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A Hierarchical Transitive-Aligned Graph Kernel for

Un-attributed Graphs

Lu Bai1, Lixin Cui1∗, and Edwin R. Hancock3, IEEE Fellow

Abstract—In this paper, we develop a new graph kernel,
namely the Hierarchical Transitive-Aligned kernel, by transitively
aligning the vertices between graphs through a family of hier-
archical prototype graphs. Comparing to most existing state-of-
the-art graph kernels, the proposed kernel has three theoretical
advantages. First, it incorporates the locational correspondence
information between graphs into the kernel computation, and
thus overcomes the shortcoming of ignoring structural correspon-
dences arising in most R-convolution kernels. Second, it guar-
antees the transitivity between the correspondence information
that is not available for most existing matching kernels. Third,
it incorporates the information of all graphs under comparisons
into the kernel computation process, and thus encapsulates richer
characteristics. By transductively training the C-SVM classifier,
experimental evaluations demonstrate the effectiveness of the new
transitive-aligned kernel. The proposed kernel can outperform
state-of-the-art graph kernels on standard graph-based datasets
in terms of the classification accuracy.

Index Terms—Graph Kernels, Transitive Vertex Alignment

I. INTRODUCTION

Graph-based representations are powerful tools to represent

structure data that is described with pairwise relationships

between components. The main challenge arising in analyzing

the graph-based data is how to learn effective numeric features

of the discrete graph structures. One way to achieve this is to

employ graph kernels, that can characterize graph structures in

a high dimensional space and thus better preserve the structure

information [1].

A. Related Works

In machine learning, a graph kernel is defined in terms

of a similarity measure between graph structures. One of the

most successful and widely used approach to defining kernels

between a pair of graphs is to decompose the graphs into sub-

structures and to compare/count pairs of specific isomorphic

substructures [1]. Specifically, any graph decomposition can

be used to define a kernel, e.g., the graph kernel based on

comparing all pairs of decomposed a) walks, b) paths and c)

restricted subgraph or subtree structures. With this scenario,

Kashima et al. [2] have proposed a Random Walk Kernel

by comparing pairs of isomorphic random walks in a pair of

graphs. Borgwardt et al. [3] have proposed a Shortest Path Ker-

nel by counting the numbers of pairwise shortest paths having

the same length in a pair of graphs. Costa and Grave [4] have

defined a Neighborhood Subgraph Pairwise Distance Kernel

Lu Bai, Lixin Cui∗ (Corresponding Author: cuilixin@cufe.edu.cn) are with
1Central University of Finance and Economics, Beijing, China. Edwin R.
Hancock is with 3University of York, York, UK.

by counting the number of pairwise isomorphic neighborhood

subgraphs. Gaidon et al. [5] have developed a Subtree Kernel

for comparing videos, by considering complex actions as

decomposed spatio-temporal parts and building corresponding

binary trees. The resulting kernel is computed by counting

the number of isomorphic subtree patterns. Other alternative

graph kernels that are specifically based on the R-convolution

framework also include a) the Segmentation Graph Kernel [6],

b) the Pyramid Quantized Weisfeiler-Lehman Kernel [7], c)

the Subgraph Matching Kernel [8], d) the Quantum-inspired

Jensen-Shannon Kernel [9], etc.

One major drawback arising in most existing R-convolution

kernels is that they neglect the relative locational information

between substructures. Specifically, the R-convolution kernels

usually tend to add an unit value when a pair of similar

substructures are identified. However, these kernels cannot

identify whether these similar substructures are correctly

aligned with the overall graph structures, i.e., they do not check

if the topological arrangement of the substructures is globally

correct. For an instance of a protein matching problem, we

may have similar substructures from different parts of the

overall structure. R-convolution kernels will count these as

being matching substructures, despite the fact that they are

not correctly aligned. To overcome this drawback, Bai et

al. [10], [11] have developed a family of novel vertex-based

matching kernels by aligning depth-based representations of

vertices [12]. All these matching kernels can be seen as

aligned subgraph or subtree kernels that incorporate explicit

structural correspondences, and thus address the drawback

of neglecting relative locations between substructures arising

in the R-convolution kernels. Unfortunately, these matching

kernels are not positive definite in general. This is because the

alignment steps for these kernels are not transitive. In other

words, if σ is the vertex-alignment between graph A and graph

B, and π is the alignment between graph B and graph C,

in general we cannot guarantee that the alignment between

graph A and graph C is π ◦ σ. On the other hand, Fröhlich

et al. [13] have demonstrated that the transitive alignment

step is necessary to guarantee the positive definiteness of the

vertex/edge based matching kernels. Furthermore, either the

R-convolution kernels or the matching kernels only capture

graph characteristics for each pair of graphs, and thus ignore

the information over other graphs. As a summary, developing

effective graph kernels still remains challenges.

