

√
p

(AB)
Z p

(AB)
Y

√
p

(i)

Y⊥,YA,ZC|ξµ,µ,C
′=0

Code,tE
,≤∆/2

p
(i)

Y⊥,ZA,ZC|ξµ,µ,C
′=0

Code,tE
,≤∆/2

+ 4

√
p

(AB)
Z p

(AB)
Y

√
p

(i)

Y||,YA,ZC|ξµ,µ,C
′=0

Code,tE
,≤∆/2

p
(i)

Y||,ZA,ZC|ξµ,µ,C
′=0

Code,tE
,≤∆/2

(D6)

Now, we need to convert Eq. (D6) into the inequality in terms of numbers, and for this we first take summation
over i ∈ {1, 2, · · · , N

ξµ,µ,C
′=0

Code,tE
,≤∆/2

}, and then with the help of concavity of the square root function to obtain

pZC
N
ξµ,µ,C

′=0
Code,tE

,≤∆/2
− 2

pZC

pXC

N
ξ
µ,µ,C′=0
Code,tE

,≤∆/2∑
i=1

p
(i)

XC=1,XC|ξµ,µ,C
′=0

Code,tE
,≤∆/2

≤ 2(p
(AB)
Z − p(AB)

Y )

pZC
N
ξµ,µ,C

′=0
Code,tE

,≤∆/2
−

N
ξ
µ,µ,C′=0
Code,tE

,≤∆/2∑
i=1

p
(i)

YA,ZC|ξµ,µ,C
′=0

Code,tE
,≤∆/2



+ 4

√
p

(AB)
Z p

(AB)
Y

√√√√√√√

N
ξ
µ,µ,C′=0
Code,tE

,≤∆/2∑
i=1

p
(i)

Y⊥,YA,ZC|ξµ,µ,C
′=0

Code,tE
,≤∆/2



N
ξ
µ,µ,C′=0
Code,tE

,≤∆/2∑
i=1

p
(i)

Y⊥,ZA,ZC|ξµ,µ,C
′=0

Code,tE
,≤∆/2



+ 4

√
p

(AB)
Z p

(AB)
Y

√√√√√√√

N
ξ
µ,µ,C′=0
Code,tE

,≤∆/2∑
i=1

p
(i)

Y||,YA,ZC|ξµ,µ,C
′=0

Code,tE
,≤∆/2



N
ξ
µ,µ,C′=0
Code,tE

,≤∆/2∑
i=1

p
(i)

Y||,ZA,ZC|ξµ,µ,C
′=0

Code,tE
,≤∆/2

 (D7)

Then, we apply Azuma’s inequality [37] to the summations of probabilities, each of which is associated to the ex-
pectation value for the corresponding event in N

ξµ,µ,C
′=0

Code,tE
,≤∆/2

times of trials (note that the number of the trials is

conceptually fixed), and we have the relationship in terms of number as
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pZC
N
ξµ,µ,C

′=0
Code,tE

,≤∆/2
− 2

pZC

pXC

(
N

XC=1,XC|ξµ,µ,C
′=0

Code,tE

+N
ξµ,µ,C

′=0
Code,tE

,≤∆/2
δXC=1,µ

)
≤ 2(p

(AB)
Z − p(AB)

Y )

[
pZC

N
ξµ,µ,C

′=0
Code,tE

,≤∆/2
−
(
N

YA,ZC|ξµ,µ,C
′=0

Code,tE
,≤∆/2

+ Ñ
ξµ,µ,C

′=0
Code,tE

,≤∆/2
δYA,Y⊥,µ

)]
+ 4

√
p

(AB)
Z p

(AB)
Y

√(
N
Y⊥,YA,ZC|ξµ,µ,C

′=0
Code,tE

,≤∆/2
+N

ξµ,µ,C
′=0

Code,tE
,≤∆/2

δYA,Y⊥,µ

)

×

√(
N
Y⊥,ZA,ZC|ξµ,µ,C

′=0
Code,tE

,≤∆/2
+N

ξµ,µ,C
′=0

Code,tE
,≤∆/2

δZA,Y⊥,µ

)

