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HAUSDORFF DIMENSIONS OF VERY WELL INTRINSICALLY APPROXIMABLE

SUBSETS OF QUADRATIC HYPERSURFACES

LIOR FISHMAN, KEITH MERRILL, AND DAVID SIMMONS

Abstract. We prove an analogue of a theorem of A. Pollington and S. Velani (’05), furnishing an upper
bound on the Hausdorff dimension of certain subsets of the set of very well intrinsically approximable
points on a quadratic hypersurface. The proof incorporates the framework of intrinsic approximation on
such hypersurfaces first developed in the authors’ joint work with D. Kleinbock (preprint ’14) with ideas
from work of D. Kleinbock, E. Lindenstrauss, and B. Weiss (’04).

1. Introduction

In its classical form, the field of Diophantine approximation investigates the quality by which an irrational
vector x ∈ Rd can be approximated by rationals p

q ∈ Qd.1 One of the most significant results is Dirichlet’s

theorem, a corollary of which states that for every irrational x, there exist infinitely many reduced rationals
p

q satisfying ∥∥∥∥x− p

q

∥∥∥∥ <
1

q1+1/d
,

where ‖·‖ denotes the max norm. Motivated by this result, we recall the notion of the exponent of irra-
tionality of x:

ω(x) := sup

{
c > 0 : ∃∞p

q
satisfying

∥∥∥∥x− p

q

∥∥∥∥ <
1

qc

}
.

Here and hereafter the notation ∃∞ stands for “there exist infinitely many.”
Clearly, Dirichlet’s corollary implies that ω(x) ≥ 1 + 1

d for all x ∈ Rd. Let

Wc := {x ∈ R : ω(x) > c}.
We call a vector x very well approximable, denoted x ∈ VWA, if ω(x) > 1 + 1

d , i.e. if

x ∈
⋃

c>1+ 1
d

Wc.

It is well known that the set VWA is a Lebesgue null set of full Hausdorff dimension. More precisely, a
result of V. Jarńık states that dimH(Wc) = d+1

c for all c ≥ 1 + 1
d . Here and hereafter dimH stands for

Hausdorff dimension.
In [5], D. Kleinbock and the authors developed a theory of intrinsic approximation on quadratic hyper-

surfaces which shares many features with the classical theory. Fix d ≥ 2, let P : Rd → R be a quadratic
polynomial with integral coefficients, and let ZP denote the zero set of P . Then intrinsic approxima-
tion on the quadratic hypersurface ZP is the theory of approximating points x ∈ ZP by rational points
p

q ∈ Qd∩ZP .
2 The word “intrinsic” refers to the fact that the rational points are required to lie in ZP , rather

than just the point x. If this requirement is omitted, what results is the classical theory of Diophantine
approximation on manifolds : cf. [1, 2, 9].

One of the main theorems in [5] is a Dirichlet-type theorem for intrinsic approximation:

1Throughout the paper, rationals will be written as p

q
, where p is a primitive integer vector and q is a positive integer.

2In [5], most of the results were phrased in terms of the projectivization of ZP , which can be described in terms of the
light-cone of a quadratic form Q depending on P . For the present paper, it is easier to work in the affine setting, for which
purpose we can use the Affine Corollaries provided in [5]. The interested reader may verify that the results of this paper can
be translated back into the projective setting if desired.
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Theorem 1.1 ([5, Theorem 8.1, Affine Corollary] + [5, Remark 8.7]). Let P : Rd → R be a quadratic
polynomial with integral coefficients, and let Z = ZP denote its zero set. Suppose that Qd ∩ Zreg 6= �,
where Zreg is the set of points at which Z is smooth (i.e. at which ∇P 6= 0). Then for every x ∈ Z, there
exists a constant C = C(x) > 0 and infinitely many p

q ∈ Z ∩ Qd satisfying
∥∥∥∥x− p

q

∥∥∥∥ ≤ C

q
·

Let us define a function ωZ : Z → R via the formula

ωZ(x) = sup

{
c > 0 : ∃C = C(x) ∃∞p

q
∈ Z ∩ Qd with

∥∥∥∥x− p

q

∥∥∥∥ ≤ C

qc

}
.

Then by Theorem 1.1, we have ωZ(x) ≥ 1 for all x ∈ Z. We define Wc,Z := {x ∈ Z : ωZ(x) > c} and

VWAZ :=
⋃

c>1

Wc,Z .

It is shown in [5, Theorem 5.5] that VWAZ is a Lebesgue nullset and moreover [5, Theorem 2.13] that for
all c > 1, dimH(Wc,Z) =

d−1
c .