B. Contributions

The aim of this work is to address the aforementioned short-

comings of existing graph kernels, by developing a new Hier-
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1-𝑙𝑒𝑣𝑒𝑙 𝑃rototype
Representations

Original Graphs 

2-𝑙𝑒𝑣𝑒𝑙 𝑃rototype
Representations

3-𝑙𝑒𝑣𝑒𝑙 𝑃𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒
Representations

0-𝑙𝑒𝑣𝑒𝑙 𝑃rototype
Representations

Fig. 1. The framework of constructing the hierarchical prototype representations. For a set of five original graphs, we commence by employing
their k-dimensional vectorial representations as the 0-level prototype representations (in this instance, k = 2). By employing the κ-means
method, we hierarchically identify a set of centroid points (i.e., means) as the h-level prototype representations over the set of the last h-level
prototype representations, where h varies from 1 to 3.

archical Transitive-Aligned Kernel (HTAK) for un-attributed

graphs. The key innovation of the proposed kernel is that of

transitively aligning vertices between pairs of graphs, through

a family of hierarchical prototype representations. That is,

given three vertices v, w and x from three different sample

graphs, if v and x are aligned, and w and x are aligned, the

proposed kernel can guarantee that v and w are also aligned.

As a result, the proposed kernel can theoretically guarantee

the positive definiteness. Specifically, the main contributions

of this work are threefold.

First, we propose a framework to compute a family of

H-hierarchical prototype representations that encapsulate the

dominant characteristics of the vectorial vertex representations

over a set of graphs G. This is achieved by hierarchically

performing the κ-means clustering method to identify a pre-

assigned number of cluster centroid as the h-level prototype

representations through the last h − 1-level prototype repre-

sentations, where the 0-level representations correspond to the

original vectorial vertex representations of all graphs. This in

turn generate a family of H-hierarchical prototype represen-

tations, when we vary h from 1 to H (i.e., 1 ≤ h ≤ H). We

show that the new hierarchical prototype representations not

only reflect the general structural information over all graphs,

but also represent a reliable pyramid of vertices over all graphs

at different levels.

Second, with the family of H-hierarchical prototype repre-

sentations to hand, we develop a graph matching method by

hierarchically aligning the vertices of each graph to its dif-

ferent h-level prototype representations. The resulting HTAK

kernel is defined by counting the number of aligned vertex

pairs. We show that the proposed kernel not only overcomes

the shortcoming of ignoring correspondence information be-

tween isomorphic substructures that arises in most existing

R-convolution kernels, but also guarantees the transitivity

between the correspondence information. As a result, the pro-

posed kernel guarantees positive definite that is not available

in existing alignment kernels [10], [11]. Furthermore, unlike

most existing graph kernels, the proposed kernel incorporates

the information of all graphs under comparisons into the kernel

computation process, and thus encapsulates richer character-

istics.

Third, by transductively training the C-SVM classifier

associated with the proposed HTAK kernel, we empirically

demonstrate the effectiveness of the new kernel appraoch. The

proposed kernel can outperform state-of-the-art graph kernels

as well as graph neural network models on standard graph

datasets in terms of the classification accuracy.

The remainder of this paper is organized as follows. Sec-

tion II introduces the framework of computing the hierarchical

prototype representations. Section III gives the definition of the

new kernel, Section IV provides experimental evaluations and

Section V concludes the work.

II. HIERARCHICAL PROTOTYPE REPRESENTATIONS

In this section, we propose a framework to compute a

family of H-hierarchical prototype representations that encap-

sulate the dominant characteristics over all vectorial vertex

representations in a set of graphs G. An instance of the

proposed framework to compute the hierarchical prototype

representations is shown in Fig.1. Specifically, let

R
k = {Rk

1 ,R
k
2 , . . . ,R

k
i , . . . ,R

k
N}

denote the k-dimensional vectorial representations of N ver-

tices over all graphs in G. We first adopt R
k as the set of

0-level prototype representations PR
0,k, i.e.,

PR
0,k = {PR0,k

1 ,PR0,k
2 , . . . ,PR0,k

i , . . . ,PR0,k
N0

}, (1)

where all the 0s indicate the current value of the parameter

h, N = N0, and each i-th element PR0,k
i corresponds to Rk

i .

To compute the set of the higher h-level (i.e., 1 ≤ h ≤ H)

prototype representations PR
h,k, we employ κ-means [14] to
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localize Nh centroid points over the set of the last lower h−1-

level prototype representations PR
h−1,k, by minimizing the

objective function

argmin
Ω

Nh∑

j=1

∑

PRh−1,k

i
∈cj

‖PRh−1,k
i − µk

j ‖
2
2, (2)

where Ω = (c1, c2, . . . , cj , . . . , cNh
) represents Nh clusters

over the set of h−1-level prototype representations PR
h−1,k,

and µk
j is the mean of the prototype representations be-

longing to the j-th cluster cj . We employ the Nh means

{µ1
j , µ

2
j , . . . , µ

k
j , . . . , µ

k
Nh

} as the set of h-level prototype

representations PR
h,k, i.e.,

PR
h,k = {PRh,k

1 ,PRh,k
2 , . . . ,PRh,k

j , . . . ,PRh,k
Nh

}, (3)

where each j-th element PRh,k
j corresponds to µk

j , and Nh

corresponds to the number of the h-layer prototype represen-

tations in PR
h,k.