+ 4

√
p

(AB)
Z p

(AB)
Y

√(
N
Y||,YA,ZC|ξµ,µ,C

′=0
Code,tE

,≤∆/2
+N

ξµ,µ,C
′=0

Code,tE
,≤∆/2

δYA,Y||,µ

)

×

√(
N
Y||,ZA,ZC|ξµ,µ,C

′=0
Code,tE

,≤∆/2
+N

ξµ,µ,C
′=0

Code,tE
,≤∆/2

δZA,Y||,µ

)
, (D8)

which holds probability at least 1 − εXC=1,µ − εYA,Y⊥,µ − εZA,Y⊥,µ − εYA,Y||,µ − εZA,Y||,µ (see Appendix F for the

relationships between ε’s and δ’s, in which ε’s are any positive value). Here, each ε represents a failure probability of

each of the estimation, and Ñ
ξµ,µ,C

′=0
Code,tE

,≤∆/2
= N

ξµ,µ,C
′=0

Code,tE
,≤∆/2

if p
(AB)
Z ≤ p(AB)

Y , and Ñ
ξµ,µ,C

′=0
Code,tE

,≤∆/2
= N

ξµ,µ,C
′=0

Code,tE
,≤∆/2

if p
(AB)
Z ≥ p

(AB)
Y , and we used N

XC=1,XC|ξµ,µ,C
′=0

Code,tE

≥ N
XC=1,XC|ξµ,µ,C

′=0
Code,tE

,≤∆/2
where N

XC=1,XC|ξµ,µ,C
′=0

Code,tE
,≤∆/2

is the

number of the events XC = 1 and XC among the events specified by ξµ,µ,C
′=0

Code,tE
and ≤ ∆/2. Note that N

ξµ,µ,C
′=0

Code,tE
,≤∆/2

and N
ξµ,µ,C

′=0
Code,tE

,≤∆/2
are not directly obtained in the experiment. This is so because we have a decomposition

N
ξµ,µ,C

′=0
Code,tE

,≤∆/2
= N

ZC|ξµ,µ,C
′=0

Code,tE
,≤∆/2

+ N
XC|ξµ,µ,C

′=0
Code,tE

,≤∆/2
, and N

XC|ξµ,µ,C
′=0

Code,tE
,≤∆/2

cannot be directly obtained in the

actual protocol (Alice and Bob do not announce their basis selections when the XC basis is chosen in the Code
mode). See Appendix E for the derivation of the bounds and the explicit forms, which holds probability at least
1 − εC,µ,≤∆/2 − εC,µ,≤∆/2. By taking the asymptotic limit of, i.e. neglecting δ’s and the bounds of the numbers, we

have the inequality presented in Eq. (A11).
As for the key length, given the upper bound of the number of phase errors, the key length l is expressed as [24, 25]

lµ,tE=1 = N
ZA,ZC|ξµ,µ,C

′=0
Code,tE=1,≤∆/2

1− h

NY||,ZA,ZC|ξµ,µ,C
′=0

Code,tE=1,≤∆/2

N
ZA,ZC|ξµ,µ,C

′=0
Code,tE=1,≤∆/2

− log2

2

εPA,µ
− λEC,µ , (D9)

lµ,tE=2 = N
ZA,ZC|ξµ,µ,C

′=0
Code,tE=2,≤∆/2

1− h

NY⊥,ZA,ZC|ξµ,µ,C
′=0

Code,tE=2,≤∆/2

N
ZA,ZC|ξµ,µ,C

′=0
Code,tE=2,≤∆/2

− log2

2

εPA,µ
− λEC,µ , (D10)

where, h(x) is the binary entropy function, and λEC,µ is the amount of information exchanged for error correction.
Here, when we define εPE,µ as the probability that the phase error estimation fails and choose a εPA,µ, then the key

is εs,µ-secret with εs,µ :=
√

2
√
εPA,µ + εPE,µ, where

εPE,µ := εXC=1,µ + εYA,Y⊥,µ + εZA,Y⊥,µ + εYA,Y||,µ + εZA,Y||,µ + εC,µ,≤∆/2 + εC,µ,≤∆/2 + εXC=1,est,µ , (D11)

where εXC=1,est,µ is the failure probability of estimating N
XC=1,XC|ξµ,µ,C

′=0
Code,tE

, which will be given by Eq. (D20). From

next subsections, we derive N
XC=1,XC|ξµ,µ,C

′=0
Code,tE

.

