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VERTEX REPRESENTATIONS FOR YANGIANS OF KAC-MOODY ALGEBRAS

NICOLAS GUAY, VIDAS REGELSKIS, AND CURTIS WENDLANDT

Abstract. Using vertex operators, we build representations of the Yangian of a simply laced Kac-Moody
algebra and of its double. As a corollary, we prove the PBW property for simply laced affine Yangians.
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1. Introduction

Vertex operators originate from dual resonance models in theoretical physics. They were used by I. Frenkel
and V. Kac in their groundbreaking paper [FrKa] to build an explicit realization of the basic representation
of a simply-laced affine Lie algebra. Their work was later extended to non-simply laced affine Lie algebras
[BTM, GNOS], to quantum affine algebras [FrJi, Be, JiMi, JKM, Ji3, Ji4, ChJi], to twisted quantum affine
algebras and more general quantum Kac-Moody algebras [Ji1, Ji2], to toroidal and quantum toroidal algebras
[MRY, Sa], and to Lie superalgebra (e.g. [KSU]).

In this paper, we address the problem of developing an analogue of the work of I. Frenkel and V. Kac for
Yangians of simply laced Kac-Moody Lie algebras. Yangians form an important family of quantum algebras
which originate from physics, but were first properly defined in general by V. Drinfeld in [Dr]. They can be
obtained from quantum loop algebras via a limit procedure [Gu] and it turns out that Yangians and quantum
loop algebras become isomorphic after passing to certain completions [GTL1]. The first goal of this paper
is to construct representations of Yangians, via their centrally extended doubles (see Definition 3.1), using
vertex operators which act on a tensor product of a Fock space with a twisted group algebra (see Theorem
5.5). In the case of the Yangian associated to sln and gln, this was done in [IoKo, Io, Kh]. It should be noted
that our construction is not a direct consequence of the work of I. Frenkel and N. Jing [FrJi, Ji2] on vertex
operator representations of quantum affinizations associated to symmetric Kac-Moody algebras. Indeed, our
construction differs in at least one essential way from the one in [FrJi, Ji2], namely that we use a different
lattice to build the underlying Fock space.

The second goal of this paper is to prove a version of the Poincaré-Birkhoff-Witt Theorem for affine
Yangians of simply laced type (Theorem 6.9) using the vertex representations of Theorem 5.5. For Yangians
associated to simple Lie algebras, this theorem was proved in general in [Le], and for classical Lie algebras, a
version of the PBW Theorem stated in terms of the RTT-presentation of the Yangian can be found in [Mo]
and [AMR]; for affine Yangians, only the type A(1) has been considered before [Gu]. A separate proof of
the PBW property for simply laced affine Yangians has been announced in [YaZh2]. The argument in loc.
cit., which is of independent interest, uses the existence of a morphism from the Yangian of g to the reduced
Drinfeld double of the spherical subalgebra of a shuffle algebra associated to g [YaZh1, Cor. 3.4].
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2 N. GUAY, R. REGELSKIS, AND C. WENDLANDT

Our paper is structured as follows. Section 2 presents the definition of the Yangian Y (g) associated to a
symmetrizable Kac-Moody algebra g and describes its classical limit as the enveloping algebra of a certain
Lie algebra s (Proposition 2.7) which coincides with the current algebra g[t] when g is finite-dimensional. We
also recall results of Section 6 from [GNW] about a certain parameter dependent coproduct (Theorem 2.10)
which will be needed in Subsection 6.2 in order to build a faithful representation of Y (g). It is possible to
repeatedly apply this coproduct, but since it is not coassociative, one should proceed with care, as explained
at the end of Section 2.

In Section 3, we give the definition of the centrally extended Yangian double DY c(g) of g and study
its basic properties. When g is a finite-dimensional simple Lie algebra, a definition of DY c(g) was given
over twenty year ago in [Kh], where it was conjecturally described as the Hopf algebra double of a central
extension of Y (g). Although this interpretation seems to be limited to that setting, a general definition
can be obtained by inserting an arbitrary Cartan matrix into the explicit definition of DY c(g) provided in
[Kh, DiKh]. This procedure leads to Definition 3.1.

After giving the definition of DY c(g) (Definition 3.1, Lemma 3.4), we relate its classical limit to the
enveloping algebra of a certain Lie algebra t (Proposition 3.6), which in the finite-dimensional setting is just
the affine Lie algebra g[t±1]⊕CK associated to g. We conclude Section 3 with Proposition 3.8, which makes
precise how the Yangian maps into the centrally extended Yangian double.

The aforementioned Lie algebras s and t can also be described more explicitly when g is an untwisted affine
Lie algebra: in this case, they are isomorphic to the universal central extensions of two loop algebras. This
fact was proved in [MRY] and Section 4 serves to recall this description. In Proposition 4.7, we show that s
and t can be equivalently characterized as the universal central extensions of g′[t] and g′[t±1], respectively,
where g′ = [g, g] is the derived subalgebra of g. This description of s and t is also valid when g is finite-
dimensional. Our PBW Theorem for Y (g) (namely, Theorem 6.9) is stated as providing an isomorphism
between the associated graded ring of Y (g) (for a certain filtration) and the enveloping algebra of s, so the
results of Section 4 are relevant for our second main theorem.

The main section of this paper is Section 5. Assuming that g is a simply laced Kac-Moody algebra, we
construct a representation of the Yangian double DY c(g) (and thus of the Yangian Y (g)) which is given
by vertex operators and which factors through the Yangian double at level one (see Theorem 5.5 and also
Proposition 5.9 and Corollary 5.10 for slightly different versions of that theorem). This representation can
be realized in a space built from the tensor product of a Fock space with the twisted group algebra Cε[Q]
of the root lattice Q: see Definition 5.3 and (5.3). Its construction generalizes, and has been motivated
by, the results of Iohara [Io] for g = slN , as well as the results of [Kh] and [IoKo] which were stated for
g = sl2 and g = gl2, respectively. By considering carefully a certain filtration, our construction leads to
a representation of the Lie algebra t (Corollary 5.11) which is related, but not always isomorphic, to the
representation of t obtained from the classical vertex representation construction [FrKa, MRY]: this is made
precise in Proposition 5.17.

The last section contains a proof of the PBW Theorem for affine, simply laced Yangians: see Theorem
6.9. We prove that the associated graded ring of the Yangian Y (g) (for a certain filtration) is isomorphic
to the enveloping algebra U(s) of s. As a consequence, we obtain in Theorem 6.10 that the C[~]-algebra
version of the Yangian Y~(g) (see Definition 2.1) is a flat deformation of the enveloping algebra U(s) of s.
The main point of the proof of Theorem 6.9 is to show the injectivity of the natural epimorphism from U(s)
to the associated graded ring given in Proposition 2.9: this is accomplished by taking tensor products of the
vertex representation of Y (g) constructed in Section 5 (actually, it is necessary to consider a slightly larger
Kac-Moody algebra) and, by using a carefully chosen filtration, reducing the proof to the question of the
faithfulness of the corresponding vertex representation of s, which was addressed previously in [MRY].

Acknowledgements. The authors thank Yaping Yang and Gufang Zhao for sharing a preliminary version
of their proof of the Poincaré-Birkhoff-Witt Theorem for simply-laced affine Yangians using the shuffle
algebra approach. The first and third named authors gratefully acknowledge the financial support of the
Natural Sciences and Engineering Research Council of Canada provided via the Discovery Grant Program
and the Alexander Graham Bell Canada Graduate Scholarships - Doctoral Program, respectively. The
second named author acknowledges the financial support of the European Social Fund via grant number
09.3.3-LMT-K-712-02-0017.
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2. The Yangian of g

In this section we recall the definition of the Yangian and give some of its basic properties. Let g be
a symmetrizable Kac-Moody Lie algebra associated to an indecomposable Cartan matrix A = (aij)i,j∈I ,
where I is the set of vertices of the Dynkin diagram of g. We assume that A satisfies the condition

(2.1) min{|aij |, |aji|} ≤ 1 ∀ i, j ∈ I with i 6= j.

Though this constraint will not play a role until Section 4, the results of [Ji2, Na], together with Lemma
4.2 and Remark 5.15, suggest that the definition of the Yangian (and its centrally extended double) must
be modified in order to extend the vertex representation construction of Section 5 beyond the simply-laced
case. Let ( , ) be a fixed non-degenerate invariant symmetric bilinear form on g. We denote by {αi}i∈I the
set of simple positive roots. Set

dij =
1
2 (αi, αj) ∀ i, j ∈ I.

2.1. Definition of the Yangian.

Definition 2.1. The Yangian Y~(g) is the unital associative C[~]-algebra generated by the elements x±ir, hir,
for i ∈ I and r ∈ Z≥0, subject to the relations

[hir, hjs] = 0,(2.2)

[hi0, x
±
js] = ±2dijx

±
js,(2.3)

[x+ir , x
−
js] = δijhi,r+s,(2.4)

[hi,r+1, x
±
js]− [hir, x

±
j,s+1] = ±~dij

(
hirx

±
js + x±jshir

)
,(2.5)

[x±i,r+1, x
±
js]− [x±ir , x

±
j,s+1] = ±~dij

(
x±irx

±
js + x±jsx

±
ir

)
,(2.6)

∑

σ∈Sm

[x±irσ(1)
, [x±irσ(2)

, · · · , [x±i,rσ(m)
, x±js] · · · ]] = 0 for i 6= j and m = 1− aij .(2.7)

Remark 2.2. In the notation of [GNW], the above algebra is equal to Y~(g
′) where g′ is the derived subalgebra

[g, g]. For the definition of the full Yangian, see Definition 2.1 of [GNW]. For A of finite or affine type,

the condition (2.1) only excludes type A
(1)
1 . In this case the appropriate definition of the Yangian is given in

[BeTs, §1.2] and [Ko, Def. 5.1].

Note that Y~(g) is generated, as a C[~]-algebra, by x±ir , hir, for i ∈ I and 0 ≤ r ≤ 1: see [GNW, (2.10)].
We also observe that Y~(g) is equipped with a Z≥0-grading determined by

deg ~ = 1 and deg x±ir = deg hir = r ∀ i ∈ I, r ≥ 0.

We now give an equivalent definition of Y~(g) in terms of generating series which will prove useful in
Section 3. The following result is a translation of [GTL2, Prop. 2.3].

Proposition 2.3 (Prop. 2.3 of [GTL2]). Let x±i (z) =
∑

r≥0 x
±
irz

−r−1 and hi(z) =
∑

r≥0 hirz
−r−1 for each

i ∈ I. The defining relations of Y~(g) are equivalent to

hi(z)hj(w) = hj(w)hi(z),(2.8)

(z − w ∓ ~dij)hi(z)x
±
j (w) = (z − w ± ~dij)x

±
j (w)hi(z)± 2dijx

±
j (w)− [hi(z), x

±
j0],(2.9)

(z − w ∓ ~dij)x
±
i (z)x

±
j (w) = (z − w ± ~dij)x

±
j (w)x

±
i (z) + [x±i0, x

±
j (w)]− [x±i (z), x

±
j0],(2.10)

(z − w)[x+i (z), x
−
j (w)] = δij(hi(w) − hi(z)),(2.11)

∑

σ∈Sm

[x±i (zσ(1)), [x
±
i (zσ(2)), · · · , [x

±
i (zσ(m)), x

±
j (w)] · · · ]] = 0,(2.12)

where in the last relation i 6= j and m = 1− aij .

Remark 2.4. Multiplying (2.9) by z−1 and taking the residue at z = 0 gives

[hi0, x
±
j (w)] = ±2dijx

±
j (w).
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Multiplying the relation (2.11) by z−1 and taking the residue at z = 0 yields

(2.13) [x+i0, x
−
j (w)] = δijhi(w) ∀ i, j ∈ I.

Conversely, we have the following:

Proposition 2.5 (Prop. 3.3(3) of [AG]). The relation (2.11) is a consequence of (2.8), (2.9) and (2.13).

For each ζ ∈ C, let Yζ(g) be the C-algebra generated by {x±ir, hir}i∈I,r≥0 subject to the defining relations
of Definition 2.1 with ~ replaced by ζ. Equivalently,

Yζ(g) = Y~(g)/(~− ζ)Y~(g).

For the remainder of this paper our focus will primarily be on the Yangian Y (g) = Y1(g). The emphasis on
the single choice ζ = 1 is justified by the fact that the assignment

(2.14) x±ir , hir ∈ Y (g) 7→ ζ−rx±ir, ζ
−rhir ∈ Yζ(g)

extends to an isomorphism of algebras Y (g) → Yζ(g) for each fixed ζ ∈ C×. Note that Y (g) is no longer a
Z≥0-graded algebra, but rather a filtered algebra with ascending filtration {Fk}k≥0 determined by assigning
filtration degrees r to x±ir and hir for each i ∈ I and r ≥ 0.

2.2. The classical limit.

Definition 2.6. Let s be the Lie algebra generated by {X±
ir , Hir}i∈I,r≥0 subject to the defining relations

[Hir, Hjs] = 0,(2.15)

[Hir, X
±
js] = ±2dijX

±
j,r+s,(2.16)

[X+
ir , X

−
js] = δijHi,r+s,(2.17)

[X±
i,r+1, X

±
js] = [X±

ir , X
±
j,s+1],(2.18)

ad(X±
i0)

1−aij (X±
jr) = 0 for i 6= j.(2.19)

Note that s is a Z≥0-graded Lie algebra with degX±
ir = degHir = r for all i ∈ I and r ≥ 0.