In [5, Theorem 5.5], the nullity of VWAZ is also shown to hold for measures on Z which are absolutely
friendly (see §2 for the definition), a class of measures implicitly introduced in [8] and explicitly formalized
in [12], and which has since played a preeminent role in Diophantine approximation and metric measure
theory. Historically, these measures are motivated by the following question: if we take a ‘nice’ subset
S ⊆ Rd of strictly smaller dimension, should we expect the approximability of points in S to reflect the
approximation properties of points in Rd? For example, since VWA is a Lebesgue null set, when should
we expect that almost no point of S is very well approximated by rationals, with respect to some natural
measure on S? It is shown in [8] that if µ is an (absolutely) friendly measure, then µ-a.e. point in its
support is not very well approximable,3 i.e. µ(VWA) = µ(VWA ∩ Supp(µ)) = 0. Equivalently, µ(Wc) = 0
for all c ≥ 1 + 1

d .
Motivated by this new definition, A. Pollington and S. Velani established [12] analogues of some classical

results in Diophantine approximation for absolutely friendly measures, amongst other things proving results
on the Hausdorff dimension of VWA∩Supp(µ). One of their results is the following (see [12, Corollary 2]):
if a measure µ on Rd is absolutely α-friendly and Ahlfors δ-regular, then for any c ≥ 1 + 1

d ,

(1.1) dimH(Wc ∩ Supp(µ)) ≤ δ − α

(
1− 1 + 1

d

c

)
.

In this paper, we extend Pollington and Velani’s result to the setting of intrinsic approximation on quadratic
hypersrufaces. Namely, for a large class of measures µ we obtain an estimate on the Hausdorff dimension
of the sets Wc,Z similar to (1.1):

Theorem 1.2. Let µ be an absolutely α-friendly and Ahlfors δ-regular on Rd−1, let U ⊆ Rd−1 be an open
set containing Supp(µ), let Ψ: U → Zreg be a local coordinate chart, and let ν := Ψ[µ]. Then for any c ≥ 1,

(1.2) dimH(Wc,Z ∩ Supp(ν)) ≤ δ − α

(
1− 1

c

)
.

We prove Theorem 1.2 by adapting the methods of [12] to our setting. We remark that the main
difficulty in translating their proof occurs when we need to estimate the measure of a set which, in the
setting of [12], is a neighborhood of a hyperplane (and thus its measure can be directly estimated using
the definition of absolute friendliness), but in our setting the corresponding set is not the neighborhood of
a hyperplane. See the beginning of §3 for more details.

It follows from the Mass Distribution Principle, Lemma 2.1 below, that if µ is an Ahlfors δ-regular
measure, then any set with positive µ-measure must have Hausdorff dimension at least δ. Therefore
Theorem 1.2 result generalizes [5, Theorem 5.5], which asserts that the sets Wc,Z and VWAZ are µ-null
sets.

3The results of [8] hold in the stronger multiplicative framework as well.
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It is worth mentioning that an upper bound is the best possible result in this situation, for the following
reason: it follows from [6, Proposition D.1] and [5, Theorem 5.3] that the set of intrinsically badly approx-
imable points on Z supports Ahlfors δ-regular measures with δ arbitrarily close to k = dim(Z); by [10,
Proposition 6.3] these measures are absolutely friendly once δ > k− 1. Since no badly approximable point
is very well approximable, it follows that for any such measure µ, the dimension of VWAZ ∩ Supp(µ) is
zero, since this intersection is empty.

Acknowledgements. The first-named author was supported in part by the Simons Foundation grant
#245708.

2. Definitions

Convention. The symbols .×, &×, and ≍× will denote coarse multiplicative asymptotics. For example,
A .× B means that there exists a constant C > 0 (the implied constant) such that A ≤ CB. It is
understood that the implied constant C is only allowed to depend on certain “universal” parameters, to
be understood from context.

2.1. Absolutely friendly and Ahlfors regular measures. We start with a definition introduced in [8]:
if µ is a locally finite Borel measure on Rk and α > 0, one says that µ is absolutely α-decaying4 if there
exists ρ0 > 0 such that for every 0 < ρ ≤ ρ0, every x ∈ Supp µ, every affine hyperplane L ⊆ Rk, and every
ε > 0, one has

µ
(
B(x, ρ) ∩ N (L, ερ)

)
.× εαµ

(
B(x, ρ)

)
.

HereN (L, ρ) denotes the closed ρ-thickening of the affine hyperplaneL, i.e. N (L, ρ) =
{
x ∈ Rd : dist(x,L) ≤ ρ

}
.

Another useful property is the so-called Federer (doubling) condition. One says that µ is Federer if
there exists ρ0 > 0 such that

µ
(
B(x, 2ρ)

)
≍× µ

(
B(x, ρ)

)
∀x ∈ Supp(µ) ∀0 < ρ ≤ ρ0.

Measures which are both absolutely α-decaying and Federer are called absolutely α-friendly, a term coined
in [12].