2. Estimation of N
XC=1,XC|ξ

µ,µ,C′=0
Code,tE

from N
XC=1,XC|ξ

µ,µ,C′=0
Test,tE

In this subsection, we explain the estimation of N
XC=1,XC|ξµ,µ,C

′=0
Code,tE

, which is an upper bound of N
XC=1,XC|ξµ,µ,C

′=0
Code,tE

,

from N
XC=1,XC|ξµ,µ,C

′=0
Test,tE

. First, recall the discussion in Sec. A 3 that the choice between the Code and the Test
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modes for ZC′ = 0 and µA = µA = µ is independent of any other events, and we employ this argument to estimate
N

XC=1,XC|ξµ,µ,C
′=0

Code,tE

from N
XC=1,XC|ξµ,µ,C

′=0
Test,tE

. Next, observe that N
XC=1,XC|ξµ,µ,C

′=0
Code,tE

and N
XC=1,XC|ξµ,µ,C

′=0
Test,tE

remain

unchanged even if we perform the XC basis measurement on systems C in the Code mode with the selection of ZC

basis. This is so because measurements on different systems commute. Therefore, only for the purpose for estimating
N

XC=1,XC|ξµ,µ,C
′=0

Code,tE

from N
XC=1,XC|ξµ,µ,C

′=0
Test,tE

, we are allowed to suppose that Alice measures systems C with the XC

basis, and then each of the instances with XC = 1 is assigned either to the Test mode or to the selection of XC basis
in the Code mode with probabilities sXC

and 1− sXC
, respectively. Here, sXC

:= pT/(pT + pCpXC
). That is, we have

N
XC=1,XC|ξµ,µ,C

′=0
Code,tE

+ N
XC=1,XC|ξµ,µ,C

′=0
Test,tE

of 1’s and these 1’s are assigned either to the Test or Code modes with the

Bernoulli trials. Moreover, by recalling that the more event XC = 1 we have the more information leakage occurs, we
consider a pessimistic situation that we have N

XC=1,XC|ξµ,µ,C
′=0

Code,tE

+N
XC=1,XC|ξµ,µ,C

′=0
Test,tE

of 1’s in total. Noting that the

number of the trials is conceptually fixed, and this trial is an identical and independent trial, we can use the Chernoff
bound [34], and we have that

N
XC=1,XC|ξµ,µ,C

′=0
Code,tE

≤ 1− sXC
+ δTC,µ

sXC
− δTC,µ

N
XC=1,XC|ξµ,µ,C

′=0
Test,tE

(D12)

holds with probability at least 1−εTC,µ (see Appendix F for the relationship between εTC,µ and δTC,µ). Next problem

is to estimate N
XC=1,XC|ξµ,µ,C

′=0
Test,tE

by using the decoy state method, which we present in the next section.

3. Estimation of N
XC=1,XC|ξ

µ,µ,C′=0
Test,tE

and N
XC=1,XC|ξ

µ,µ,C′=0
Test,tE

using the decoy state method

In this section, we present how to estimate N
XC=1,XC|ξµ,µ,C

′=0
Test,tE

. For this, we start with Eq. (A16), which means

that our problem is reduced to the estimation of N
XC|ξµ,µ,C

′=0
Test,tE

,nA,nB
for various (nA, nB). Next, recall the standard

decoy state argument that when Alice and Bob respectively emit nA and nB photons to Charlie, those photons do not
contain any information about the intensity setting. This is so because we assume that there is no state preparation
flaw and side channel. Therefore, one can imagine that Alice and Bob perform the photon number measurements
first, and then they probabilistically assign their intensity settings after Charlie announces his detection result tE.
With this observation, we first define the following expected quantities for each of the combinations of the intensity
settings as

ExµA,µB|ξC
′=0

Test,tE

:=
∑
nA,nB

NnA,nB|ξC
′=0

Test,tE

qµA,µB|nA,nB
.