In addition, s is always an extension of the current algebra g′[t]. Indeed, if {x±i , hi}i∈I denote the Chevalley
generators of g′, normalized so that (x+i , x

−
i ) = 1 and hi = [x+i , x

−
i ], then the assignment

(2.20) X±
ir , Hir 7→ x±i ⊗ tr, hi ⊗ tr ∀ i ∈ I and r ≥ 0

determines a surjective Lie algebra morphism s ։ g′[t]. This is an isomorphism when g is finite-dimensional,
but in general this is not the case. We will consider the situation where g is of affine type in more detail in
Section 4.

The next proposition illustrates that Y~(g) is a graded deformation of the enveloping algebra U(s).

Proposition 2.7. The assignment

(2.21) X±
ir , Hir 7→ x±ir , hir ∀ i ∈ I and r ≥ 0

extends to an isomorphism of graded C-algebras U(s) → Y0(g).

Proof. That (2.21) extends to an epimorphism of algebras U(s) ։ Y0(g) is immediate. Since the defin-
ing relations of Y0(g) are of Lie type, it is isomorphic to U(s′), where s′ is the Lie algebra generated by
{x±ir, hir}i∈I,r≥0 subject to the defining relations (2.15), (2.17), (2.18), in addition to the three relations

[hi0, x
±
js] = ±2dijx

±
js, [hi,r+1, x

±
js] = [hir , x

±
j,s+1],(2.22)

∑

σ∈Sm

[x±irσ(1)
, [x±irσ(2)

, · · · , [x±i,rσ(m)
, x±js] · · · ]] = 0 for i 6= j and m = 1− aij .(2.23)

To conclude that the assignment x±ir, hir 7→ X±
ir , Hir extends to Y0(g) → U(s) which is the inverse of the

morphism U(s) → Y0(g) defined by (2.21), it suffices to show that the relations of Definition 2.6 imply (2.22)
and (2.23).

Since (2.16) implies (2.22), we are left to deduce (2.23) from Definition 2.6. We will prove the stronger
result that (2.16), (2.18) and (2.19) imply

(2.24)
[
X±

i,r1
,
[
X±

i,r2
, . . . ,

[
X±

i,rm
, X±

js

]
· · ·
]]

= 0
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for all s, r1, . . . , rm ≥ 0 and i 6= j ∈ I.
From (2.18) and induction we obtain

(2.25) [X±
i,r+k, X

±
js] = [X±

ir , X
±
j,s+k] ∀ r, s, k ≥ 0 and i, j ∈ I.

This implies that for any fixed n ≥ 0 and k, s, r1, . . . , rn ∈ Z≥0, we have

ad(X±
i,r1+k)ad(X

±
i,r2

) · · ·ad(X±
i,rm

)(X±
j,s)

= ad(X±
i,r1

)ad(X±
i,r2

) · · · ad(X±
i,rm

)(X±
j,s+k).

This relation implies that if k1, . . . , kn ≥ 0 satisfy
∑n

a=1 ka = k, then

(2.26) [X±
ik, ad(X

±
i,0)

n−1(X±
js)] =

[
X±

i,k1
,
[
X±

i,k2
, . . . ,

[
X±

i,kn
, X±

js

]
· · ·
]]
.

Now let s, r1, . . . , rm ≥ 0 be arbitrary and set k =
∑m

a=1 ra. Applying ad(Hik) to (2.19) and using (2.16)
together with (2.26) twice gives (2.24). �

Remark 2.8. When g is finite-dimensional, it is known that Y~(g) is a flat deformation of U(s). We will
prove the analogous result for g of simply laced affine type in Theorem 6.10.

Recall the filtration {Fk}k≥0 on Y (g) defined at the end of Subsection 2.1. Let x̄±ir and h̄ir denote the
images of x±ir and hir in Fr/Fr−1 ⊂ grY (g), where F−1 = {0}. The following result is immediate from the
defining relations of Y (g).

Proposition 2.9. The assignment

X±
ir , Hir 7→ x̄±ir , h̄ir ∀ i ∈ I and r ≥ 0

extends to an epimorphism of algebras φ : U(s) ։ grY (g).

The statement that φ is injective is equivalent to the Poincaré-Birkhoff-Witt Theorem for the Yangian.
For g of finite type this was proven in the early 1990’s by Levendorskii [Le], but in the general setting this
remains a conjecture. We will prove the injectivity of φ for g of simply laced affine type in Section 6.

2.3. The coproduct ∆u. The Yangian of a finite-dimensional simple Lie algebra is well-known to admit
the structure of a Hopf algebra. In particular, it is equipped with a coassociative algebra homomorphism
∆ : Y (g) → Y (g) ⊗ Y (g), its coproduct. When the underlying simple Lie algebra is replaced with a more
general Kac-Moody algebra, the formulas used to define ∆ are no longer well-defined. However, it was shown
in [GNW] that, when g is affine, there is an algebra homomorphism ∆u : Y (g) → (Y (g)⊗ Y (g))((u)) which,
in a strictly formal sense, has limit at u = 1 which is in agreement with ∆. The definition of ∆u is contained
in the following theorem. Set h̃i1 = hi1 −

1
2h

2
i0 for all i ∈ I and �(a) = a⊗ 1 + 1⊗ a for all a ∈ Y (g).

Theorem 2.10 (Thm. 6.2 of [GNW]). Assume that the Cartan matrix A of g is of affine type, but not of

type A
(1)
1 or A

(2)
2 . Then there is an algebra homomorphism

∆u : Y (g) → (Y (g)⊗ Y (g))((u))

uniquely determined by

∆u(x
±
i0) = x±i0 ⊗ 1 + 1⊗ x±i0u

±1, ∆(hi0) = �(hi0),

∆u(h̃i1) = �(h̃i1)−
∑

α∈∆re
+

(α, αi)x
−
α ⊗ x+αu

ht(α),(2.27)

for all i ∈ I, where ∆re
+ is the set of positive real roots, ht(

∑
i∈I niαi) =

∑
i∈I ni, and x

±
α ∈ g±α are such

that (x+α , x
−
α ) = 1.

The morphism ∆u is not coassociative in the traditional sense, but it satisfies the “twisted” coassociativity
relation

(2.28) (∆u ⊗ id) ◦∆uv = (id⊗∆v) ◦∆u.

By repeated application of ∆u it is possible to obtain an algebra morphism ∆k
u : Y (g) → (Y (g)⊗(k+1))((u))

for each k ≥ 0. However, due to the presence of the parameter u and the twisted coassociativity property
(2.28), this must be handled carefully.
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Given an associative unital C-algebra A and a fixed k ≥ 1, we denote by A((uk, . . . , u1)) the localization
of A[[uk, . . . , u1]] at the multiplicative set

S = {umk

k · · ·um1
1 : ma ≥ 0}.

Equivalently, A((uk, . . . , u1)) can be realized as the subspace of A[[u±1
k , . . . , u±1

1 ]] consisting of elements
∑

ℓ1,...,ℓk∈Z

aℓk,...,ℓ1u
ℓk
k · · ·uℓ11

for which there exists N ≥ 0 such that aℓk,...,ℓ1 = 0 whenever ℓm < −N for any 1 ≤ m ≤ k, with product
obtained by extending the usual multiplication of formal series in A[[uk, . . . , u1]]. The key feature of this
algebra we will exploit is that

(2.29) evu,k : f(uk, . . . , u1) 7→ f(u, . . . , u) ∀ f(uk, . . . , u1) ∈ A((uk, . . . , u1)).

determines an algebra homomorphism evu,k : A((uk, . . . , u1)) → A((u)).
To define ∆k

u we will make use of auxiliary morphisms

∆u1,...uk
: Y (g) → (Y (g)⊗(k+1))((uk))((uk−1)) · · · ((u1))

which are defined recursively as follows: id⊗(k−1) ⊗∆uk
extends to a morphism

(Y (g)⊗k)((uk−1)) · · · ((u1)) → (Y (g)⊗(k+1))((uk))((uk−1)) · · · ((u1)),

and the composition of this morphism with ∆u1,...,uk−1
is precisely ∆u1,...,uk

. Inductively, we find that

∆u1,...,uk
(hi0) =

k+1∑

a=1

(hi0)a, ∆u1,...,uk
(x±i0) =

k+1∑

a=1

(x±i0)au
±1
1 · · ·u±1

a−1,

∆u1,...,uk
(h̃i1) =

k+1∑

a=1

(h̃i1)a −
∑

a<b

∑

α∈∆re
+

(α, αi)(x
−
α )a(x

+
α )bu

ht(α)
a · · ·u

ht(α)
b−1 ,

(2.30)

where (X)a = 1⊗(a−1) ⊗X ⊗ 1⊗(k+1−a), and the product u±1
1 · · ·u±1

a−1 with a = 1 is understood to equal 1.

Consequently, Image(∆u1,...,uk
) ⊂ Y (g)⊗(k+1)((uk, . . . u1)), and we may therefore set

(2.31) ∆k
u = evu,k ◦∆u1,...,uk

: Y (g) → Y (g)⊗(k+1)((u)) ∀ k ≥ 1,

where evu,k is as in (2.29) with A = Y (g)⊗(k+1).
The explicit formulas (2.30) imply that ∆k

u is filtered in the sense that

(2.32) ∆k
u(Fℓ) ⊂ (Fℓ(Y (g)⊗(k+1)))((u)),

where Fℓ(Y (g)⊗(k+1)) =
∑

a1+...+ak+1=ℓFa1 ⊗· · ·⊗Fak+1
. By (2.30), the associated graded morphism gr∆k

u

has image contained in grY (g)⊗(k+1)[u±1] for each k:

(2.33) gr∆k
u : grY (g) → grY (g)⊗(k+1)[u±1].

The family of filtered morphisms {∆k
u}k≥1 will play a decisive role in the proof of the Poincaré-Birkhoff-Witt

Theorem in Section 6, as will the analogous morphisms {∆k
s,u}k≥1 for the enveloping algebra U(s), which

we define now.
Let ∆s denote the standard coproduct on U(s). The assignment X±

ir 7→ u±1X±
ir , Hir 7→ Hir for all i ∈ I

and r ≥ 0 extends to an algebra morphism su : U(s) → U(s)[u±1] of U(s), and we may set

∆s,u = (id⊗ su) ◦∆s : U(s) → (U(s)⊗ U(s))[u±1].

The morphisms ∆k
s,u : U(s) → U(s)⊗(k+1)[u±1] are now constructed in exactly the same way as ∆k

u (see
(2.32)). On generators, we have

∆k
s,u(Hir) =

k+1∑

a=1

(Hir)a, ∆k
s,u(X

±
ir) =

k+1∑

a=1

(X±
ir)au

±(a−1).

In particular, we have the following commutative diagram:
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(2.34)

U(s)
∆k

s,u
//

φ

��

U(s)⊗(k+1)[u±1]

φ⊗(k+1)

��

grY (g)
gr∆k

u

// grY (g)⊗(k+1)[u±1]

The map φ is the one given in Proposition 2.9.

3. The centrally extended Yangian double of g

In this section we introduce the centrally extended Yangian double associated to g and study its basic
algebraic properties.

3.1. Definition of the Yangian double. Let δ(w, z) =
∑

r∈Z
wrz−r−1 ∈ C[[w±1, z±1]] denote the formal

delta function. Equivalently,

(3.1) δ(w, z) =
z−1

1− z−1w
+

w−1

1− w−1z
, where

x−1

1− x−1y
=
∑

k≥0

ykx−k−1.

Definition 3.1. The centrally extended Yangian double DY c

~
(g) is the C[~]-algebra generated by the coeffi-

cients {hir, x
±
ir}i∈I,r∈Z of

x±i (z) =
∑

r∈Z

x±irz
−r−1, h+i (z) = 1 + ~

∑

r∈Z≥0

hirz
−r−1, h−i (z) = 1− ~

∑

r∈Z<0

hirz
−r−1,

for all i ∈ I, together with an element c, which are subject to the defining relations

[c, h±i (z)] = 0 = [x±i (z), c],(3.2)

h±i (z)h
±
j (w) = h±j (w)h

±
i (z),(3.3)

1
~2

((
(z − w)2 − (c−ij)

2
)
h+i (z)h

−
j (w) −

(
(z − w)2 − (c+ij)

2
)
h−j (w)h

+
i (z)

)
= 0,(3.4)

1
~

((
z − w ∓ c

−
ij

)
h+i (z)x

±
j (w)−

(
z − w ± c

+
ij

)
x±j (w)h

+
i (z)

)
= 0,(3.5)

1
~

(
(z − w ∓ ~dij)h

−
i (z)x

±
j (w)− (z − w ± ~dij)x

±
j (w)h

−
i (z)

)
= 0,(3.6)

(z − w ∓ ~dij)x
±
i (z)x

±
j (w) = (z − w ± ~dij)x

±
j (w)x

±
i (z),(3.7)

[x+i (z), x
−
j (w)] =

δij
~

(
δ(w + ~c, z)h+i

(
w + ~c

2

)
− δ(w, z)h−i (z)

)
,(3.8)

∑

σ∈Sm

[x±i (zσ(1)), [x
±
i (zσ(2)), · · · , [x

±
i (zσ(m)), x

±
j (w)] · · · ]] = 0,(3.9)

where c
±
ij = ~dij ±

~c

2 and in the last relation i 6= j and m = 1− aij .

For each κ ∈ C, we define the Yangian double at level κ to be the C[~]-algebra

DY κ
~ (g) = DY c

~ (g)/(c− κ)DY c

~ (g).

Remark 3.2. Even though the relations (3.4)-(3.7) and (3.8) involve negative powers of ~, this is not the
case for the corresponding relations among the generators. (See Lemma 3.4.)