Since the value of Nh (i.e., |PR
h,k|) is usually much

lower than that of Nh−1 (i.e., |PR
h−1,k|), the initialized set

of 0-level prototype representations PR
0,k correspond to the

original vectorial representations of the vertices over all graphs

in G, and the set of h-level prototype representations PR
h,k

are computed through the objective function of κ-means (i.e.,

Eq.(2)) that can gradually minimize the inner-vertex-cluster

sum of squares over the set of the last h − 1-level prototype

representations PR
h−1,k. When we vary the parameter h

from 1 to H , this procedure naturally forms a family of H-

hierarchical prototype representations as

PR
H,k = {PR

1,k,PR
2,k, . . . ,PR

h,k, . . . ,PR
H,k}, (4)

where each PR
h,k is the set of h-level prototype representa-

tions, and PR
H,k represents a reliable pyramid of the original

vertex representations over all graphs at different levels (i.e.,

the prototype representations of different h-levels).

Note that, to compute the family of H-hierarchical pro-

totype representations, in this work we employ the k-

dimensional depth-based (DB) representations as the original

k-dimensional vectorial vertex representations Rk (i.e., PR0,k
i )

to compute the different sets of h-level prototype representa-

tions PR
h,k. Certainly, computing the vertex representations

is an open problem, on can also utilize any other approach to

compute the initialized vectorial vertex representations [15],

[16]. Specifically, in this work, the specified DB representation

of each vertex is defined by measuring the entropies on a fam-

ily of k̃-layer expansion subgraphs rooted at the vertex [12],

where k̃ varies from 1 to k. Since each k̃-layer expansion

subgraph completely contains the whole topological structure

of the k̃ − 1-layer expansion subgraph, it is shown that such

a k-dimensional DB representation encapsulates rich entropic

content flow from each local vertex to the global graph

structure, as a function of depth. Fig.2 exhibits the detailed

process of computing the DB representation. Specifically, for

each sample graph Gp(Vp, Ep) ∈ G indicated by the black

color and its i-th vertex vi indicated by the red color in Fig.2,

we commence by computing the 1-layer neighborhood set N 1
i

as

N 1
i = {vj ∈ Vp | s(vi, vj) ≤ 1},

where s(vi, vj) is the shortest path between the i-th vertex

vi and the j-th vertex vj . The resulting 1-layer expansion

subgraph G1
p;i is defined as the substructure preserving the

vertices in N 1
i as well as the edges between them from the

original global graph Gp, i.e., the substructures surrounded

by the red broken line in Fig.2. Similarly, we also construct

the 2-layer and 3-layer expansion subgraphs surrounded by

the green and blue broken lines respectively in Fig.2. By

parity of reasoning, we generate a family of k̃-layer expansion

subgraphs rooted at vi (1 ≤ k̃ ≤ k). Note that, if k is

greater than the longest shortest path rooted from vi to the

remaining vertices of Gp, the k-layer expansion subgraph Gk
p;i

is the global structure of Gp. The resulting k-dimensional DB

representation rooted at vi is

DBk
p;i = {HS(G

1
p;i), · · · , HS(G

2
p;i), · · · , HS(G

k
p;i)]

T ,

where HS(·) is the Shannon entropy of a (sub)graph associated

with the steady state random walk [11].

III. HIERARCHICAL TRANSITIVE-ALIGNED KERNELS

In this section, we propose a novel Hierarchical Transitive-

Aligned Kernel (HTAK) for un-attributed graphs. We com-

mence by introducing a new hierarchical transitive vertex

matching method, through the family of H-hierarchical proto-

type representations. Moreover, we develop the HTAK kernel

based on the new vertex matching method.

A. Hierarchical Transitive Vertex Matching Methods

In this subsection, we develop a new hierarchical tran-

sitive vertex matching method, by hierarchically aligning

the vertices of each graph to each set of h-level prototype

representations from the family of H-hierarchical prototype

representations defined in Section II. For a set of T graphs

G = {G1, . . . , GT }, we commence by computing the fam-

ily of H-hierarchical prototype representations over the k-

dimensional vectorial vertex representations of all T graphs

as PR
H,k = {PR

1,k, . . . ,PR
h,k, . . . ,PR

H,k}. To establish

the correspondence information between the graph vertices,

we align the vectorial vertex representations of a sample

graph Gp(Vp, Ep) ∈ G to each set of h-level prototype

representations PR
h,k = {PRh,k

1 , . . . ,PRh,k
n , . . . ,PRh,k

Nh
}.