Many examples of absolutely friendly measures can be found in [8, 10, 13, 14]. The Federer condition is
very well studied; it obviously holds when µ is Ahlfors regular , i.e. when there exist δ, ρ0 > 0 such that

µ
(
B(x, ρ)

)
≍× ρδ ∀x ∈ Supp(µ) ∀ 0 < ρ ≤ ρ0.

The above property for a fixed δ will be referred to asAhlfors δ-regularity. It is easy to see that the Hausdorff
dimension of the support of a Ahlfors δ-regular measure is equal to δ. An important class of examples
of absolutely decaying and Ahlfors regular measures is provided by limit measures of irreducible families
of contracting similarities [8] or conformal transformations [14] of Rk satisfying the open set condition,
as defined in [7]. See however [10] for an example of an absolutely friendly measure which is not Ahlfors
regular.

The following is a well-known and useful consequence of Ahlfors δ-regularity:

Lemma 2.1 ([4, Lemma 4.2]). If µ(B(x, ρ)) .× ρδ for all x ∈ Supp(µ) and all 0 < ρ ≤ ρ0, then whenever
a set E satisfies µ(E) > 0, we have dimH(E) ≥ δ.

2.2. Hausdorff–Cantelli Lemma. Although we do not define Hausdorff dimension here (see [4] for a
definition), we will recall the main tool with which we will bound the Hausdorff dimension from above.

Lemma 2.2 ([3, Lemma 3.9]). Let E be a subset of Rd and suppose that

E ⊆ {x ∈ Rd : x ∈ H for infinitely many H ∈ C},
where C is a family of open balls. If for some s > 0,

costs(C) :=
∑

H∈C

diams(H) < ∞,

then dimH(E) ≤ s.

4This terminology differs slightly from the one in [8], where a less uniform version was considered.
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3. Proof of the Main Result

3.1. Strategy of the proof. A crucial ingredient in the proof of [12, Corollary 2] was the simplex lemma
[11, Lemma 4], which states that there exists κ > 0 such that for every ball B = B(x, ρ) ⊆ Rd, the set

{
p

q
∈ Qd : q ≤ κρ−1/(1+ 1

d
)

}

is contained in an affine hyperplane L = LB ⊆ Rd. In [5], we introduced an analogue of the simplex lemma
for intrinsic approximation on nonsingular manifolds:

Lemma 3.1 ([5, Lemma 5.1]). Let M ⊆ Rd be a submanifold of dimension k, let U ⊆ Rk be an open set,
let Ψ : U → M be a local parameterization, and let V ⊆ U be compact. Then there exists κ > 0 such that
for every ball B = B(x, ρ) ⊆ V , the set

{
p

q
∈ Qd ∩Ψ(B(x, ρ)) : q ≤ κρ−1/c(k,d)

}

is contained in an affine hyperplane L = LB,Ψ ⊆ Rd. Here c(k, d) > 0 is a constant depending on k and d,
with c(d− 1, d) = 1.

Now if µ is an absolutely α-friendly measure, then we can estimate the measure of the set B∩N (LB , ερ)
by using the definition of absolute friendliness. This estimate is needed in the proof of [12, Corollary 2]. In
the setting of Lemma 3.1, we instead need to estimate the measure of the set B ∩ N (Ψ−1(LB,Ψ), ερ), and
we cannot do this directly from the definition of absolute friendliness. However, if the chart Ψ is chosen
appropriately, then Ψ−1(LB,Ψ) will be a quadratic hypersurface in Rd−1, and it turns out that we can use
this fact to bound the measure appropriately. Another difficulty comes from the fact that the choice of
Ψ such that Ψ−1(LB,Ψ) is a quadratic hypersurface may not be the same as the Ψ which is given in the
hypothesis of Theorem 1.2. So the proof of Theorem 1.2 has three major parts:

1. proving that absolute friendliness is preserved under nonsingular transformations;
2. estimating the measure of a neighborhood of a quadratic hypersurface under an absolutely friendly

measure;
3. using the proof idea of [12] to finish the proof.

In what follows, µ always denotes a compactly supported absolutely α-friendly measure on Rk, where
k = d− 1. Also, we fix β < α.

3.2. Absolute friendliness and nonsingular transformations. We shall prove the following:

Proposition 3.2. Let U ⊆ Rk be an open set containing Supp(µ), and let Φ : U → V ⊆ Rk be an invertible
nonsingular transformation. Then Φ[µ] is absolutely β-friendly.

The following lemma will be proved in somewhat greater generality than is needed to prove Proposition
3.2, since this generality will be used later in the proof of Theorem 1.2.

Definition 3.3. A set S ⊆ Rk−1 is K-quasiconvex if for every x,y ∈ S there exists a piecewise smooth
path γ ⊆ S connecting x and y such that length(γ) ≤ K‖y − x‖.