Remark 3.3. The practice of calling DY c

~
(g) the “Centrally extended Yangian double” is explained by the

following: when g is finite-dimensional, DY 0
~
(g) has been conjectured to be equal, after completion, to the

Hopf algebra double of Y~(g) [KhTo], whereas DY c

~
(g) has been conjecturally described, also after completion,

as a quotient of the Hopf algebra double of Y~(g) ⊗ C[c] by a derivation [Kh]. These conjectures have been
proven for g = sl2: see [KhTo, Prop. 2.1 (ii)] and [Kh, Thm. 3.1].

Although this interpretation of DY c

~
(g) does not extend beyond the finite case, Definition 3.1 is a natural

extension of the definitions found in the literature (see in particular [DiKh, §6] and [Io, Cor. 3.4]).
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Lemma 3.4. For each i ∈ I, set h̃±i (z) = ± 1
~
(h±i (z)−1). Then the relations of Definition 3.1 are equivalent

to

[c, h̃±i (z)] = 0 = [x±i (z), c],(3.10)

h̃±i (z) h̃
±
j (w) = h̃±j (w) h̃

±
i (z),(3.11)

(
(z − w)2 − (c+ij)

2
)
h̃−j (w) h̃

+
i (z)−

(
(z − w)2 − (c−ij)

2
)
h̃+i (z) h̃

−
j (w)

= −2dijc+ 2~dij(h̃
−
j (w)− h̃+i (z))c,

(3.12)

(
z − w ∓ c

−
ij

)
h̃+i (z)x

±
j (w) −

(
z − w ± c

+
ij

)
x±j (w) h̃

+
i (z) = ±2dijx

±
j (w),(3.13)

(z − w ± ~dij)x
±
j (w) h̃

−
i (z)− (z − w ∓ ~dij) h̃

−
i (z)x

±
j (w) = ±2dijx

±
j (w),(3.14)

(z − w ∓ ~dij)x
±
i (z)x

±
j (w) = (z − w ± ~dij)x

±
j (w)x

±
i (z),(3.15)

[x+i (z), x
−
j (w)] =δij

1
~
(δ(w + ~c, z)− δ(w, z))

+ δij

(
δ(w + ~c, z)h̃+i (w + ~c

2 ) + δ(w, z)h̃−i (z)
)
,

(3.16)

∑

σ∈Sm

[x±i (zσ(1)), [x
±
i (zσ(2)), · · · , [x

±
i (zσ(m)), x

±
j (w)] · · · ]] = 0,(3.17)

where in the last relation i 6= j and m = 1− aij .

It is not difficult to deduce from these relations that DY c

~
(g) is a Z-graded algebra with grading determined

by
deg ~ = 1, deg c = 0 and deg x±ir = deg hir = r ∀ i ∈ I, r ∈ Z.

Next, for each ζ ∈ C we introduce a C-algebra

DY c

ζ (g) = DY c

~ (g)/(~− ζ)DY c

~ (g),

and we abbreviate DY c(g) = DY c

1 (g). Note that, analogously to Yζ(g), DY
c

ζ (g) for ζ ∈ C× is precisely

the C-algebra generated by {x±ir , hir}i∈I,r∈Z and c subject to the defining relations of Definition 3.1 with ~

replaced by ζ. For each ζ ∈ C×, the assignment

x±ir , hir, c ∈ DY c(g) 7→ ζ−rx±ir , ζ
−rhir, c ∈ DY c

ζ (g),

or equivalently x±i (z), h̃
±
i (z), c 7→ ζx±i (ζz), ζh̃

±
i (ζz), c, extends to an isomorphism of algebras. With this in

mind, we will henceforth focus primarily on the C[~]-algebra DY c

~
(g) and the C-algebra DY c(g).

The degree assignments deg c = 0 and deg x±ir = deg hir = r determine a Z-filtration (but not gradation)
on DY c(g). For each k ∈ Z, let FD

k denote the subspace of DY c

ζ (g) spanned by monomials of degree ≤ k,
and let

grZDYζ(g) =
⊕

k∈Z

FD
k /F

D
k−1

denote the corresponding associated graded algebra.

3.2. Classical limit.

Definition 3.5. Define t to be the Lie algebra generated by an element C together with the coefficients
{X±

ir , Hir}i∈I,r∈Z of

X±
i (z) =

∑

k∈Z

X±
ikz

−k−1 and Hi(z) =
∑

k∈Z

Hikz
−k−1 ∀ i ∈ I,

which are subject to the defining relations

[C, Hi(z)] = 0 = [X±
i (z),C],(3.18)

[Hi(z), Hj(w)] = −2dijδz(z, w)C,(3.19)

[Hi(z), X
±
j (w)] = ±2dijδ(z, w)X

±
j (w),(3.20)

[X+
i (z), X−

j (w)] = δij (δ(z, w)Hi(z)− δz(z, w)C) ,(3.21)

(z − w)[X±
i (z), X±

j (w)] = 0,(3.22)
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ad(X±
i0)

1−aij (X±
j (z)) = 0,(3.23)

where δz(z, w) =
d
dz δ(z, w) =

∑
r∈Z

rzr−1w−r−1.

Note that the degree assignment

degC = 0 and degX±
ir = degHir = r ∀ i ∈ I, r ∈ Z

makes t into a Z-graded Lie algebra. Additionally, just as s is an extension of the current algebra g′[t], the
Lie algebra t is an extension of the loop algebra g′[t±1]. In the notation of (2.20), the assignment

X±
ir , Hir 7→ x±i ⊗ tr, hi ⊗ tr ∀ i ∈ I and r ∈ Z

defines a surjective Lie algebra morphism t ։ g′[t±1]. We will return to this observation in Section 4.

We now give the analogue of Proposition 2.7 for the Yangian double. Let h̃±i (z) be as in Lemma 3.4 (now

viewed in DY c

0 (g)[[z
±1]]) and set h̃i(z) = h̃+i (z) + h̃−i (z) =

∑
r∈Z

hirz
−r−1.

Proposition 3.6. The assignment

(3.24) X±
i (z), Hi(z),C 7→ x±i (z), h̃i(z), c ∀ i ∈ I

extends to a graded isomorphism of C-algebras U(t) → DY c

0 (g).

Proof. By definition, DY c

0 (g) is the C-algebra generated by the coefficients of x±i (z), h̃i(z) and the central
element c, which are subject to the relations of Definition 3.1 with ~ replaced by 0. Lemma 3.4 implies that,
in addition to the centrality of c, these relations are

h̃±i (z) h̃
±
j (w) = h̃±j (w) h̃

±
i (z),(3.25)

(z − w)2[h̃−j (w), h̃
+
i (z)] = −2dijc(3.26)

(z − w)[h̃+i (z), x
±
j (w)] = ±2dijx

±
j (w),(3.27)

(z − w)[x±j (w), h̃
−
i (z)] = ±2dijx

±
j (w),(3.28)

(z − w) [x±i (z), x
±
j (w)] = 0,(3.29)

[x+i (z), x
−
j (w)] =δij lim

~→0

1
~
(δ(w + ~c, z)− δ(w, z)) + δijδ(w, z)h̃i(w),(3.30)

∑

σ∈Sm

[x±i (zσ(1)), [x
±
i (zσ(2)), · · · , [x

±
i (zσ(m)), x

±
j (w)] · · · ]] = 0.(3.31)

It therefore suffices to show that these relations are equivalent to the defining relations of Definition 3.5
(with (Hir , X

±
ir) replaced by (hir , x

±
ir) and C by c).

Step 1: ((3.25),(3.26)) ⇐⇒ (3.19).

Multiplying (3.26) by
∑

k≥0(k + 1)wkz−k−2 =
(

z−1

1−z−1w

)2
yields the relation

[h̃−j (w), h̃
+
i (z)] = −2dij

(
z−1

1− z−1w

)2

c.

Combining this with (3.25) and using h̃i(z) = h̃+i (z) + h̃−i (z), we obtain

[h̃j(w), h̃i(z)] = −2dij

((
w−1

1− w−1z

)2

−

(
z−1

1− z−1w

)2
)
c = 2dijδz(z, w)c,

where we have used the identity (3.1). Switching i↔ j and z ↔ w yields (3.19).
Conversely, taking the z−r−1w−s−1 coefficient of (3.19) gives

(3.32) [hir, hjs] = 2rdijδr,−sc.

Multiplying both sides by z−r−1w−s−1 and taking the sum separately over r, s ≥ 0 and r, s < 0 gives (3.25).
Switching i and j in (3.32), multiplying both sides by w−r−1z−s−1 and taking the sum over (r, s) ∈

Z<0 × Z≥0 yields

[h̃−j (w), h̃
+
i (z)] = −2dij

(
z−1

1− z−1w

)2

c.
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Multiplying both sides by (z − w)2 gives (3.26).
Step 2: ((3.27),(3.28)) ⇐⇒ (3.20).

Multiplying (3.27) by
∑

k≥0 w
kz−k−1 and (3.28) by

∑
k≥0 z

kw−k−1 gives

[h̃+i (z), x
±
j (w)] = ±

2dijz
−1

1− z−1w
x±j (w) and [h̃−i (z), x

±
j (w)] = ±

2dijw
−1

1− w−1z
x±j (w).

Adding these two relations together gives (3.20). Conversely, taking the z−r−1w−s−1 coefficient of (3.20)
yields

[hir, x
±
js] = ±2dijx

±
j,r+s.

Multiplying both sides of this equality by (z − w)z−r−1w−s−1 and taking the sum r ≥ 0 and s ∈ Z gives

(z − w)[h̃+i (z), x
±
j (w)] = ±2dij

∑

r≥0,s∈Z

x±j,r+s(z
−rw−s−1 − z−r−1w−s) = ±2dijx

±
j (w),

which is precisely (3.27). The proof that (3.20) implies (3.28) is similar.
Step 3: (3.30) ⇐⇒ (3.21), and (3.29) ⇐⇒ (3.22).

The equivalence of (3.29) with (3.22) is immediate. To prove the (3.30) ⇐⇒ (3.21), it suffices to show
that

lim
~→0

1
~
(δ(w + ~c, z)− δ(w, z)) = δw(w, z)c = −δz(z, w)c,

which can be verified directly.
Step 4: (3.31) =⇒ (3.23), and ((3.20),(3.22),(3.23)) =⇒ (3.31).

The first implication is obvious. The second implication is proven in the same way as its s-analogue in
Proposition 2.7. �

Recall the filtration {FD
k }k∈Z defined at the end of Subsection 3.1. Let x̄±ir , h̄ir denote the images of

x±ir , hir in FD
r /F

D
r−1 and c̄ denote the image of c in FD

0 /F
D
−1.

Similar verifications to those carried out in the proof of the previous proposition allow us to deduce the
following analogue of Proposition 2.9.

Proposition 3.7. The assignment

X±
ir , Hir ,C 7→ x̄±ir, h̄ir, c̄ ∀ i ∈ I and r ∈ Z

extends to an epimorphism of algebras φD : U(t) ։ grZDY
c(g).

Like the epimorphism φ : U(s) ։ grY (g) of Proposition 2.9, we expect φD to be an isomorphism for
general g. However, the injectivity of φD will not be considered in this paper.

3.3. From the Yangian to its double. We conclude this section by offering a more precise relation
between Y~(g) and DY

c

~
(g). Let x±

i (z) =
∑

r≥0 x
±
irz

−r−1 ∈ DY c

~
(g)[[z−1]] for each i ∈ I.

Proposition 3.8. The assignment

(3.33) ι~ : x±i (z), hi(z) 7→ x
±
i

(
z ± ~c

2

)
, h̃+i (z) ∀ i ∈ I

extends to a morphism of C[~]-algebras ι~ : Y~(g) 7→ DY c

~
(g). The composition of ι~ with the projection

DY c

~
(g) ։ DY c(g) induces a morphism of C-algebras ι : Y (g) → DY c(g).

Proof. To distinguish between the generating series of Y~(g) and DY c

~
(g), we will temporarily denote the

series x±i (z) ∈ Y~(g)[[z
−1]] from Proposition 2.3 by X±

i (z). We will prove that ι~ preserves the defining
relations of Y~(g) provided by Proposition 2.3.

It is immediate that the relations (3.3) and (3.9) imply that h̃+i (z) and x̃
±
i (z) = x

±
i

(
z ± ~c

2

)
satisfy the

defining relations (2.8) and (2.12), respectively, of Y~(g) (with hi(z) replaced by h̃+i (z) and X±
i (z) replaced

by x̃
±
i (z)).

Multiplying (3.5) by z−1 and taking the residue at z = 0 gives [hi0, x
±
j (w)] = ±2dijx

±
j (w), and thus

(3.34) [hi0, x̃
±
j (w)] = ±2dijx̃

±
j (w).

Taking instead the z−r−1w−s−1 coefficient of (3.5), we obtain

[hi,r+1, x
±
js]− [hir, x

±
j,s+1] = ±(c−ijhirx

±
js + c

+
ijx

±
jshir).
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Multiplying both sides by z−r−1w−s−1, taking the sum over r, s ≥ 0, we obtain

(z − w ∓ c
−
ij)h̃

+
i (z)x

±
j (w) − (z − w ± c

+
ij)x

±
j (w)h̃

+
i (z) = [hi0,x

±
j (w)] − [h̃+i (z), x

±
j0].

Substituting in the relation (3.34) and applying w 7→ w ± ~c

2 yields (2.9).