(D13)

Here, NnA,nB|ξC
′=0

Test,tE

is the number of nA and nB photon emission events among events ξC
′=0

Test,tE
, and qµA,µB|nA,nB

is a probability that Alice and Bob respectively select an intensity setting µA and µB, given that Alice and Bob
respectively emit nA and nB photons (the explicit form of qµA,µB|nA,nB

is given in Appendix H). By noting that these
expectation values are associated to independent but non-identical trials whose number is conceptually fixed, we can
apply the Hoeffding’s inequality [35] to them, and we obtain∣∣∣∣NXC|ξ

µA,µB,C
′=0

Test,tE

− ExµA,µB|ξC
′=0

Test,tE

∣∣∣∣ ≤ NXC|ξ
µA,µB,C

′=0

Test,tE

δµA,µB
, (D14)

which holds probability at least 1− 2εµA,µB (see Appendix F for the relationship between εµA,µB and δµA,µB). Here,
note that N

XC|ξ
µA,µB,C

′=0

Test,tE

is available in the actual protocol because Alice and Bob exchange the bases information in

the event ξµA,µB,C
′=0

Test,tE
(recall that XC| represents the Gedanken measurement, and the ZC basis is used in the fictitious

protocol).
From Eqs. (D13)-(D14), we can numerically obtain a lower and a upper bounds of NnA,nB|ξC

′=0
Test,tE

using the experi-

mentally available data, and we denote them by NnA,nB|ξC
′=0

Test,tE

and NnA,nB|ξC
′=0

Test,tE

, which is valid probability at least

1− εdecoy,Fock with

εdecoy,Fock :=
∑
µA,µB

2εµA,µB . (D15)
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After obtaining the lower bound, we consider to probabilistically assign intensity settings to those photon number
instances. For this, we consider the following expectation values

∑
nA,nB|(nA,nB)∈{(0,0),(1,0),(0,1),(1,1)}

NnA,nB|ξC
′=0

Test,tE

qµ,µ|nA,nB
, (D16)

which can be associated to the actual number by using the Hoeffding’s inequality to have that

N
XC|ξµ,µ,C

′=0
Test,tE

,nA≤1,nB≤1
=

∑
nA,nB|(nA,nB)∈{(0,0),(1,0),(0,1),(1,1)}

NnA,nB|ξC
′=0

Test,tE

qµ,µ|nA,nB

−

 ∑
nA,nB|(nA,nB)∈{(0,0),(1,0),(0,1),(1,1)}

NnA,nB|ξC
′=0

Test,tE

 δµ,µ|nA≤1,nB≤1

(D17)

holds probability at least 1 − εµ,µ|nA≤1,nB≤1 (see Appendix F for the relationship between εµ,µ|nA≤1,nB≤1 and
δµ,µ|nA≤1,nB≤1). From this, we have

N
XC|ξµ,µ,C

′=0
Test,tE

= N
XC|ξµ,µ,C

′=0
Test,tE

−N
XC|ξµ,µ,C

′=0
Test,tE

,nA≤1,nB≤1
, (D18)

leading to

N
XC=1,XC|ξµ,µ,C

′=0
Code,tE

:=
1− sXC

+ δTC,µ

sXC − δTC,µ

(
N

XC|ξµ,µ,C
′=0

Test,tE

−N
XC|ξµ,µ,C

′=0
Test,tE

,nA≤1,nB≤1

)
. (D19)

Finally, by taking a summation over all ε’s appearing in this subsection, we have the failure probability of estimating
N

XC=1,XC|ξµ,µ,C
′=0

Code,tE

as

εXC=1,est,µ = εTC,µ + εdecoy,Fock + εµ,µ|nA≤1,nB≤1 . (D20)