The alignment process is similar to that introduced in [11] for

point matching in a pattern space. Specifically, we compute

a h-level affinity matrix in terms of the Euclidean distances

between the two sets of points as

Rh,k
p (i, n) = ‖Rk

p;i − PRh,k
n ‖2, (5)

where Rh,k
p is a |Vp|×Nh matrix, and each element Rh,k

p (i, n)
represents the distance between the k-dimensional vectrial

representation Rk
p;i of vi ∈ Vp and the n-th h-level prototype

representation PRh,k
n ∈ PR

h,k. For the affinity matrix Rh,k
p ,

the rows index the vertices of Gp, and the columns index the

h-level prototype representations in PR
h,k. If Rh,k

p (i, n) is the

smallest element in column n, we say that the k-dimensional

vectorial representation of vi is aligned to the n-th h-level

prototype representation PRh,k
n ∈ PR

h,k.
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1 − 𝑙𝑎𝑦𝑒𝑟 𝑒𝑥𝑝𝑎𝑛𝑠𝑖𝑜𝑛𝑠𝑢𝑏𝑔𝑟𝑎𝑝ℎ 𝐺𝑝;𝑖1

𝑣𝑒𝑟𝑡𝑒𝑥 𝑣𝑖
𝑆ample graph 𝐺𝑝

DB𝑝;𝑖k = 𝐻𝑆 𝐺𝑝;𝑖1 , 𝐻𝑆 𝐺𝑝;𝑖2 , … , 𝐻𝑆 𝐺𝑝;𝑖k 𝑇

…

…

DB representation

2 − 𝑙𝑎𝑦𝑒𝑟 𝑒𝑥𝑝𝑎𝑛𝑠𝑖𝑜𝑛𝑠𝑢𝑏𝑔𝑟𝑎𝑝ℎ 𝐺𝑝;𝑖2 3 − 𝑙𝑎𝑦𝑒𝑟 𝑒𝑥𝑝𝑎𝑛𝑠𝑖𝑜𝑛𝑠𝑢𝑏𝑔𝑟𝑎𝑝ℎ 𝐺𝑝;𝑖3 𝑘 − 𝑙𝑎𝑦𝑒𝑟 𝑒𝑥𝑝𝑎𝑛𝑠𝑖𝑜𝑛𝑠𝑢𝑏𝑔𝑟𝑎𝑝ℎ 𝐺𝑝;𝑖k

Fig. 2. The process of computing the depth-based representation rooted at each vertex.

Similarly, for each other sample graph Gq(Vq, Eq) ∈ G,

we also align its k-dimensional vectorial representation Rk
q;j

of each vertex vj ∈ Vq to each set of h-level prototype

representations PR
h,k. We compute the element Rh,k

q (j, n)
for the corresponding affinity matrix Rh,k

q as

Rh,k
q (j, n) = ‖Rk

q;j − PRh,k
n ‖2. (6)

Definition (Vertex matching between a pair of graphs):

For the pair of graphs Gp and Gq of G, if Rh,k
p (i, n) and

Rh,k
q (j, n) are both the smallest elements in columns n of

Rh,k
p and Rh,k

q respectively, we say that the vertex vi of Gp

and the vertex vj of Gq are aligned, i.e., there is an one-to-

one correspondence between vi and vj . More formally, let the

h-level correspondence matrix M
(h,k)
p ∈ {0, 1}|Vp|×Nh record

the state of alignments for Rh,k
p , and

Mh,k
p (i, n) =





1 if Rh,k
p (i, n) is the smallest

element in row n, and |Sk
i | 6= 0;

0 otherwise.
(7)

Note that, Sk
i indicates the set of vertices having the shortest

path of length k to vi, and the condition |Sk
i | 6= 0 guarantees

that the k-layer expansion subgraph rooted at vi does not

surpass the global structure of Gp (i.e., the k-dimensional

DB representation of vi exists). Similarly, the h-level corre-

spondence matrix M
(h,k)
q ∈ {0, 1}|Vq|×Nh records the state of

alignments for Rh,k
q , and satisfies

Mh,k
q (j, n) =





1 if Rh,k
q (j, n) is the smallest

element in row n; and |Sk
j | 6= 0;

0 otherwise.
(8)

Based on Eq.(7) and Eq.(8), the h-level correspondence matrix

M
(h,k)
p;q ∈ {0, 1}|Vp|×|Vq|, that records the state of correspon-

dence information between pairwise vertices of Gp and Gq ,

is defined as

M(h,k)
p;q = (Mh,k

p )(Mh,k
q )T . (9)

For the h-level correspondence matrix M
(h,k)
p;q , the rows index

the vertices of Gp, and the columns index the the vertices of

Gq . If M
(h,k)
p;q (i, j) = 1, there is an one-to-one correspondence

between the vertices vi ∈ Vp and vj ∈ Vq , i.e., we say that

they are aligned or matched. ✷

Note that, the vertex alignment information identified by

M
(h,k)
p;q is transitive, i.e., for three vertices u, v and w, if u

and v are aligned, and v and w are aligned, then u and w

are also aligned. This is because M
(h,k)
p;q identifies the vertex

correspondences by evaluating whether the vertices are aligned

to the same set of h-level prototype representations PR
h,k ∈

PR
H,k. Finally, by hierarchically aligning each graph to the

set of different h-level prototype representations PR
h,k from

the H-hierarchical prototype representations PRH,k, we obtain

a family of H-hierarchical transitive vertex correspondence

matrices between Gp and Gq as

M
(H,k)
p;q = {M(1,k)

p;q , · · · ,M(h,k)
p;q , · · · ,M(H,k)

p;q }. (10)

Remarks: The procedure of computing the family of H-

hierarchical correspondence matrices M
(H,k)
p;q is completely

unsupervised, since we do not utilize any class labels of the

graphs in G during the computational process.