The proof that (3.7) implies (2.10) with X±
i (z) and X±

j (w) replaced by x̃
±
i (z) and x̃

±
j (w), respectively,

is similar and will be omitted.
It thus remains to see that the assignment (3.33) preserves the relation (2.11). By Proposition 2.5, it

suffices to prove

(3.35) [x+i0, x̃
−
j (w)] = δij h̃

+
i (w) ∀ i, j ∈ I.

Taking the residue of (3.16) at z = 0 gives

(3.36) [x+i0, x
−
j (w)] = δij

(
h̃+i (w + ~c

2 ) + h̃−i (w)
)
,

where we have used that δ(z, w)h̃−i (z) = δ(z, w)h̃−i (w). The relation (3.35) follows directly from this identity.
The proof is concluded by noting that the second statement of the proposition is an immediate consequence

of the first. �

Observe that ι~ (resp. ι) is a graded (resp. filtered) homomorphism. We conjecture that both ι~ and ι
are injective.

4. The Lie algebras s and t as central extensions

In Sections 2 and 3 it was noted that the Lie algebras s and t (see Definitions 2.6 and 3.5) are always
extensions of g′[t] and g′[t±1], respectively. In this section we employ the results of [MRY] to deduce that,
when g is of untwisted affine type, s and t are in fact isomorphic to the universal central extensions of g′[t]
and g′[t±1], respectively.

Let g0 be the underlying finite-dimensional, simple Lie algebra of the untwisted affine Lie algebra g. We
specify the indexing set I to be {0, 1, . . . , ℓ}, the extending vertex of the Dynkin diagram of g being labeled
by 0. Let A be a commutative, associative C-algebra. Then g0 ⊗C A is a Lie algebra in a natural way.
Denote by Ω1(A) the module of Khäler differentials of A, and let dA denote the subspace of exact forms
(see, for instance, [MRY, §2]).

Theorem 4.1 ([Kl], Theorem 3.3). The Lie algebra g0⊗CA admits a universal central extension uce(g0⊗CA)
defined by

uce(g0 ⊗C A) = (g0 ⊗C A)⊕ Ω1(A)/dA

as a vector space, with Lie bracket such that Ω1(A)/dA is central and

[X1 ⊗ a,X2 ⊗ b] = [X1, X2]⊗ ab+ (X1, X2) · b(da) ∀X1, X2 ∈ g0 and a, b ∈ A.

We will be interested in the choices A = C[t±1
1 , t2] and A = C[t±1

1 , t±1
2 ]. Set

g0[t
±1
1 , t2] = g0 ⊗C C[t±1

1 , t2] and g0[t
±1
1 , t±1

2 ] = g0 ⊗C C[t±1
1 , t±1

2 ].

As in [MRY, (3.1)], we let t(A) denote the Lie algebra obtained from Definition 3.5 by replacing the defining
relation (3.22) with

(4.1) [X±
i (z), X±

i (w)] = 0 ∀ i ∈ I.

It was proven in [MRY] that, in fact, t(A) ∼= uce(g0[t
±1
1 , t±1

2 ]). The following lemma asserts that t(A)
coincides with t, and hence that t can also be identified with uce(g0[t

±1
1 , t±1

2 ]), as will be stated more precisely
in Proposition 4.4.

Lemma 4.2. Assume that g is a symmetrizable Kac-Moody Lie algebra with indecomposable Cartan matrix
A = (aij)i,j∈I satisfying the condition (2.1). Then, in the Lie algebra t, the relation (3.22) implies the
relation (4.1). Conversely, the relations (3.20), (3.21), (3.23) and (4.1) imply that (3.22) holds for all

i, j ∈ I. In particular, if g is of untwisted affine type (excluding A
(1)
1 ), t ∼= t(A).
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Proof. We first prove the implication (3.22) =⇒ (4.1). The relation (3.22) with i = j implies that there is
Ai(w) ∈ t[[w±]] such that

[X±
i (z), X±

i (w)] = δ(z, w)Ai(w).

Since the right-hand side is symmetric in w and z and the left-hand side is antisymmetric, both sides must
be zero, and hence (4.1) holds.

To prove that ((3.20), (3.21), (3.23), (4.1)) =⇒ (3.20), we make a few preliminary observations. By taking
the residue at w = 0 of (3.20) and then also of the relation obtained from (3.20) by exchanging z and w, we
arrive at the identity

(4.2) [Hi(z), X
±
j0] = ±2dijX

±
j (z) = [Hi0, X

±
j (z)] ∀ i, j ∈ I.

Similarly, from (3.21) we obtain

(4.3) [X∓
i0 , X

±
j (w)] = ∓δijHi(w) ∀ i, j ∈ I.

Now fix i, j ∈ I with i 6= j. If aij = 0, then (3.23) is the relation [X±
i0, X

±
j (w)] = 0. After applying ad(Hi(z))

to this equation and employing (4.2) and (3.20), it becomes

±2dii[X
±
i (z), X±

j (w)]± 2dijδ(z, w)[X
±
i0 , X

±
j (w)] = ±2dii[X

±
i (z), X±

j (w)] = 0,

which gives (3.22).
If aij 6= 0, then without loss of generality we may assume that aij = −1. The Serre relation (3.23) then

reads as [X±
i0 , [X

±
i0, X

±
j (w)]] = 0. Applying ad(Hi(z)) to both sides of this equation, we find that

±4dii[X
±
i0(z), [X

±
i0, X

±
j (w)]]± 2dijδ(z, w)[X

±
i0, [X

±
i0 , X

±
j (w)]] = 0,

where we have used (3.20), (4.1) and (4.2). Hence, we have

[X±
i (z), [X±

i0, X
±
j (w)]] = 0.

Acting on this identity by ad(X∓
i0) and employing (3.20) together with (4.2) and (4.3), we deduce that

2(dii + dij)[X
±
i (z), X±

j (w)] = −2dijδ(z, w)[X
±
i0 , X

±
j (w)].

By assumption, −1 = aij = 2
dij

dii
, and hence dii 6= −dij . Multiplying the above equation by (2dii+2dij)

−1(z−

w) therefore produces the relation (3.22). �

Remark 4.3. The generators X±
ir , Hir and C of t are related to the generators xr(±αi), α

∨
i (r) and c of

t(A) given in [MRY, (3.1)] by

X±
ir = d

−1/2
ii xr(±αi), Hir = d−1

ii α
∨
i (r) and C = c.

In order to describe the isomorphism t ∼= uce(g0[t
±1
1 , t±1

2 ]) and its s-analogue, we will need a more explicit
description of Ω1(A)/dA when A = C[t±1

1 , t±1
2 ] or C[t±1

1 , t2]. By [MRY, §2], Ω1(C[t±1
1 , t±1

2 ])/d(C[t±1
1 , t±1

2 ])
has basis

Bt = {t−1
1 dt1, t

k
1t

ℓ
2dt1, t

k
1t

−1
2 dt2 : k ∈ Z, ℓ ∈ Z

×}.

Similarly, one finds that Ω1(C[t±1
1 , t2])/d(C[t

±1
1 , t2]) has basis Bs ⊂ Bt given by

Bs = {t−1
1 dt1, t

k
1t

ℓ
2dt1 : k ∈ Z, ℓ ∈ Z>0}.

Note that these observations, coupled with Theorem 4.1, imply that uce(g0[t
±1
1 , t2]) ⊂ uce(g0[t

±1
1 , t±1

2 ]) as a
Lie subalgebra. Let {X±

i , Hi}
ℓ
i=1 be the Chevalley generators for g0 normalized so that (X+

i , X
−
i ) = 1 and

Hi = [X+
i , X

−
i ]. Let X±θ be root vectors of g0 for the roots ±θ normalized so that (Xθ, X−θ) = 1, where θ

is the highest root of g0. Set Hθ = [X−θ, Xθ].

Proposition 4.4 (Prop. 3.5 of [MRY]). The assignment {X±
ir , Hir,C}i∈I,r∈Z → uce(g0[t

±1
1 , t±1

2 ]) given by

C 7→ t−1
2 dt2,

X±
ir 7→ X±

i ⊗ tr2, i = 1, . . . , ℓ,

X±
0r 7→ X∓θ ⊗ t±1

1 tr2,

Hir 7→ Hi ⊗ tr2, i = 1, . . . , ℓ,

H0r 7→ Hθ ⊗ tr2 + tr2t
−1
1 dt1,
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extends to an isomorphism of Lie algebras t → uce(g0[t
±1
1 , t±1

2 ]). Moreover, we have s ∼= uce(g0[t
±1
1 , t2])

with an isomorphism s → uce(g0[t
±1
1 , t2]) given by the above assignment with r taking values in Z≥0 and C

omitted.

Remark 4.5. Although the second part of the above proposition (concerning s ∼= uce(g0[t
±1
1 , t2])) was not

stated in [MRY, Prop. 3.5], it can be proven in the same way as the first part.

Corollary 4.6. Assume that g is of untwisted affine type (excluding A
(1)
1 ). Then the natural morphism

s → t, X±
ir , Hir 7→ X±

ir , Hir ∀ i ∈ I and r ≥ 0

is an embedding of Lie algebras.

Because of the following proposition, it is also possible to interpret s and t as universal central extensions
of g′[t] and g′[t±1].

Proposition 4.7. We have isomorphisms of Lie algebras

uce(g0[t
±1
1 , t2]) ∼= uce(g′[t]) and uce(g0[t

±1
1 , t±1

2 ]) ∼= uce(g′[t±1]).

Proof. We begin by noting that, since g′[t] and g′[t±1] are perfect Lie algebras, the universal central extensions
uce(g′[t]) and uce(g′[t±1]) do in fact exist (see [Ne, Thm. 1.14]).

Since g is an untwisted affine Lie algebra, g′ ∼= g0[t
±1
1 ] ⊕ CK with Lie bracket determined by [K, g′] = 0

and
[X1 ⊗ tr1, X2 ⊗ ts1] = [X1, X2]⊗ tr+s

1 + rδr,−s(X1, X2)K

for all X1, X2 ∈ g0 and r, s ∈ Z. It follows that g′[t2] ∼= g0[t
±1
1 , t2] ⊕ C[t2]K is a central extension of

g0[t
±1
1 , t2] with natural projection π : g′[t] ։ g0[t

±1
1 , t2]. Let ψ denote the projection uce(g′[t2]) ։ g′[t2].

Then, by [Ne, Cor. 1.9], uce(g′[t2]) is a universal central extension of g0[t
±1
1 , t2] with projection π ◦ ψ :

uce(g′[t2]) ։ g0[t
±1
1 , t2]. This proves that uce(g0[t

±1
1 , t2]) ∼= uce(g′[t2]). Replacing t2 by t±1

2 , we obtain
instead uce(g0[t

±1
1 , t±1

2 ]) ∼= uce(g′[t±1
2 ]). �

5. Level one vertex representations

We now fix g to be a simply laced Kac-Moody Lie algebra, and we let Q =
⊕

i∈I Zαi denote the root
lattice associated to g. In addition, we normalize the invariant form ( , ) so that (αi, αi) = 2 for all i ∈ I.

In this section, we construct representations of DY c

~
(g) and DY c(g) which are given by vertex operators

and which factor through DY 1
~
(g) and DY 1(g). The main results pertaining to this construction are given

in Subsections 5.1 and 5.2.
The vertex operators which define these representations are themselves built from operators arising from

the action of a Heisenberg Lie algebra on its Fock space representation. Accordingly, we begin by introducing
the appropriate Heisenberg algebra, its Fock space representation, as well as the auxiliary operators which
play a central role in our construction.

Definition 5.1. The Heisenberg algebra H is the Lie algebra with basis given by the elements Hir , C for
i ∈ I, r ∈ Z \ {0} and with the bracket given by

[Hir, C] = 0, ∀ i ∈ I, ∀ r ∈ Z \ {0}, [Hir ,Hj,−s] = rδrsδijC, ∀ i, j ∈ I, ∀ r, s ∈ Z \ {0}.

Remark 5.2. This is not the usual definition of the Heisenberg algebra associated to Q (see Definition 5.13):
rather, it is the Heisenberg algebra associated to the trivial lattice Z|I|.

The polynomial ring C[Hi,−r]i∈I,r>0 can be equipped with the structure of an H-module by defining

Hj,−s(f) = Hj,−sf, C(f) = f, Hjs(f) = s
∂

∂Hj,−s
(f) ∀ f ∈ C[Hi,−r]i∈I,r>0, j ∈ I and s > 0,

yielding the so-called Fock space representation of H.
Next, fix a bimultiplicative function ε : Q×Q→ Z/2Z = {±1} satisfying the condition

(5.1) ε(α, α) = (−1)
1
2 (α,α) ∀ α ∈ Q.

The bimultiplicativity of ε implies that ε(α, 0) = 1 for all α ∈ Q, while (5.1) implies that

(5.2) ε(α, β) = (−1)(α,β)ε(β, α) ∀ α, β ∈ Q.
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The bimultiplicativity of ε also implies that it is a 2-cocycle of Q with values in Z/2Z, and thus it determines

a central extension Q̃ = Z/2Z×ε Q of Q by Z/2Z which is equal to Z/2Z×Q as a set, and has product

(ǫa, α)(ǫb, β) = (ε(α, β)ǫaǫb, α+ β) ∀α, β ∈ Q and ǫa, ǫb ∈ Z/2Z.

Definition 5.3. Let I be the two-sided ideal of C[Q̃] which is spanned by e(ǫa,α) − ǫae
(1,α) for all α ∈ Q and

ǫa ∈ Z/2Z. The twisted group algebra Cε[Q] is defined to be the quotient C[Q̃]/I.