Appendix E: Bounds of N
XC|ξ

µ,µ,C′=0
Code,tE

,≤∆/2

In this Appendix, we estimate bounds of N
XC|ξµ,µ,C

′=0
Code,tE

,≤∆/2
. For the estimation, we exploit the fact that the ZC

basis or the XC basis is chosen probabilistically in the Code mode. In this case, N
XC|ξµ,µ,C

′=0
Code,tE

,≤∆/2
(N

ZC|ξµ,µ,C
′=0

Code,tE
,≤∆/2

)

is an unknown (a known) quantity in the actual protocol. Then, we imagine that we conduct N
XC|ξµ,µ,C

′=0
Code,tE

,≤∆/2
+

N
ZC|ξµ,µ,C

′=0
Code,tE

,≤∆/2
times of the Bernoulli trials (note that this number is conceptually fixed), in which the ZC basis

and the XC basis are selected with probability pZC
and pXC

, respectively. Thanks to the fact that this trial is an
identical and independent trial, we can use the Chernoff bound, we have for each µ ∈ {µ1, µ2, µ3} that

N
XC|ξµ,µ,C

′=0
Code,tE

,≤∆/2
≤ N

XC|ξµ,µ,C
′=0

Code,tE
,≤∆/2

≤ N
XC|ξµ,µ,C

′=0
Code,tE

,≤∆/2
, (E1)

where

N
XC|ξµ,µ,C

′=0
Code,tE

,≤∆/2
:=

1− pZC
− δC,µ,≤∆/2

pZC + δC,µ,≤∆/2

N
ZC|ξµ,µ,C

′=0,≤∆/2
Code,tE

N
XC|ξµ,µ,C

′=0
Code,tE

,≤∆/2
:=

1− pZC + δC,µ,≤∆/2

pZC
− δC,µ,≤∆/2

N
ZC|ξµ,µ,C

′=0
Code,tE

,≤∆/2

(E2)

holds at least probability 1 − εC,µ,≤∆/2 − εC,µ,≤∆/2 with εC,µ,≤∆/2 := e
−D(pZC

+δC,µ,≤∆/2||pZC
)N

ZC|ξ
µ,µ,C′=0
Code,tE

,≤∆/2

and

εC,µ,≤∆/2 := e
−D(pXC

−δC,µ,≤∆/2||pXC
)N

ZC|ξ
µ,µ,C′=0
Code,tE

,≤∆/2

.
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Importantly, notice that the upper and lower bounds are expressed by N
ZC|ξµ,µ,C

′=0
Code,tE

,≤∆/2
, which is available in the

actual protocol. With these bounds, we have

N
ξµ,µ,C

′=0
Code,tE

,≤∆/2
:= N

ZC|ξµ,µ,C
′=0

Code,tE
,≤∆/2

+N
XC|ξµ,µ,C

′=0
Code,tE

,≤∆/2
, (E3)

N
ξµ,µ,C

′=0
Code,tE

,≤∆/2
:= N

ZC|ξµ,µ,C
′=0

Code,tE
,≤∆/2

+N
XC|ξµ,µ,C

′=0
Code,tE

,≤∆/2
, (E4)

which are used in Eq. (D8).

Appendix F: Summary of the relationships between ε’s and δ’s

In this section, we summarize all the relationships between ε’s and δ’s. For this, we define fAz(x, y) :=√
(2/x) ln(1/y), D(x||y) := x ln x

y + (1 − x) ln
(

1−x
1−y

)
, and fHoe(x, y) :=

√
1/(2x) ln(1/y). With these definitions,

the relationships are given as follows:

1. δXC=1,µ = fAz(N
ξµ,µ,C

′=0
Code,tE

,≤∆/2
, εXC=1,µ). See Eq. (E3) for the definition of N

ξµ,µ,C
′=0

Code,tE
,≤∆/2

.

2. δYA,Y⊥,µ = fAz(N
ξµ,µ,C

′=0
Code,tE

,≤∆/2
, εYA,Y⊥,µ). See Eq. (E3) for the definition of N

ξµ,µ,C
′=0

Code,tE
,≤∆/2

.