B. The Hierarchical Transitive-Aligned Kernel

We develop a new Hierarchical Transitive-Aligned Kernel

(HTAK) for graphs, based on the H-hierarchical transitive

vertex correspondence matrices between graphs

Definition (The HTAK kernel): For the set of graphs G,

we commence by computing the k-dimensional DB represen-

tations of the vertices over all graphs in G, as the 0-level

prototype representations PR
0,k. Based on PR

0,k and the

definition in Section II, we generate a family of H-hierarchical

prototype representations as

PR
H,k = {PR

1,k, . . . ,PR
h,k, . . . ,PR

H,k},

where PR
h,k represents the set of h-level prototype represen-

tations, and 1 ≤ h ≤ H . For a pair of graphs Gp and Gq

from G, by aligning the vertices of Gp and Gq to the sets of

different h-level prototype representations PR
h,k ∈ PR

H,k,
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we compute the family of H-hierarchical transitive vertex

correspondence matrices as

M
(H,k)
p;q = {M(1,k)

p;q , · · · ,M(h,k)
p;q , · · · ,M(H,k)

p;q }

between Gp(Vp, Ep) and Gq(Vq, Eq) based on Eq.(10). With

M
(H,k)
p;q to hand, the proposed HTAK kernel k

(H)
HTAK between

Gp and Gq is defined as

k
(H)
HTAK(Gp, Gq) =

H∑

h=1

K∑

k=1

|Vp|∑

i=1

|Vq|∑

j=1

M(h,k)
p;q (i, j), (11)

where K is the greatest value of the parameter k (i.e., k varies

from 1 to K). As we have stated in Section II, the parameter k

indicates the dimension of the vectorial vertex representations,

and we propose to employ the k-dimensional DB representa-

tions of vertices as the vectorial vertex representations [12].

Since the DB representations are computed based on the k̃-

layer expansion subgraphs (1 ≤ k̃ ≤ k), the greatest value K

of the parameter k corresponds to that of the longest shortest

path between vertices over all graphs in G. Eq.(11) indicates

that k
(H)
HTAK(Gp, Gq) counts the number of aligned vertex pairs

between Gp and Gq over all the h-level vertex correspondence

matrices M
(h,k)
p;q ∈ M

(H,k)
p;q . ✷

Lemma. The kernel k
(H)
HTAK is positive definite (pd).

Proof. Intuitively, the proposed HTAK kernel k
(H)
HTAK is pd,

since it counts pairs of aligned vertices over the H correspon-

dence matrices M
(h,k)
p;q ∈ M

(H,k)
p;q and the correspondence

information identified by the proposed kernel is transitive.

More formally, for the graph Gp ∈ G, let F (h,k)(Gp) be a Nh-

dimensional feature vector that counts the number of vertices

aligned to the corresponding h-level prototype representations

PR
h,k ∈ PR

H,k, and

F (h,k)(Gp) =[

|Vp|∑

i=1

Mh,k
p (i, 1), . . . ,

|Vp|∑

i=1

Mh,k
p (i, n),

. . . ,

|Vp|∑

i=1

Mh,k
p (i, Nh)]

T , (12)

where the n-th element
∑|Vp|

i=1 M
h,k
p (i, n) of F (h,k)(Gp)

counts the number of vertices (from Gp) that are all aligned

to the n-th h-level prototype representation PRh,k
n ∈ PR

h,k,

and Mh,k
p (i, n) is defined by Eq.(7). Similarly, for the graph

Gq , we have the feature vector F (h,k)(Gq) as

F (h,k)(Gq) =[

|Vq|∑

j=1

Mh,k
q (j, 1), . . . ,

|Vq|∑

i=1

Mh,k
q (j, n),

. . . ,

|Vq|∑

i=1

Mh,k
q (j,Nh)]

T , (13)

Based on Eq.(12) and Eq.(13), the HTAK kernel k
(H)
HTAK

defined by Eq.(11) can be re-written as

k
(H)
HTAK(Gp, Gq) =

H∑

h=1

K∑

k=1

〈F (h,k)(Gp), F
(h,k)(Gq)〉, (14)

where 〈F (h,k)(Gp), F
(h,k)(Gq)〉 is an inner product, i.e., it is a

pd linear kernel. As a result, the kernel k
(H)
HTAK can be seen as a

kernel that sums the linear kernels 〈F (h,k)(Gp), F
(h,k)(Gq)〉,

and is thus pd. �

C. Discussions of the Proposed Kernel

The new vertex alignment kernel k
(H)
HTAK has some important

properties that are not available for some existing state-of-the-

art graph kernels.