Since the C-linear projection C[Q̃] ։ C[Q], e(ǫa,α) 7→ ǫae
α induces an isomorphism of vector spaces

Cε[Q] → C[Q], Cε[Q] can be equivalently defined as the C-algebra with basis {eα}α∈Q and multiplication
given by

eα · eβ = ε(α, β)eα+β ∀ α, β ∈ Q.

Remark 5.4. By [FLM, Proposition 5.2.3], the condition (5.2) determines ε up to equivalence of cocycles,

and hence it determines the central extension Q̃ of Q by Z/2Z up to isomorphism. In particular, this implies
that any two bimultiplicative functions ε, ε′ satisfying (5.1) will determine the same twisted group algebra up
to isomorphism.

The existence of ε : Q ×Q → Z/2Z satisfying (5.1) can be established in various ways: see for instance
[Ka, §7.8].

Viewing Cε[Q] as a left-module over itself, we can form the U(H)⊗ Cǫ[Q]-module

(5.3) V = C[Hi,−r]i∈I,r>0 ⊗ Cε[Q].

We also define an auxiliary family of operators {∂α}α∈Q ⊂ EndCV by

∂α(f ⊗ eβ) = (α, β)f ⊗ eβ ∀ f ∈ C[Hi,−r]i∈I,r>0 and α, β ∈ Q.

5.1. The DY c

~
(g)-module V [[~]]. We first construct a vertex representation of DY c

~
(g) on the topologically

free C[[~]]-module V [[~]]. The actions of U(H)⊗Cε[Q] and of ∂α on V defined above naturally extend to V [[~]].
For each i ∈ I, let N(i) denote the set of vertices to which i is connected, i.e. the set of neighbours of the

vertex i. Define A±
i (z) and B

±
i (z), for each i ∈ I, by

A±
i (z) = exp


±

∑

r>0

Hi,−r

r
(zr + (z ∓ ~)r)∓

∑

r>0

∑

j∈N(i)

Hj,−r

r

(
z ∓ ~

2

)r

 ,

B±
i (z) = exp

(
∓
∑

r>0

Hir

r
z−r

)
.

Inspired by [Io], we define the vertex operators X±
i (z),H

±
i (z) ∈ (EndC[[~]]V [[~]])[[z

±1]], for each i ∈ I, by

X±
i (z) = ±A±

i (z)B
±
i (z)e±αiz∂±αi ,(5.4)

H+
i (z) = B+

i (z +
~

2 )B
−
i (z − ~

2 )

(
1 + ~

2 z
−1

1− ~

2 z
−1

)∂αi

,(5.5)

H−
i (z) = A+

i (z)A
−
i (z).(5.6)

where, for each α ∈ Q, z∂α ∈ (EndC[[~]]V [[~]])[[z
±1]] is defined on V by

z∂α(f ⊗ eβ) = z(α,β)f ⊗ eβ ∀ β ∈ Q and f ∈ C[Hi,−r]i∈I,r>0.

Equivalently, z∂α =
∑

k∈Z
Pα,kz

k with Pα,k(f ⊗ eβ) = δk,(α,β)f ⊗ eβ.

Let us explain why
(

1+ ~

2 z
−1

1− ~

2 z
−1

)∂αi

, and thus H+
i (z), belongs to (EndC[[~]]V [[~]])[[z

−1]]. For each invertible

series g(z) ∈ (C[~])[[z−1]], the operator g(z)∂α (defined on V by g(z)∂α(f ⊗ eβ) = g(z)(α,β)f ⊗ eβ) can be
viewed as an element of (EndC[[~]]V [[~]])[[z

−1]]. To see this, first write
∑

k∈Z

Pα,kg(z)
k =

∑

k≥0

Pα,kg(z)
k +

∑

k>0

Pα,−k(g(z)
−1)k.

For each r ≥ 0, the z−r coefficient of
∑

k≥0 Pα,kg(z)
k is an infinite sum of the form

∑
k≥0 ak(~)Pα,k with

ak(~) ∈ C[~]. The sum
∑

k≥0 ak(~)Pα,k is a well-defined element of EndC[[~]]V [[~]] since, for any fixed β ∈ Q,
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Pα,k(e
β) = 0 for all but at most one value of k. This implies that

∑
k≥0 Pα,kg(z)

k ∈ (EndC[[~]]V [[~]])[[z
−1]].

The same reasoning can be applied to
∑

k>0 Pα,−k(g(z)
−1)k.

With the vertex operators {X±
i (z),H

±
i (z)}i∈I at our disposal, we can now state the main theorem of this

section.

Theorem 5.5. The assignment

(5.7) x±i (z) 7→ X±
i (z), h

±
i (z) 7→ H±

i (z) ∀ i ∈ I, c 7→ 1

extends to a homomorphism of C[~]-algebras ρ~ : DY c

~
(g) → EndC[[~]]V [[~]].

The next lemma will be employed to prove this theorem. Let

Γ±
i (z) = exp

(
∓
∑

r>0

Hi,±r

r
z∓r

)
.

Lemma 5.6. Let χi : I → {0, 1} denote the indicator function of N(i), i.e. χi(j) = 1 if j ∈ N(i) and
χi(j) = 0 otherwise. Then, for each pair of indices i, j ∈ I, we have

Γ−
i (z)Γ

+
i (w) = Γ+

i (w)Γ
−
i (z)

(
1−

z

w

)−1

,(5.8)

[A±
i (z), A

±
j (w)] = [A±

i (z), A
∓
j (w)] = 0 = [B±

i (z), B∓
j (w)] = [B±

i (z), B±
j (w)],(5.9)

B±
i (z)A±

j (w) =
(1 − z−1w)δij (1 − z−1(w ∓ ~))δij

(1− z−1(w ∓ ~

2 ))
χj(i)

A±
j (w)B

±
i (z),(5.10)

B±
i (z)A∓

j (w) =

(
1− z−1(w ± ~

2 )
)χj(i)

(1 − z−1w)δij (1 − z−1(w ± ~))δij
A∓

j (w)B
±
i (z).(5.11)

Proof. Relations of the form (5.8) appear often in the literature: see for instance the proof of Theorem 14.8
in [Ka] and the proof of Proposition 2.9 (a) in [FrKa]. It follows from the fact that

exp(A) exp(B) = exp(B) exp(A) exp([A,B])

for any two operators A and B such that [A, [A,B]] = 0 = [B, [A,B]], together with the relation
[
∑

r>0

Hi,−r

r
zr,
∑

s>0

Hj,s

s
w−s

]
=
∑

r,s>0

[Hi,−r,Hj,s]

rs
zrw−s = −δij

∑

s>0

1

s

( z
w

)s
= δij ln

(
1−

z

w

)
.

The relation (5.9) is immediate from the definition of the operators A±
i (z) and B±

i (z), while (5.10) is a
straightforward application of (5.8). The relation (5.11) is a consequence of (5.10) since B±

i (z) = B∓
i (z)−1.

�

We will also need the following identity, which can be deduced immediately from the definition of g(z)∂α :

g(z)∂αeβ = eβg(z)(α,β)g(z)∂α ∀ α, β ∈ Q and g(z) = z or g(z) ∈ ((C[~])[[z−1]])×.

Proof of Theorem 5.5. The proof is achieved using standard vertex operator calculus. We will prove that
the relations of Definition 3.1 are preserved by the assignment (5.7). This is immediate for (3.2), and for
(3.3) this is a consequence of the relation (5.9) of Lemma 5.6. The other relations require more elaborate
use of Lemma 5.6 and we will treat them independently. Set

z± = z ± ~

2 .

The relation (3.4). Let c±ij =
~

2 ((αi, αj)± 1) denote the image of c±ij under (5.7). Then

H+
i (z)H

−
j (w) = B+

i (z+)B
−
i (z−)A

+
j (w)A

−
j (w)

(
z+
z−

)∂αi

=

(
1− z−1

− w−

)χj(i)

(1 − z−1
− w)δij (1− z−1

− (w − ~))δij
B+

i (z+)A
+
j (w)B

−
i (z−)A

−
j (w)

(
z+
z−

)∂αi

=

(
1− z−1

− w−

)χj(i)
(1− z−1

+ w)δij (1 − z−1
+ (w − ~))δij

(1− z−1
− w)δij (1− z−1

− (w − ~))δij (1− z−1
+ w−)χj(i)

A+
j (w)B

+
i (z+)B

−
i (z−)A

−
j (w)

(
z+
z−

)∂αi

.
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On the other hand, we have

H−
j (w)H

+
i (z) = A+

j (w)A
−
j (w)B

+
i (z+)B

−
i (z−)

(
z+
z−

)∂αi

=
(1− z−1

+ w)δij (1− z−1
+ (w + ~))δij

(1 − z−1
+ w+)χj(i)

A+
j (w)B

+
i (z+)A

−
j (w)B

−
i (z−)

(
z+
z−

)∂αi

=
(1− z−1

+ w)δij (1− z−1
+ (w + ~))δij (1− z−1

− w+)
χj(i)

(1− z−1
+ w+)χj(i)(1− z−1

− w)δij (1− z−1
− (w + ~))δij

A+
j (w)B

+
i (z+)B

−
i (z−)A

−
j (w)

(
z+
z−

)∂αi

.

Therefore, since V [[~]] is torsion free, the assignment (5.7) will preserve (3.4) provided

((z − w)2 − (c−ij)
2)

(
1− z−1

− w−

)χj(i)
(1− z−1

+ w)δij (1− z−1
+ (w − ~))δij

(1− z−1
− w)δij (1− z−1

− (w − ~))δij (1− z−1
+ w−)χj(i)

= ((z − w)2 − (c+ij)
2)
(1 − z−1

+ w)δij (1− z−1
+ (w + ~))δij (1− z−1

− w+)
χj(i)

(1− z−1
+ w+)χj(i)(1− z−1

− w)δij (1 − z−1
− (w + ~))δij

.

for all i, j ∈ I. This can be checked directly using

(5.12) c±ij =





±~

2 if i 6= j, χj(i) = 0,

−~

2 ± ~

2 if i 6= j, χj(i) = 1,

~± ~

2 if i = j.

The relation (3.5). Making use of (5.1) together with Lemma 5.6, we deduce that

H+
i (z)X

±
j (w)

= ±B+
i (z+)B

−
i (z−)A

±
j (w)B

±
j (w)

(
z+
z−

)∂αi

e±αjw∂±αj

= ±
(1 − z−1

− w∓)
±χj(i)

(
z+
z−

)±(αi,αj)

(1− z−1
− w)±δij (1− z−1

− (w ∓ ~))±δij
B+

i (z+)A
±
j (w)B

−
i (z−)B

±
j (w)e±αjw∂±αj

(
z+
z−

)∂αi

=
(1− z−1

− w∓)
±χj(i)(1 − z−1

+ w)±δij (1 − z−1
+ (w ∓ ~))±δij

(1− z−1
− w)±δij (1− z−1

− (w ∓ ~))±δij (1− z−1
+ w∓)±χj(i)

(
z+
z−

)±(αi,αj)

X±
j (w)H

+
i (z).

Therefore, the assignment (5.7) will preserve the relation (3.5) if the following identity holds:

(z − w ± c+ij) = (z − w ∓ c−ij)
(1− z−1

− w∓)
±χj(i)(1− z−1

+ w)±δij (1− z−1
+ (w ∓ ~))±δij

(1− z−1
− w)±δij (1− z−1

− (w ∓ ~))±δij (1− z−1
+ w∓)±χj(i)

(
z+
z−

)±(αi,αj)

.

This is easily verified using (5.12). If i 6= j and χj(i) = 0 then this is clear. If i 6= j and χj(i) = 1, then the
right-hand side equals

(z − w ± ~)

(
1− z−1

− w∓

1− z−1
+ w∓

)±1(
z−
z+

)±1

= (z − w ± ~)

(
z − w − ~

2 ± ~

2

z − w + ~

2 ± ~

2

)±1

= z − w,

which is the left-hand side. If i = j, then c+ij =
3~
2 and c−ij =

~

2 , and the right-hand side of the equality is

(z − w ∓ ~

2 )

(
(z+ − w)(z+ − w ± ~)

(z− − w ± ~)(z− − w)

)±1

= (z − w ∓ ~

2 )

(
(z − w + ~

2 )(z − w + ~

2 ± ~)

(z − w − ~

2 ± ~)(z − w − ~

2 )

)±1

= z − w ± 3~
2 .

Note that in neglecting the factor of ~−1 which appears in (3.5), we have made use of the fact that V [[~]] is
torsion free.

The relation (3.6). Applying again the relations of Lemma 5.6, we obtain

H−
i (z)X

±
j (w) = ±A±

j (w)A
+
i (z)A

−
i (z)B

±
j (w)e±αjw∂±αj
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= ±
(1− w−1z)±δij(1 − w−1(z + ~))±δij

(1− w−1z+)±χj(i)
A±

j (w)A
+
i (z)B

±
j (w)A−

i (z)e
±αjw∂±αj

=
(1− w−1(z + ~))±δij (1− w−1z−)

±χj(i)

(1 − w−1z+)±χj(i)(1 − w−1(z − ~))±δij
X±

j (w)H
−
i (z)

=

(
1− w−1 (z ± ~dij)

1− w−1 (z ∓ ~dij)

)
X±

j (w)H
−
i (z).

(The last equality is obtained by considering the two cases χj(i) = 1 and i = j.) Multiplying both sides by
(w − z ± ~dij) and using the fact that V [[~]] is torsion free, we find that the relation (3.6) is preserved by the
assignment (5.7).