3. δZA,Y⊥,µ = fAz(N
ξµ,µ,C

′=0
Code,tE

,≤∆/2
, εZA,Y⊥,µ). See Eq. (E3) for the definition of N

ξµ,µ,C
′=0

Code,tE
,≤∆/2

.

4. δYA,Y||,µ = fAz(N
ξµ,µ,C

′=0
Code,tE

,≤∆/2
, εYA,Y||,µ). See Eq. (E3) for the definition of N

ξµ,µ,C
′=0

Code,tE
,≤∆/2

.

5. δZA,Y||,µ = fAz(N
ξµ,µ,C

′=0
Code,tE

,≤∆/2
, εZA,Y||,µ). See Eq. (E3) for the definition of N

ξµ,µ,C
′=0

Code,tE
,≤∆/2

.

6. εC,µ,≤∆/2 := e
−D(pZC

+δC,µ,≤∆/2||pZC
)N

ZC|ξ
µ,µ,C′=0
Code,tE

,≤∆/2

and εC,µ,≤∆/2 :=

e
−D(pXC

−δC,µ,≤∆/2||pXC
)N

ZC|ξ
µ,µ,C′=0
Code,tE

,≤∆/2

.

7. εTC,µ := e
−D((1−sXC

)+δTC,µ||(1−sXC
))N

XC=1,XC|ξ
µ,µ,C′=0
Test,tE . Here, sXC := pT/(pT + pCpXC).

8. δµA,µB
= fHoe(N

XC|ξ
µA,µB,C

′=0

Test,tE

, εµA,µB|nA,nB
). Note that we have 9 δµA,µB

’s because we have 9 combinations of

Alice and Bob’s intensity settings.

9.

δµ,µ|nA≤1,nB≤1 = fHoe

 ∑
nA,nB|(nA,nB)∈{(0,0),(1,0),(0,1),(1,1)}

NnA,nB|ξC
′=0

Test,tE

, εµ,µ|nA≤1,nB≤1

 .

Here, NnA,nB|ξC
′=0

Test,tE

is obtained by the decoy state method.

Appendix G: Probability of obtaining XC = 1 for (nA, nB) ∈ {(0, 0), (1, 0), (0, 1), (1, 1)}

In this appendix, we show that the probability of obtaining XC = 1 for (nA, nB) ∈ {(0, 0), (1, 0), (0, 1), (1, 1)} is
zero. For this, recall that we have the definitions of the states as

|ΨZA
(θA, µA)〉A,E1 :=

1√
2

(
|0Z〉A(|eiθA√µA〉ref

|eiθA√µA〉sg)E1 + |1Z〉A(|eiθA√µA〉ref
|ei(θA+π)√µA〉sg)E1

)
,

|ΨYA
(θA, µA)〉A,E1 :=

1√
2

(
|1Y〉A(|eiθA√µA〉ref

|ei(θA+π/2)√µA〉sg)E1 + |0Y〉A(|
√
eiθAµA〉ref |ei(θA+3π/2)√µA〉sg)E1

)
,

|ΨZB(θB, µB)〉B,E2 :=
1√
2

(
|0Z〉B(eiθB |√µB〉ref

|eiθB√µB〉sg)E2 + |1Z〉B(|eiθB√µB〉ref
|ei(θB+π)√µB〉sg)E2

)
,

|ΨYB
(θB, µB)〉B,E2 :=

1√
2

(
|1Y〉B(|eiθB√µB〉ref

|ei(θB+π/2)√µB〉sg)E2 + |0Y〉B(|eiθB√µB〉ref
|ei(θB+3π/2)√µB〉sg)E2

)
.
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With these definitions, we have

P̂
(E1)
nA=0|ΨZA

(θA, µ)〉A,E1 =
e−µ√

2
(|0Z〉A|0, 0〉E1 + |1Z〉A|0, 0〉E1) = e−µ|0X〉A|0, 0〉E1 , (G1)