First, unlike the existing alignment kernels [13], [11], [10],

[17], [18] that can also identify correspondence information

between vertices or edges, the aligned vertices identified by the

proposed HTAK kernel k
(H)
HTAK are transitive. This is because,

as we have stated in Section III-A, the vertex alignment

method employed in the proposed kernel can transitively align

vertices between graphs. As a result, the proposed HTAK

kernel k
(H)
HTAK not only overcomes the shortcoming of ignoring

structural correspondences arising in most R-convolution ker-

nels, but also reflects more precise correspondence information

than the existing alignment or matching kernels [13], [11],

[10], [17], [19], [18].

Second, as Fröhlich et al. [13] have stated, the transitive

alignment step is necessary to guarantee the positive definite-

ness of alignment kernels. Thus, the proposed HTAK kernel

k
(H)
HTAK guarantees the positive definiteness that is not available

to the aforementioned alignment kernels [13], [11], [10], [17],

[19], [18].

Third, the computation of the proposed HTAK kernel

k
(H)
HTAK for a pair of graphs incorporates the information

over all graphs under comparisons. This is because k
(H)
HTAK

is computed by hierarchically aligning the vertices of each

graph to the different h-level prototype representations of

the family of H-hierarchical prototype representations, that

is hierarchically identified by κ-means method over the k-

dimensional vectorial vertex representations over all graphs in

G, i.e., k
(H)
HTAK is not only computed though each individual

pair of graphs. By contrast, most existing graph kernels only

capture graph characteristics for each pair of graphs [3], [20],

[21], [22], [23], [4]. As a result, the proposed kernel k
(H)
HTAK

may reflect richer graph characteristics.

Finally, note that, since the basics of the proposed kernel

k
(H)
HTAK is based on k-dimensional DB representations of

vertices than do not encapsulate any vertex or edge label

information. The proposed kernel k
(H)
HTAK cannot accommodate

the vertex or edge label information. However, we can still per-

form k
(H)
HTAK on attributed graphs by focusing on topological

information without vertex/edge labels.

D. Computational Analysis

For the set of T graphs G each of which has n ver-

tices and m edges, computing the proposed kernel k
(H)
HTAK

requires time complexity O(HIN1Tn+HT 2N1+HTN1n+
Tn log n + Tmn), where H corresponds to the set number

of different h-level prototype representations from the family

of H-hierarchical prototype representations, I is the iteration

number for the κ-means method, and N1 is the number of
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1-level prototype representations in PR
1,k. This is because

computing the required k-dimensional DB representations of

vertices (i.e., the 0-level prototype representations PR
0,k)

relies on the shortest path computation on each graph, and

thus requires time complexity O(Tn log n+Tmn). Computing

the Nh h-level prototype representations of PR
h,k relies on

κ-means method on the last Nh−1 h − 1-layer prototype

representations of PR
h−1,k. Since N1 ≫ N2 ≫ · · · ≫ NH ,

the whole process requires time complexity O(HIN1Tn).
Calculating the kernel value between graphs relies on comput-

ing the k-level correspondence matrix M
(h,k)
p ∈ {0, 1}|Vp|×Nh

in terms of each set of h-level prototype representations

PR
h,k, and counting the number of vertices of each graph

aligning to the Nh prototype representations in PR
h,k. Since

N1 ≫ N2 ≫ · · · ≫ NH , the whole process requires

time complexity O(HT 2N1 + HTN1n). As a result, the

whole time complexity of computing the proposed kernel

k
(H)
HTAK over all T graphs of G requires time complexity

O(HIN1Tn+HT 2N1 +HTN1n+ Tn log n+ Tmn). Note

that, in this work, we employ the fastest K-means MATLAB

implementation developed by Deng Cai [24], and the default

number of I is 100. Moreover, in this work, most graphs

are sparse graphs (i.e., n < m ≪ n2) and H is set as

5. As a result, the whole time complexity is approximately

O(N1Tn+ T 2N1 + TN1n+ Tn2), indicating that our kernel

can usually be computed in a polynomial time.

IV. EXPERIMENTS

We evaluate the proposed HTAK kernels on nine bench-

mark graph datasets from computer vision, bioinformat-

ics, and social networks. These datasets include: BAR31,

BSPHERE31, GEOD31, MUTAG, NCI1, CATH2, COLLAB,

IMDB-B, and IMDB-M. Here the BAR31, BSPHERE31 and

GEOD31 datasets are all abstracted from the SHREC 3D

Shape database, that consists of 15 classes and 20 individ-

uals per class [25]. Specifically, we establish the BAR31,

BSPHERE31 and GEOD31 datasets through three mapping

functions,i.e., a) ERG barycenter: distance from the center of

mass/barycenter, b) ERG bsphere: distance from the center of

the sphere that circumscribes the object, and c) ERG integral

geodesic: the average of the geodesic distances to the all other

points. On the other hand, other datasets are all available on

the website http://graphkernels.cs.tu-dortmund. More details of

these datasets are shown in Table.I.