To prove that the remaining three relations of Definition 3.1 are satisfied by {X±
i (z),H

±
i (z)}i∈I , we

introduce the following normal ordering: given a finite integer n ∈ Z>0 together with collections ia ∈ I and
ǫa ∈ {±} for each 1 ≤ a ≤ n, set

:Xǫ1
i1
(z1) · · ·X

ǫn
in
(zn) :=

(
n∏

b=1

ǫb

)
Aǫ1

i1
(z1) · · ·A

ǫn
in
(zn)B

ǫ1
i1
(z1) · · ·B

ǫn
in
(zn)e

ǫ1αi1+···+ǫnαin z
∂ǫ1αi1

1 · · · z
∂ǫnαin
n .

Note that with this definition, (5.9) implies that :Xǫ1
i1
(z1) · · ·X

ǫn
in
(zn) :=:X

ǫσ(1)

iσ(1)
(zσ(1)) · · ·X

ǫσ(n)

iσ(n)
(zσ(n)) : for

each permutation σ ∈ Sn.
By (5.1) and Lemma 5.6, we have

X±
i (z)X

∓
j (w) = ε(αi, αj)

(1 − z−1w±)
χj(i)

(1− z−1w)δij (1− z−1(w ± ~))δij z(αi,αj)
:X±

i (z)X
∓
j (w) :,(5.13)

X±
i (z)X

±
j (w) = ε(αi, αj)

(1− z−1w)δij (1− z−1(w ∓ ~))δij

(1− z−1w∓)χj(i)z−(αi,αj)
:X±

i (z)X
±
j (w) :,(5.14)

where we have used the fact that ε(±α,∓β) = ε(α, β) = ε(±α,±β) for all α, β ∈ Q.

The relation (3.7). By (5.14), the equality

(z − w ∓ ~dij)X
±
i (z)X

±
j (w) = (z − w ± ~dij)X

±
j (w)X

±
i (z) ∀ i, j ∈ I

will be satisfied provided the following identity holds:

(z−w∓~dij)
(1− z−1w)δij (1− z−1(w ∓ ~))δij

(1− z−1w∓)χj(i)z−(αi,αj)
= (−1)(αi,αj)(z−w±~dij)

(1− w−1z)δij (1− w−1(z ∓ ~))δij

(1 − w−1z∓)χj(i)w−(αi,αj)
.

Using that (αi, αj) = 2δij − χj(i), we may rewrite this as

(z − w ∓ δij~±
~·χj(i)

2 )
(z − w)δij (z − w ± ~)δij

(z − w ± ~

2 )
χj(i)

= (−1)χj(i)(z − w ± δij~∓
~·χj(i)

2 )
(w − z)δij (w − z ± ~)δij

(w − z ± ~

2 )
χj(i)

.

If i 6= j, both sides are equal to 1, and if i = j both sides are equal to the polynomial

(z − w ± ~)(z − w ∓ ~)(z − w).

To prove that the relations (3.8) and (3.9) are preserved by (5.7), we employ the following well-known
property of the formal delta function δ(z, w) which can be found in [Ka, Lemma 7.7] and [LeLi, Proposition
2.1.8 (b)]: given a vector space V and f(z, w) ∈ V [[z±1, w±1]], we have

(5.15) f(z, w) · δ(z, w) = f(z, z) · δ(z, w),

provided both sides of this equality are well-defined elements of V [[z±1, w±1]].

The relation (3.8). From (5.13) we obtain the equality of operators

(5.16) [X+
i (z),X

−
j (w)] = ε(αi, αj)Fi,j(z, w) :X

+
i (z)X

−
j (w) :,

where Fi,j(z, w) is given by

(5.17) Fi,j(z, w) =

(
(1− z−1w+)

χj(i)z−(αi,αj)

(1− z−1w)δij (1− z−1(w + ~))δij
− (−1)(αi,αj)

(1 − w−1z−)
χi(j)w−(αi,αj)

(1− w−1z)δij (1 − w−1(z − ~))δij

)
.
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If i 6= j and χj(i) = 0, then it is clear that Fi,j(z, w) = 0. If i 6= j and χj(i) = 1, then we again obtain

Fi,j(z, w) = (1− z−1w+)z + (1 − w−1z−)w = 0.

Hence, we have shown that the assignment (5.7) preserves the relation (3.8) when i 6= j. If i = j, we have

Fi,i(z, w) =
z−2

(1− z−1w)(1 − z−1(w + ~))
−

w−2

(1− w−1z)(1− w−1(z − ~))

=
z−1

1− z−1w

(
z−1

1− z−1(w + ~)
+

(w + ~)−1

1− (w + ~)−1z

)

−
z−1

1− z−1w

(w + ~)−1

1− (w + ~)−1z
−

w−2

(1− w−1z)(1− w−1(z − ~))

=
z−1

1− z−1w
δ(w + ~, z)−

w−1

1− w−1(z − ~)
δ(w, z),

where we have used the identities (3.1) and (w+~)−1

1−(w+~)−1z = w−1

1−w−1(z−~) . Substituting the above expression for

Fi,i(z, w) into (5.16) and using that ε(αi, αi) = −1, we obtain

(5.18) [X+
i (z),X

−
i (w)] = −δ(w + ~, z) z−1

1−z−1w :X+
i (z)X

−
i (w) : + δ(w, z) w−1

1−w−1(z−~) :X
+
i (z)X

−
i (w) : .

By (5.15),

δ(w + ~, z) z−1

1−z−1w :X+
i (z)X

−
i (w) : = δ(w + ~, z) (w+~)−1

1−(w+~)−1w :X+
i (z)X

−
i (w) : |z 7→w+~

= − 1
~
δ(w + ~, z)A+

i (w + ~)A−
i (w)B

+
i (w + ~)B−

i (w)
(
w+~

w

)∂αi

= − 1
~
δ(w + ~, z)H+

i (w + ~

2 ),

since A+
i (w + ~) = A−

i (w)
−1 (see (5.5)). Similarly, (5.15) implies that

δ(w, z) w−1

1−w−1(z−~) :X
+
i (z)X

−
i (w) : =

1
~
δ(w, z) :X+

i (z)X
−
i (w) : |w→z

= − 1
~
δ(w, z)A+

i (z)A
−
i (z)B

+
i (z)B

−
i (z) = − 1

~
δ(w, z)H−

i (z),

where we have used (5.6) and that B+
i (z) = B−

i (z)−1. Substituting these identities back into (5.18), we find
that

[X+
i (z),X

−
i (w)] =

1
~

(
δ(w + ~, z)H+

i (w + ~

2 )− δ(w, z)H−
i (z)

)
,

as desired.

The relation (3.9). Observe first that if (αi, αj) = 0 then ε(αi, αj) = ε(αj , αi) and (5.14) implies

[X±
i (z),X

±
j (w)] = 0.

Hence we only need to verify that (3.9) holds when (αi, αj) = −1. By (5.14), we have

(5.19) [X±
i (z2),X

±
j (w)] = ε(αi, αj)

(
z−1
2

1− z−1
2 w∓

+
w−1

1− w−1(z2)∓

)
:X±

i (z2)X
±
j (w) :,

while repeated application of (5.10) gives

X±
i (z1) :X

±
i (z2)X

±
j (w) : = −ε(αi, αj)

z1(1− z−1
1 z2)(1 − z−1

1 (z2 ∓ ~))

1− z−1
1 w∓

:X±
i (z1)X

±
i (z2)X

±
j (w) :,

:X±
i (z2)X

±
j (w) : X

±
i (z1) = ε(αi, αj)

z22w
−1(1− z−1

2 z1)(1 − z−1
2 (z1 ∓ ~))

1− w−1(z1)∓
:X±

i (z1)X
±
i (z2)X

±
j (w) : .

Combining these last two identities with (5.19) gives
[
X±

i (z1), [X
±
i (z2),X

±
j (w)]

]
= −f(z1, z2, w) :X

±
i (z1)X

±
i (z2)X

±
j (w) :,

where

f(z1, z2, w) =

(
z−1
2

1− z−1
2 w∓

+
w−1

1− w−1(z2)∓

)(
w−1(z2 − z1)(z2 − z1 ± ~)

1− w−1(z1)∓
+
z−1
1 (z1 − z2)(z1 − z2 ± ~)

1− z−1
1 w∓

)
.
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Thus, the identity

(5.20) f(z1, z2, w) + f(z2, z1, w) = 0

will imply
[
X±

i (z1), [X
±
i (z2),X

±
j (w)]

]
+
[
X±

i (z2), [X
±
i (z2),X

±
j (w)]

]
= 0. Since

z−1
2

1− z−1
2 w∓

+
w−1

1− w−1(z2)∓
= δ(z2, w∓)∓

~w−2

(1− w−1(z2)∓)(1 − w−1(z2)±)
and

z−1
1

1− z−1
1 w∓

= δ(z1, w∓)−
w−1

1− w−1(z1)±
,

the property (5.15) of the formal delta function implies that

f(z1, z2, w) =δ(z2, w∓)

(
w−1(z2 − z1)(z2 − z1 ± ~)

1− w−1(z1)∓
+
z−1
1 (z1 − z2)(z1 − z2 ± ~)

1− z−1
1 w∓

)

∓ δ(z1, w∓)
~w−2(z1 − z2)(z1 − z2 ± ~)

(1− w−1(z2)∓)(1 − w−1(z2)±)

∓
~w−2

(1− w−1(z2)∓)(1− w−1(z2)±)

(
w−1(z2 − z1)(z2 − z1 ± ~)

1− w−1(z1)∓
−
w−1(z1 − z2)(z1 − z2 ± ~)

1− w−1(z1)±

)

=± ~δ(z2, w∓)∓ ~δ(z1, w∓) +
~2w−4(z2 − z1)(z2 + z1 − 2w)

(1 − w−1(z2)∓)(1− w−1(z2)±)(1− w−1(z1)∓)(1− w−1(z1)±)
.

As this expression is antisymmetric in z1 and z2, we may conclude that (5.20) holds, and thus that the vertex
operators {X±

i (z)}i∈I satisfy the Serre relations (3.9). �

Remark 5.7. Taking the coefficient of z−2w in the relation (3.8) with i = j yields

[x+i1, x
−
i,−1] = c+ hi0.

Combining this with the relation [x+i0, x
−
i (w)] = h̃+i (w + ~c

2 ) + h̃−i (w) (see (3.36)), we deduce that DY c

~
(g) is

generated by {x±ir}i∈I,r∈Z. Moreover, in the Yangian double DY κ
~
(g) at level κ ∈ C×, the series h±i (z) are

uniquely determined by the relations

κ−1(z − w)[x+i (z), x
−
i (w)] = δ(w + ~κ, z)h+i

(
w + ~κ

2

)
,(5.21)

κ−1(z − w − ~κ)[x+i (z), x
−
i (w)] = δ(w, z)h−i (z).(5.22)

In particular, the representation ρ~ of Theorem 5.5 is entirely determined by x±i (z) 7→ X±
i (z) for all i ∈ I,

and the formulas (5.5) and (5.6) for H±
i (z) may be deduced from (5.21) and (5.22), as was essentially done

below (5.18).

5.2. The DY c(g)-module Ṽ. As the coefficients of the vertex operators X±
i (z) and H±

i (z) are elements of
EndC[[~]]V [[~]], it is not clear that they can be specialized at ~ = ζ ∈ C× to produce a DY c

ζ (g) representation.

In this subsection we exploit the existence of a (Z × Q)-grading on V to show that this can indeed be
accomplished after modifying the representation space appropriately.

The (Z×Q)-grading on V = C[Hi,−r]i∈I,r>0 ⊗ Cε[Q] is given by

degHi,−r = (−r, 0), deg eα =
(
− 1

2 (α, α), α
)

∀ i ∈ I, r > 0 and α ∈ Q.

Note that this choice of grading is different from the more familiar grading on Fock spaces obtained by
setting degHi,−r = (r, 0) and deg eα =

(
1
2 (α, α), α

)
. Let Vn,β denote the subspace of V spanned by elements

of degree (n, β), so that V =
⊕

(n,β)∈Z×Q Vn,β. We note the following useful observation:

Lemma 5.8. Setting P = {(n, β) ∈ Z×Q : n ≤ − 1
2 (β, β)}, we have

V =
⊕

(n,β)∈P

Vn,β .

Equivalently, Vn,β = {0} for all n > − 1
2 (β, β).



20 N. GUAY, R. REGELSKIS, AND C. WENDLANDT

Next, for each β ∈ Q we set n(β) = − 1
2 (β, β), so that

Vβ =
⊕

n∈Z

Vn,β =
⊕

n≤n(β)

Vn,β ∀ β ∈ Q.

Let Ṽβ =
∏

n≤n(β) Vn,β be the completion of Vβ with respect to this grading, and set

Ṽ =
⊕

β∈Q

Ṽβ.

As V0 =
⊕

n≤0 Vn,0 is precisely the Fock space F = C[Hi,−r]i∈I,r>0, we have the equivalent characterizations

Ṽβ
∼= F̃ ⊗ Ceβ and Ṽ ∼= F̃ ⊗ Cε[Q], where F̃ = Ṽ0.
Now set

F~ = (C[~])[Hi,−r]i∈I,r>0
∼= C[~]⊗F .

The (Z ×Q)-grading on V extends to a grading on V~ = F~ ⊗ Cε[Q] after imposing deg ~ = (0, 0). We use
the same notation as above to denote its graded pieces and Z-completion:

V~ =
⊕

(n,β)∈P

(V~)n,β =
⊕

β∈Q

(V~)β with (V~)β =
⊕

n≤n(β)

(V~)n,β ,

Ṽ~ =
⊕

β∈Q

(̃V~)β
∼= F̃~ ⊗ Cε[Q],

where (̃V~)β =
∏

n≤n(β)(V~)β and F̃~ = (̃V~)0.