P̂
(E1)
nA=0|ΨYA(θA, µ)〉A,E1 =

e−µ√
2

(|1Y〉A|0, 0〉E1 + |0Y〉A|0, 0〉E1) = e−µ|0X〉A|0, 0〉E1 = P̂
(E1)
nA=0|ΨZA(θA, µ)〉A,E1 ,(G2)

P̂
(E1)
nA=1|ΨZA

(θA, µ)〉A,E1 =
eiθA
√
µe−µ
√

2
[|0Z〉A(|0, 1〉E1 + |1, 0〉E1)− |1Z〉A(|0, 1〉E1 − |1, 0〉E1)]

= eiθA
√
µe−µ (|0Z〉A|0Z〉E1 − |1Z〉A|1Z〉E1) /

√
2 , (G3)

P̂
(E1)
nA=1|ΨYA

(θA, µ)〉A,E1 =
eiθA
√
µe−µ
√

2
[|1Y〉Ai(|0, 1〉E1 − i|1, 0〉E1) + |0Y〉A(−i)(|0, 1〉E1 + i|1, 0〉E1)] (G4)

= ieiθA
√
µe−µ (|1Y〉A|1Y〉E1 − |0Y〉A|0Y〉E1) = P̂

(E1)
nA=1|ΨZA

(θA, µ)〉A,E1 ,

(G5)

and the ones for systems B and E2 can be obtained with the exactly the same manner. Here, we used the identity
that |0, 1〉 := |0X〉 and |1, 0〉 := |1X〉. Finally, by using these equations with the equation for C′ = 0 in the Code mode

|ζ〉C,A,E1,B,E2 :=
√
pZA

pZB
|0Z〉C|ΨZA

(θA, µ)〉A,E1|ΨZB
(θB, µ)〉B,E2 +

√
pYA

pYB
|1Z〉C|ΨYA

(θA, µ)〉A,E1|ΨYB
(θB, µ)〉B,E2 ,

(G6)

we can see that the probability of obtaining XC = 1 for (nA, nB) ∈ {(0, 0), (1, 0), (0, 1), (1, 1)} is exactly zero. For
instance, as for (nA, nB) = (1, 0), first note that

C〈1Z|ζ〉A,E1,B,E2 =
√
pZA

pZB
PYA

pYB
|1X〉C

(
|ΨZA

(θA, µ)〉A,E1|ΨZB
(θB, µ)〉B,E2 − |ΨYA

(θA, µ)〉A,E1|ΨYB
(θB, µ)〉B,E2

)
.

(G7)

Then, with Eqs. (G1)-(G5), we have that

P̂
(E1)
nA=1P̂

(E2)
nB=0C〈1Z|ζ〉A,E1,B,E2 = 0 , (G8)

which concludes the proof.

Appendix H: Explicit form of qµA,µB|nA,nB

Here, we present the explicit form of qµA,µB|nA,nB
as follows.

qµA,µB|nA,nB
=
qnA,nB|µA,µB

qµA,µB

qnA,nB

(H1)

with

qnA,nB|µA,µB
:= e−2(µA+µB) (2µA)nA(2µB)nB

nA!nB!
, (H2)

qµA,µB
:=

pµA
pµB

pµA 6=µB
+ pµA=µB

pT
(for µA 6= µB) , (H3)

qµA,µB :=
pµA

pT

pµA 6=µB + pµA=µBpT
(for µA = µB) , (H4)

qµA=µB := p2
µ1

+ p2
µ2

+ p2
µ3
, (H5)

qµA 6=µB := 1− pµA=µB , (H6)

qnA,nB :=

µ1,µ2,µ3∑
µA,µB

qnA,nB|µA,µB
qµA,µB

. (H7)
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In Eq. (H2), recall that the mean photon numbers of system E1 and E2 are defined in terms of the double pulse and
therefore we have the factor of 2 in front of the mean photon numbers. In Eqs. (H3) and (H4), we take into account
that Alice and Bob perform the photon number measurements only in the Test mode within the event of µA = µB.
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