A. Experiments on Graph Classification

Experimental Setup: We evaluate the performance of the

proposed HTAK kernel in terms of graph classification prob-

lems on the aforementioned nine benchmark graph datasets.

We also compare our kernel with a) five alternative state-of-

the-art graph kernels and b) four alternative state-of-the-art

deep learning methods for graphs. Specifically, the graph

kernels include 1) the aligned subtree kernel (ASK) [11],

2) the Weisfeiler-Lehman subtree kernel (WLSK) [26], 3) the

shortest path graph kernel (SPGK) [3], 4) the graphlet count

graph kernel [27] with graphlet of size 4 (GCGK), and 5) the

Jensen-Tsallis q-difference kernel (JTQK) [28] with q = 2.

On the other hand, the deep learning methods include 1)

the deep graph convolutional neural network (DGCNN) [29],

2) the PATCHY-SAN based convolutional neural network

for graphs (PSGCNN) [30], 3) the diffusion convolutional

neural network (DCNN) [31], and 4) the deep graphlet kernel

(DGK) [32].

For the WLSK kernel and the JTQK kernel, we set the

highest dimension (i.e., the highest height of subtrees) of the

Weisfeiler-Lehman isomorphism (for the WLSK kernel) and

the tree-index method (for the JTQK kernel) as 10, based on

the statements of the authors in [28], [26]. For the ASK kernel,

we set the highest layer of the required DB representation

as 50 based on [11], to guarantee the best performance. For

each kernel, we compute the kernel matrix on each graph

dataset. We perform a 10-fold cross-validation where the

classification accuracy is computed using a C-Support Vector

Machine (C-SVM). In particular, we make use of the LIBSVM

library[33]. For each dataset and each kernel, we compute the

optimal C-SVMs parameters. We repeat the whole experiment

10 times and report the average classification accuracy (±
standard error) in Table II. Note that, for the proposed HTAK

kernel we vary the parameter H from 1 to 5. Thus, for

each dataset we compute 5 kernel matrices for the HTAK

kernel. The classification accuracy for each time is thus the

average accuracy over the 5 kernel matrices. Moreover, for the

proposed HTAK kernel on each dataset, we set the parameter

Nh as Nh = 0.2Nh−1, where h varies from 1 to 5 and N0

corresponds to the vertex number over all graphs in the dataset.

For the alternative deep learning methods, we report the

best results for the DGCNN, PSGCNN, DCNN, DGK models

from their original papers. Moreover, note that the PSGCNN

model can leverage additional edge features, most of the

graph datasets and the alternative methods do not leverage

edge features. Thus, we do not report the results associated

with edge features in the evaluation. The classification ac-

curacies and standard errors for each deep learning method

are shown in Table.III. Finally, note that, as we have stated

in Section III-B, the computation of the HTAK kernel for a

pair of graphs incorporates the information over all graphs

under comparisons. Thus the proposed HTAK kernel can also

incorporate the test graphs into the training process of C-

SVMs. In this sense, the proposed HTAK kernel can be

seen as an instance of transductive learning [34] (i.e., we

transductively train the C-SVM), where all the graphs available

(both from the training and test sets) are used to compute the

graph centroid representations. However, note that we do not

observe the class labels of the test graphs during the training.

Finally, note that, some methods are not evaluated by the

original authors on some datasets, thus we do not exhibit these

results.

Results and Discussions: In terms of the classification accu-

racy, we observe that our HTAK kernel can outperform the

alternative graph kernels and deep learning methods on most

datasets. For the alternative graph kernel methods, only the

accuracies of the ASK kernel on the BAR31 and MUTAG

datasets, and the accuracy of the SPGK kernel on the IMDB-

M dataset as well as that of the JTQK kernel on the NCI1

dataset are higher than the proposed HTAK kernel. On the
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TABLE I
INFORMATION OF THE GRAPH BASED COMPUTER VISION (CV), BIOINFORMATICS (BIO), AND SOCIAL NETWORK (SN) DATASETS

Datasets BAR31 BSPHERE31 GEOD31 MUTAG NCI1 CATH2 COLLAB IMDB-B IMDB-M

Max # vertices 220 227 380 28 111 568 492 136 89
Mean # vertices 95.42 99.83 57.42 17.93 29.87 308.03 74.49 19.77 13.00
# graphs 300 300 300 188 4110 190 5000 1000 1500
# classes 15 15 15 2 2 2 3 2 3
Description CV CV CV Bio Bio Bio SN SN SN

TABLE II
CLASSIFICATION ACCURACY (IN % ± STANDARD ERROR) FOR COMPARISONS WITH GRAPH KERNELS.