Recall that X±
i (z) =

∑
k∈Z

X±
i [k]z

−k−1 are the vertex operators which determine the action of DY c

~
(g)

on V [[~]] (see (5.4)).

Proposition 5.9. For each k ∈ Z and i ∈ I, X±
i [k] admits an expansion

(5.23) X±
i [k] =

∑

a≥0

X±
i [k, a]~

a,

with X±
i [k, a] ∈ EndCV of degree (k− a,±αi). Consequently, X±

i (z) ∈ (EndC[~]Ṽ~)[[z
±1]] and the assignment

(5.24) x±i (z) 7→ X±
i (z) ∀ i ∈ I,

also determines an algebra morphism ρ̃~ : DY c

~
(g) → EndC[~]Ṽ~.

Proof. The first part of the proposition is proven directly by expanding X±
i (z) as a formal series in ~. To

see that X±
i [k] ∈ EndC[~]Ṽ~ for each k ∈ Z, it suffices to prove that X±

i [k]Ṽβ ⊂ Ṽβ±αi
for each β ∈ Q. This

is a straightforward consequence of Lemma 5.8 and (5.23).
One may prove the analogous statements for H±

i (z) in the same way, but as noted in Remark 5.7 the
coefficients of x±i (z) generate DY c

~
(g) (with H±

i (z) uniquely determined by (5.21) and (5.22)), and hence
this is not necessary and we may conclude that (5.24) determines an algebra morphism ρ̃~ : DY c

~
(g) →

EndC[~]Ṽ~. �

Proposition 5.9 implies that X±
i (z) can be evaluated at ~ = ζ ∈ C to produce a well-defined element

X±
i (z, ζ) = X±

i (z)~ 7→ζ ∈ (EndCṼ)[[z
±1]].

We will write X
±,ζ
i [k] for the evaluation of X±

i [k] at ~ = ζ, so that X±
i (z, ζ) =

∑
k∈Z

X
±,ζ
i [k]z−k−1.

Let EndmV denote the subspace of EndCV spanned by operators of degree a ∈ Z. (Here we consider only
the Z-grading on V =

⊕
n∈Z

Vn induced by its (Z×Q)-grading.) Consider the direct product
∏

m∈Z
EndmV .

The subspace

ẼndCV =

{
∑

m∈Z

Am : Am = 0 ∀ m≫ 0

}
⊂
∏

m∈Z

EndmV

is an algebra with multiplication given by the usual product of formal series.
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Corollary 5.10. For each ζ ∈ C, ρ̃~ induces a homomorphism of C-algebras

ρζ : DY c

ζ (g) → EndCṼ , x±i (z) 7→ X±
i (z, ζ) ∀ i ∈ I.

Moreover, for each k ∈ Z we have

(5.25) X
±,ζ
i [k] ∈


∏

m≤k

EndmV


 ∩ EndCṼ ⊂ ẼndCV ,

and hence ρζ may be viewed as a morphism ρζ : DY c

ζ (g) → ẼndCV.

Henceforth, we will adapt the viewpoint that ρζ has codomain ẼndCV , and we will focus almost exclusively
on the case where ζ = 1, in which case we shall write ρ = ρ1.

By composing ρ with ι : Y (g) → DY c(g) from Proposition 3.8, we obtain an algebra morphism

(5.26) ̺ = ρ ◦ ι : Y (g) → ẼndCV .

The algebra ẼndCV admits a Z-filtration {Fk(V)}k∈Z given by

Fk(V) =
∏

m≤k

EndmV ,

and we have
grZẼndCV =

⊕

m∈Z

Fm(V)/Fm−1(V) ∼=
⊕

m∈Z

EndmV ⊂ EndCV .

Set X̊±
i (z) =

∑
k∈Z

X±
i [k, 0]z

−k−1 ∈ (EndCV)[[z
±1]], where X±

i [k, 0] is as in (5.23). Explicitly,

(5.27) X̊±
i (z) = ± exp

(
±
∑

r>0

H̃i,−r

r
zr

)
exp

(
∓
∑

r>0

Hir

r
z−r

)
e±αiz∂±αi

with H̃i,−r =
∑

j∈I(αi, αj)Hj,−r for each i ∈ I and r > 0. Since ι is a filtered morphism, the relation (5.25)

of Corollary 5.10 together with the expansion (5.23) implies the following.

Corollary 5.11. ρ and ̺ are Z-filtered morphisms, and the composition of gr ρ : grZDY
c(g) → EndCV with

the morphism φD : U(t) → grZDY
c(g) of Proposition 3.7 is the representation

(5.28) ρ0 : U(t) → EndCV , X±
i (z) 7→ X̊±

i (z) ∀ i ∈ I.

Remark 5.12. Here it is understood that the Z≥0-filtration {Fk}k≥0 on Y (g) is extended to a Z-filtration
by setting Fk = {0} for all k < 0. The representation of t given by (5.28) can be obtained directly from ρ~
(see (5.7)) by specializing ~ 7→ 0, or from ρζ (see Corollary 5.10) by taking ζ = 0. However, the Z-filtration

on ẼndCV will play a crucial role in Section 6.

5.3. The t-modules V and VA. By Corollary 5.11, V admits the structure of a t-module with action
encoded by the vertex operators X̊±

i (z) defined in (5.27). When the Cartan matrix A is not invertible, this
representation differs from that obtained from the classical construction of vertex representations [FrKa,
MRY]. In this subsection we explain the relation between the two constructions.

We begin by recalling the classical setting. By (3.19), the Lie subalgebra of t generated by the coefficients
of the series {Hi(z)}i∈I is a homomorphic image of the following Heisenberg algebra.

Definition 5.13. The Heisenberg Lie algebra HA associated to the Cartan matrix A (equivalently, to the
root lattice Q) is the Lie algebra over C with basis {Hir}i∈I,r∈Z ∪ {C} subject to the defining Lie bracket
relations

[Hir ,C] = 0 and [Hir , Hjs] = r(αi, αj)δr,−sC ∀ i, j ∈ I and r, s ∈ Z.

For each fixed λ ∈ Q, their is a natural action of HA on the polynomial algebra C[Hi,−r]i∈I,r>0 given by

Hj,−s(f) = Hj,−sf, C(f) = f, Hj0(f) = (αj , λ)f, Hjs(f) = ∂js(f)

for all f ∈ C[Hi,−r]i∈I,r>0, j ∈ I and s > 0, where ∂js is the derivation defined uniquely by

∂js(Hi,−r) = s(αi, αj)δs,−r ∀ s > 0 and i ∈ I.

We denote C[Hi,−r]i∈I,r>0, equipped with this module structure, by Fλ
A
.
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Now define the vector space VA by

VA = C[Hi,−r]i∈I,r>0 ⊗ Cε[Q].

After identifying C[Hi,−r]i∈I,r>0⊗Ceλ with Fλ
A
, the space VA becomes anH-module isomorphic to

⊕
λ∈Q Fλ

A
.

To extend this to a t-module structure, define for each α =
∑

i∈I niαi ∈ Q operators {Hα,r}r∈Z on VA by
Hα,r =

∑
i∈I niHi,r. We then set

Γ±
α (z) = exp

(
∓
∑

r>0

Hα,±r

r
z∓r

)
∀ α ∈ Q,

and introduce vertex operators Hα(z),Xα(z) ∈ (EndCVA)[[z±1]] by

Hα(z) =
∑

r∈Z

Hα,rz
−r−1 and Xα(z) = Γ−

α (z)Γ
+
α (z)e

αz∂α ∀α ∈ Q.

Proposition 5.14. Set X±
i (z) = ±Xαi

(z) and Hi(z) = Hαi
(z) for all i ∈ I. Then the assignment

(5.29) X±
i (z) 7→ X

±
i (z), Hi(z) 7→ Hi(z) ∀ i ∈ I, C 7→ 1

extends to a homomorphism of algebras ρA : U(t) 7→ EndCVA.

Proof. Although, to the best of our knowledge, the statement of the proposition has only been written down
explicitly for A of finite and of affine type [FrKa, MRY], the argument used to prove the above proposition
for t associated to the Cartan matrix of an arbitrary simply laced Kac-Moody Lie algebra is the same, and
analogous to the proof Theorem 5.5. We refer the reader to [Ka, Thm. 14.8], [MRY, Prop. 4.3] and [LeLi,
§6.5] for complete details. The result may also be deduced from [Ji2, Thm. 3.1]. �

Remark 5.15. Suppose now that A is the Cartan matrix of an arbitrary symmetric Kac-Moody Lie algebra
(not constrained by the condition (2.1)), and let tA be the Lie algebra defined identically to t (see Definition
3.5), but with (3.22) replaced by

(z − w)−aij [X±
i (z), X±

j (w)] = 0 ∀ i, j ∈ I.

Then the assignment (5.29) determines an algebra homomorphism U(tA) → EndCVA. The added difficulty
in proving this statement is verifying that (5.29) preserves the Serre relation (3.23) when aij < −1. This
can again be deduced from [Ji2], although it may also be proven directly using elementary properties of the
formal delta function δ(z, w) and its partial derivatives.

We now turn to relating VA with the t-module V from Corollary 5.11. Recall from Definition 5.1 that H
is the Heisenberg Lie algebra associated to the trivial lattice Z|I|. For each k ∈ Z6=0, set

H
(k)
A

=
⊕

i∈I

CHik and H(k) =
⊕

i∈I

CHik.

Similarly, we set H
(0)
A

=
⊕

i∈I CHi0 ⊕C ·C and H(0) = C · C. Let H′
A
= [HA,HA] be the derived subalgebra

of HA:

H′
A
=
⊕

k 6=0

H
(k)
A

⊕ C ·C =
⊕

k∈Z

H
′(k)
A

, where H
′(k)
A = H

(k)
A

∩ H′
A
.

In addition, we denote
⊕

k≥0 H
′(k)
A by H+

A
and

⊕
k<0 H

′(k)
A by H−

A
, and define H± analogously.

Lemma 5.16.

(1) The assignment

ϕA : C 7→ C, Hir 7→ H̃ir =

{∑
j∈I(αi, αj)Hjr if r < 0,

Hir if r > 0,

extends to morphism of graded Lie algebras ϕA : H′
A
→ H.

(2) For each r < 0, ϕA|
H

(r)
A

: H
(r)
A

→ H(r) has matrix equal to A with respect to the bases {Hir}i∈I ⊂ H
(r)
A

and {Hir}i∈I ⊂ H
(r)
A

. Consequently,

ϕA|
H

−
A

: H−
A

→ H−

is an isomorphism if and only if A is invertible, and the same is true for ϕA.
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By the lemma, ϕA|
H

−
A

: H−
A
→ H− induces an algebra morphism

ΦA : U(H−
A
) → U(H−)

which is invertible precisely when A is. After identifying U(H−
A
) and U(H−) with the Fock space represen-

tations C[Hi,−r]i∈I,r>0 and C[Hi,−r]i∈I,r>0 of H′
A

and H, respectively, and equipping C[Hi,−r]i∈I,r>0 with
the structure of a H′

A
-module via ϕA, ΦA becomes a morphism of H′

A
-modules. This discussion leads us to

the following result.

Proposition 5.17. The C-algebra morphism

ΦA ⊗ id : C[Hi,−r]i∈I,r>0 ⊗ Cε[Q] → C[Hi,−r]i∈I,r>0 ⊗ Cε[Q]

is a morphism of t-modules VA → V. It is an isomorphism precisely when A is invertible.

Proof. Lemma 5.16 and the discussion following it prove that ΦA ⊗ id will be invertible exactly when A is.
By comparing the definitions of the vertex operators X̊±

i (z) and X
±
i (z) (see (5.27) and Proposition 5.14), we

find that ΦA ⊗ id will be a morphism of t-modules provided ΦA is a morphism of H′
A
-modules in the sense

described before the statement of the proposition. As this has already been established, the proposition is
proved. �

6. The Poincaré-Birkhoff-Witt Theorem

We now fix g to be a Kac-Moody Lie algebra associated to an indecomposable Cartan matrix A which is
of affine type, and whose associated Dynkin diagram is simply laced with ℓ+1 vertices. As in Section 4, we
set I = {0, 1, . . . , ℓ} with {1, . . . , ℓ} labeling the Dynkin diagram of the underlying finite-dimensional rank ℓ
simple Lie algebra g0.

In this section we will prove that the epimorphism φ : U(s) ։ grY (g) of Proposition 2.9 is an isomorphism:
see Theorem 6.9. By Propositions 4.4 and 4.7, this will imply that grY (g) ∼= U(uce(g′[t])). As a corollary,
we prove in Theorem 6.10 that Y~(g) is a flat deformation U(s) ∼= U(uce(g′[t])) (see Remark 2.8).

6.1. A faithful representation of s. Our first step in proving the injectivity of φ is to use the results of
Section 5 to produce a representation of Y (g) which specializes to a faithful representation of s ∼= uce(g′[t]).
To accomplish this, we first enlarge A to an invertible Cartan matrix.

Set I̊ = I ∪ {−1}, and extend A to a Cartan matrix Å = (aij)i,j∈I̊ by imposing

a−1,i = ai,−1 = 2δ−1,i − δi,0 ∀ i ∈ I̊ .

Definition 6.1. Define g̊ to be the simply-laced Kac-Moody Lie algebra with Cartan matrix Å.

We fix an invariant symmetric non-degenerate bilinear form 〈 , 〉 on g̊ extending ( , ), and assume that it
is normalized so that 〈αi, αi〉 = 2 for all −1 ≤ i ≤ ℓ. In particular aij = 〈αi, αj〉 for all −1 ≤ i, j ≤ ℓ. Let

Q̊ =
⊕

−1≤i≤ℓ Zαi = Zα−1 ⊕Q denote the root lattice of g̊. The following lemma can be easily deduced.

Lemma 6.2. The Cartan matrix Å is invertible. In particular, 〈 , 〉|Q̊×Q̊ is non-degenerate.

Henceforth, we will use the notation V̊ to denote the space (5.3) corresponding to the above data:

V̊ = C[Hi,−r]i∈I̊,r>0 ⊗ Cε[Q̊].

By Corollaries 5.10 and 5.11, we have a Z-filtered morphism of C-algebras

ρ̊ : DY c(̊g) → ẼndCV̊ , x±i (z) 7→ X±
i (z, 1) ∀ i ∈ I̊ .

Observe that the assignment

ι̊ : x±i (z), h
±
i (z), c 7→ x±i (z), h

±
i (z), c ∀ i ∈ I

extends to a filtered algebra homomorphism ι̊ : DY c(g) → DY c(̊g). We set

•

ρ = ρ̊ ◦ ι̊ : DY c(g) → ẼndCV̊ .

Define a representation
•

ρ0 of t on V̊ by setting

(6.1)
•

ρ0 = gr (ρ̊ ◦ ι̊) ◦ φD : U(t) →
⊕

m∈Z

EndmV̊ ⊂ EndCV̊ ,
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where φD is as in Proposition 3.7.

Lemma 6.3. The t-module V̊, equipped with action given by
•

ρ0 above, is a faithful module.

Proof. Let t̊ be the Lie algebra from Definition 3.5 corresponding to Å. By (5.17) and Lemma 6.2, the

morphism Φ
Å
⊗ id : V

Å
→ V̊ is an isomorphism of t̊-modules. By pulling back via the natural morphism

t → t̊, we obtain an isomorphism of t-modules, and the induced t-module structure on V̊ is precisely that
given by

•

ρ0. That this is a faithful t-module now follows from the fact that V
Å

is precisely V (Q̊,H′
Å
) from

[MRY], and by [MRY, Prop. 4.3], this is a faithful t-module. �

Now set
•

̺ =
•

ρ ◦ ι : Y (g) → ẼndCV̊ , where ι : Y (g) → DY c(g) is as in Proposition 3.8, and define

•

̺0 = gr
•

̺ ◦ φ : U(s) →
⊕

m∈Z

EndmV̊ ⊂ EndCV̊ ,

where φ : U(s) → grY (g) is as in Proposition 2.9.

Corollary 6.4. The s-module V̊, equipped with action given by
•

̺0 above, is a faithful module.

Proof. The representation
•

̺0 is equal to the restriction of
•

ρ0 to U(s) via the embedding of Corollary 4.6, so
the result follows immediately. �

We will use this faithful module, together with the coproduct ∆s,u from Subsection 2.3, to construct an

embedding of U(s) into a large algebra built by gluing together endomorphism rings associated to V̊ . We
begin with the following general result.

Let a be an arbitrary complex Lie algebra and let ∆a and εa be the coproduct and counit, respectively,
of the enveloping algebra U(a).

Proposition 6.5. Let V be a faithful representation of a with ρa : U(a) → EndCV the corresponding mor-

phism. For each k ≥ 0, set ρa,k = ρ⊗k
a ◦∆

(k−1)
a , with ρa,0 = εa. The universal property of

∏
m≥0 EndC(V

⊗m)
dictates that there is a unique morphism

Φ : U(a) →
∏

m≥0

EndC(V
⊗m), πm ◦ Φ = ρa,m ∀ m ≥ 0,

where πm :
∏

m≥0 End(V
⊗m) → End(V ⊗m) is the natural projection. Then Φ is injective.

Proof. The result follows from a modification of the argument given in the proof of [AMR, Lemma 3.5]. �

We would now like to imitate Proposition 6.5 with ∆
(k−1)
a replaced by ∆k−1

s,u . Let V be a faithful s-module
with corresponding morphism ρs : U(s) → EndCV , and for each k ≥ 1, set

ρks,u = ρ⊗k
s ◦∆k−1

s,u : U(s) → EndC(V
⊗k)[u±1].

We also set ρ0s,u = εs : U(s) → C ⊂ C[u±1]. Then there is a unique morphism

(6.2) Φu : U(s) →
∏

m≥0

EndC(V
⊗m)[u±1], πm ◦ Φu = ρms,u ∀ m ≥ 0,

where πm :
∏

m≥0 EndC(V
⊗m)[u±1] → EndC(V

⊗m)[u±1] is the natural projection.

Proposition 6.6. The morphism Φu is injective.

Proof. The evaluation u 7→ 1 induces a morphism

ev :
∏

m≥0

EndC(V
⊗m)[u±1] →

∏

m≥0

EndC(V
⊗m).

The composition ev ◦ Φu : U(s) →
∏

m≥0 EndC(V
⊗m) agrees with the morphism Φ associated to V from

Proposition 6.5, and hence is injective. This implies that Φu is also injective. �

Applying Proposition 6.6 with V the faithful s-module V̊ from Corollary 6.4, we obtain the following
corollary.

Corollary 6.7. The morphism of C-algebras Φu : U(s) →
∏

m≥0 EndC(V̊
⊗m)[u±1], defined by (6.2) with

ρs =
•

̺0, is injective.
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6.2. Statement and proof of the main result. We now construct the Yangian version Ψu of the embed-

ding Φu from Corollary 6.7, using the morphism
•

̺ : Y (g) → ẼndCV̊ . The injectivity of Ψu is closely tied to
the Poincaré-Birkhoff-Witt Theorem for Y (g), as we shall explain shortly.

For each k ≥ 1,
•

̺⊗k extends to a homomorphism Y (g)⊗k((u)) → (ẼndCV̊)
⊗k((u)). Composing with ∆k−1

u

from (2.31), we obtain a morphism
•

̺ku : Y (g) → (ẼndCV̊)
⊗k((u)).

As in the U(s)-case, we set
•

̺0u to be the counit.
For each a ∈ Z, set

Enda(V̊
⊗k) =

⊕

a1+...+ak=a

(
Enda1 V̊ ⊗ · · · ⊗ Endak

V̊
)
⊂ EndC(V̊

⊗k).

We let ẼndC(V̊
⊗k) denote the subspace of

∏
a∈Z

Enda(V̊
⊗k) consisting of summations

∑
m∈Z

Am with Am = 0

for all m≫ 0. This is an algebra with multiplication extending that of
⊕

a∈Z
Enda(V̊

⊗k). Setting

Fℓ(V̊
⊗k) =

∏

a≤ℓ

Enda(V̊
⊗k) ∀ ℓ ∈ Z

equips ẼndC(V
⊗k) with the structure of a Z-filtered algebra. Recall that {Fℓ}ℓ≥0 denotes the Z≥0-filtration

on Y (g) defined above Proposition 2.9, which is extended to a Z-filtration by setting F−ℓ = 0 for ℓ > 0.

Lemma 6.8. The image of
•

̺ku embeds into ẼndC(V̊
⊗k)((u)). Moreover,

•

̺ku(Fℓ) ⊂ Fℓ(V̊
⊗k)((u)) ∀ ℓ ∈ Z.

Proof. By (2.32), ∆k−1
u (Fℓ) ⊂ Fℓ(Y (g)⊗k)((u)), where Fℓ(Y (g)⊗k) =

∑
a1+...+ak=ℓFa1 ⊗ · · · ⊗ Fak

. Since
•

̺

is also filtered (see Corollary 5.11), we have
•

̺ku(Fℓ) ⊂ F̃ℓ(V̊
⊗k)((u)), with

F̃ℓ(V̊
⊗k) =

∑

a1+...+ak=ℓ

Fa1(V̊)⊗ · · · ⊗ Fak
(V̊).

As Fm(V̊) =
∏

a≤m Enda(V̊),
⊗k

b=1 Fab
(V̊) naturally embeds into the space Fℓ(V̊

⊗k) =
∏

a≤ℓ Enda(V̊
⊗k),

provided
∑k

b=1 ab = ℓ. This proves the assertion. �

Consider the algebra

Endu(V̊
⊗k) =

⋃

ℓ∈Z

(
Fℓ(V̊

⊗k)((u))
)
⊂ EndC(V̊

⊗k)((u)).

It is Z-filtered with Fℓ(Endu(V̊
⊗k)) = Fℓ(V̊

⊗k)((u)) and

grEndu(V̊
⊗k) =

⊕

ℓ∈Z

Endℓ(V̊
⊗k)((u)) ⊂ EndC(V̊

⊗k)((u)).

Lemma 6.8 implies that
•

̺ku can be viewed as a Z-filtered morphism
•

̺ku : Y (g) → Endu(V̊
⊗k).

After forming the direct product of algebras
∏

m≥0 Endu(V̊
⊗m), we obtain an algebra morphism

(6.3) Ψu : Y (g) →
∏

m≥0

Endu(V̊
⊗m), πm ◦Ψu =

•

̺mu ∀ m ≥ 0,

where πm :
∏

m≥0 Endu(V̊
⊗m) → Endu(V̊

⊗m) is the m-th projection morphism. We are now prepared to
state and prove the main result of this section:

Theorem 6.9. The morphism Ψu defined in (6.3) is an embedding of algebras, and the epimorphism

φ : U(s) ∼= U(uce(g′[t])) ։ grY (g), X±
ir , Hir 7→ x̄±ir , h̄ir

of Proposition 2.9 is an isomorphism of algebras.



26 N. GUAY, R. REGELSKIS, AND C. WENDLANDT

Proof. As, for each k ≥ 0,
•

̺ku is a filtered morphism Y (g) → Endu(V̊
⊗k), we may form the associated graded

morphisms
gr

•

̺ku : grY (g) → EndC(V̊
⊗k)((u)).

By (2.33), the image of gr
•

̺ku in fact lies in EndC(V̊
⊗k)[u±1]. We therefore obtain an algebra morphism

Ψu : grY (g) →
∏

m≥0

EndC(V̊
⊗m)[u±1],

•

πm ◦Ψu = gr
•

̺mu ∀ m ≥ 0,

where now
•

πm is the m-th projection morphism for
∏

m≥0 EndC(V̊
⊗m)[u±1].

By definition,
•

̺0 = gr
•

̺ ◦ φ (see (6.1)), and hence the commutativity of the diagram (2.34) implies that

(6.4) Ψu ◦ φ = Φu,

where Φu : U(s) →
∏

m≥0 EndC(V̊
⊗k)[u±1] is the embedding of Corollary 6.7. This implies that φ is also

injective, and hence an isomorphism of algebras.
The relation (6.4) also implies that Ψu is an embedding, from which it follows that Ψu is injective using

a standard argument. Indeed, given a nonzero element X ∈ Y (g), we may take ℓ ≥ 0 minimal such that
X ∈ Fℓ. Let X̄ ∈ grY (g) denote the image of X in Fℓ/Fℓ−1, which is nonzero by assumption. If Ψu(X) = 0,
then gr

•

̺mu (X̄) = 0 for all m ≥ 0 and hence Ψu(X̄) = 0, which is impossible. �

Recall that if A is a Z≥0-filtered algebra with ascending filtration {Fk(A)}k≥0, then the Rees algebra
associated to A is

R~(A) =
⊕

k≥0

~
kFk(A) ⊂ A[~].

The Rees algebra R~(A) always satisfies R~(A)/(~ − 1)R~(A) ∼= A and R~(A)/~R~(A) ∼= grA. The next
theorem employs the Rees algebra construction to characterize Y~(g) in terms of Y (g).

Theorem 6.10. The assignment x±ir, hir 7→ ~rx±ir , ~
rhir extends to an isomorphism of C[~]-algebras

Ψ~ : Y~(g) → R~(Y (g)) ⊂ Y (g)[~].

Consequently, Y~(g) is a flat deformation of the algebra U(s) ∼= U(uce(g′[t])).

Proof. That the assignment x±ir, hir 7→ ~rx±ir , ~
rhir extends to a homomorphism Ψ~ of C[~]-modules is verified

directly (cf. (2.14)). Since {~rx±ir , ~
rhir}i∈I,r≥0 generate R~(Y (g)) as a C[~]-algebra, Ψ~ is surjective.

The composition π of the isomorphism R~(Y (g))/~R~(Y (g)) → grY (g) with the quotient homomorphism
R~(Y (g)) → R~(Y (g))/~R~(Y (g)) satisfies

~
kx±ik, ~

khir 7→ x̄±ik, h̄ik ∀ i ∈ I and k ≥ 0.

Moreover, π ◦ Ψ~ sends the ideal ~Y~(g) to zero and thus factors through the quotient Y~(g)/~Y~(g) to
give Ψ0 : Y0(g) → grY (g). After using Proposition 2.7 and Theorem 6.9 to identify both the domain and
codomain of Ψ0 with U(s), Ψ0 becomes the identity map.

Now suppose that there is a nonzero X ∈ KerΨ~. Let m be the maximal non-negative integer such that
X = ~

mY for some Y ∈ Y~(g) (that m is finite follows from the fact that Y~(g) is graded with deg ~ = 1).
Since Ψ~ is a C[~]-algebra morphism and R~(Y (g)) is torsion free, Y ∈ KerΨ~. By maximality of m, the
image Ȳ of Y in Y0(g) is nonzero. Since Ψ0 : Y0(g) → grY (g) is an isomorphism, Ψ0(Ȳ ) 6= 0. This is a

contradiction as Ψ0(Ȳ ) = Ψ~(Y ) = 0. Therefore Ψ~ is injective, and thus an isomorphism. �
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