Datasets BAR31 BSPHERE31 GEOD31 MUTAG NCI1 CATH2 COLLAB IMDB-B IMDB-M

HTAK 71.00 ± .45 62.90 ± .65 47.80 ± .49 87.32 ± .60 79.01 ± .14 87.89 ± .71 79.87 ± 0.15 72.89 ± 0.56 50.23 ± 0.18

ASK 73.10 ± .67 60.30 ± .44 46.21 ± .69 87.50 ± .65 78.47 ± .12 78.52 ± .67 77.53 ± 0.31 70.38 ± 0.72 50.12 ± 0.51

WLSK 58.53 ± .53 42.10 ± .68 38.20 ± .68 82.88 ± 0.57 84.77 ± .13 67.36 ± .63 77.39 ± 0.35 71.88 ± 0.77 49.50 ± 0.49

SPGK 55.73 ± .44 48.20 ± .76 38.40 ± .65 83.38 ± 0.81 74.21 ± .30 81.89 ± .63 58.80 ± 0.2 71.26 ± 1.04 51.33 ± 0.57

GCGK 23.40 ± .60 18.80 ± .50 22.36 ± .55 82.04 ± .39 63.72 ± .12 73.68 ± 1.09 − − −

JTQK 60.56 ± .35 46.93 ± .61 40.10 ± .46 85.50 ± .55 85.32 ± .14 68.70 ± .69 76.85 ± 0.40 72.45 ± 0.81 50.33 ± 0.49

TABLE III
CLASSIFICATION ACCURACY (IN % ± STANDARD ERROR) FOR COMPARISONS WITH DEEP LEARNING METHODS.

Datasets MUTAG NCI1 COLLAB IMDB-B IMDB-M

HTAK 87.32 ± .60 79.01 ± .14 79.87 ± 0.15 72.89 ± 0.56 50.23 ± 0.18

DGCNN 85.83 ± 1.66 74.44 ± .47 73.76 ± 0.49 70.03 ± 0.86 47.83 ± 0.85

PSGCNN 88.95 ± 4.37 76.34 ± 1.68 72.60 ± 2.15 71.00 ± 2.29 45.23 ± 2.84

DCNN 66.98 56.61 ± 1.04 52.11 ± 0.71 49.06 ± 1.37 33.49 ± 1.42

DGK 82.66 ± 1.45 62.48 ± .25 73.09 ± 0.25 66.96 ± 0.56 44.55 ± 0.52

other hand, for the alternative deep learning methods, only

the PSGCNN model on the MUTAG dataset is higher than

the proposed HTAK kernel.

In fact, the WLSK, ASK and JTQK kernels, as well as the

alternative deep learning approaches can all accommodate the

vertex label information, i.e., they can accommodate attributed

graphs. By contrast, the proposed HTAK kernel is designed for

un-attributed graphs and can cannot associate with any vertex

label information. On the other hand, only these deep learning

methods can provide an end-to-end learning framework for

graph classification. By contrast, the proposed HTAK kernel

associated with the C-SVM can only provide a shallow learn-

ing framework. However, even under such disadvantageous sit-

uations, the proposed HTAK kernel can still outperform these

methods on most datasets. This indicate that the proposed

kernel can learn better topological characteristics of graphs

than the remaining alternative methods, through the family

of H-hierarchical prototype representations that represent a

reliable pyramid of the original vertex representations over all

graphs at different levels (i.e., the prototype representations of

different h-levels).

The reasons for the effectiveness are fourfold. First, unlike

the alternative WLSK, SPGK, GCGK and JTQK kernels that

ignore the correspondences information between substructures,

the proposed HTAK kernel can hierarchically identify the

vertex correspondence information through the H-hierarchical

prototype representations. Second, compared to the ASK ker-

nel, the correspondence information identified by the HTAK

kernel are transitive. By contrast, the ASK kernel cannot guar-

antee the transitivity. As a result, the HTAK kernel can capture

more precise information for graphs than the ASK kernel.

Third, unlike alternative kernels, only the proposed kernel

incorporates the information of all graphs under comparisons

into the kernel computation. The HTAK kernel thus reflects

richer graph characteristics. Fourth, similar to the WLSK,

SPGK, GCGK and JTQK kernels, all the alternative deep

learning methods also do not associate with the structural cor-

respondence information into the learning framework. Overall,

the above observations demonstrate the effectiveness of the

proposed HTAK kernel.

V. CONCLUSIONS

In this paper, we develop a new Hierarchical Transitive-

Aligned kernel for graphs, that can transitively align the

vertices between graphs through a family of H-hierarchical

prototype graphs. Unlike most state-of-the-art graph kernels,

this kernel not only overcomes the shortcoming of ignoring

correspondence information between graphs, but also guaran-

tees the transitivity between the correspondence information.

Experimental evaluations have demonstrated the effectiveness

of the proposed new transitive aligned kernel. The proposed

kernel can outperform state-of-the-art graph kernels as well as

the deep learning methods in terms of graph classifications.

Our future work is to further extend the proposed kernel

for attributed graphs, so that the proposed kernel can ac-

commodate the vertex label information into the computation,

improving the performance the proposed kernel.
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