Lemma 3.4. Let S ⊆ Rk−1 be a K1-quasiconvex set, and let f : S → R. Let Γ = Γ(S, f) denote the graph
of f , so that Γ ⊆ Rk. Then for every ball B = B(x, ρ) with x ∈ Supp(µ) and 0 < ρ ≤ K2/‖f ′′‖S and for
all ε > 0, we have

µ
(
N (B ∩ Γ, ερ)

)
.× εα/2µ(N (B ∩ Γ,

√
ερ)) (if ε ≤ 1)(3.1)

µ
(
B ∩ N (Γ, ερ)

)
.× εβµ(B).(3.2)

The implied constants can depend on K1, K2, µ, and β.
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Proof of (3.1). If ε ≥ 1/4 then (3.1) is trivial, so suppose that ε ≤ 1/4 and thus
√
ε ≥ 2ε.

Let ρ̃ =
√
ερ/2, and let A ⊆ N (B∩Γ, ερ) be a maximal ρ̃-separated set. Fix y ∈ A and let B̃ = B(y, ρ̃).

Fix z ∈ B̃ and let γ ⊆ S be a piecewise smooth path connecting y and z such that length(γ) ≤ K1‖z−y‖.
Applying the fundamental theorem of calculus to the functions f ′ and f on γ gives

‖f ′(·)− f ′(y)‖γ ≤ ‖f ′′‖S · length(γ) ≤ (K2/ρ)(K1ρ̃) ≤ K1K2

√
ε

‖f(z)− f(y)− f ′(y)[z − y]‖ ≤ ‖f ′(·)− f ′(y)‖γ · length(γ) ≤ (K1K2

√
ε)(K1ρ̃) = K2

1K2

√
ερ̃.

So if L denotes the hyperplane {(z, f(y) + f ′(y)[z−y]) : z ∈ Rk−1}, then B ∩Γ ⊆ N (L,K2
1K2

√
ερ̃). Thus

µ
(
B̃ ∩ N (B ∩ Γ, ερ)

)
= µ

(
B̃ ∩ N (L, (K2

1K2 + 2)
√
ερ̃)

)
(since ερ = 2

√
ερ̃)

.× (
√
ε)αµ(B̃) = εα/2µ(B̃) (α-decay property)

µ
(
N (B ∩ Γ, ερ)

)
≤

∑

y∈A

µ
(
B(y, ρ̃) ∩ N (B ∩ Γ, ερ)

)

.×

∑

y∈A

εα/2µ
(
B(y, ρ̃)

)

.× εα/2µ
(
N (B ∩ Γ, ερ+ ρ̃)

)
(bounded multiplicity)

≤ εα/2µ
(
N (B ∩ Γ,

√
ερ)

)
(since

√
ε ≥ 2ε) �

Proof of (3.2). Let C > 1 denote the implied constant of (3.1). Let N = ⌊log2 log(1/ε)⌋, and for each
n = 0, . . . , N − 1, plug in ε := ε1/2

n

and ρ := 2ρ in (3.1). (If N is negative or undefined, then ε ≥ 1/e and
thus (3.2) is trivially true.) Taking the product yields

µ
(
N (2B ∩ Γ, ερ)

)

µ
(
N (2B ∩ Γ, ε1/2Nρ)

) ≤
N−1∏

n=0

Cεα/2
n+1

= CNεα(1−2−N ).

Since ε1/2
N ≍× 1 and µ

(
N (2B ∩ Γ, ε1/2

N

ρ)
)
≤ µ(3B) ≍× µ(B), we get

µ
(
B ∩ N (Γ, ερ)

)
≤ µ

(
N (2B ∩ Γ, ερ)

)
.× C log2 log(1/ε)εαµ(B).

Since β < α, this demonstrates (3.2). �

Now let U ⊆ Rk be an open set containing Supp(µ) and let Φ : U → V ⊆ Rk be an invertible nonsingular
transformation. Since Supp(µ) is compact, after shrinking U we can assume that ‖Φ′(x)−1‖ ≤ c0 and
‖Φ′′(x)‖ ≤ c1 for all x ∈ U . Fix a ball B(x, ρ) centered at x ∈ Supp(µ), let L ⊆ Rk be an affine
hyperplane, and let M = Φ−1(L). Writing L = L−1(t) for some linear map L : Rk → R and some t ∈ R,
we get M = (L ◦ Φ)−1(t). Write L[y] = 〈y,w〉 for some w ∈ Rk, and without loss of generality suppose
that ‖w‖ = 1. Let v ∈ Rk be the unique unit vector such that Φ′(x)[v] = aw for some a > 0. Then

(L ◦ Φ)′(x)[v] = a = ‖Φ′(x)[v]‖ ≥ 1/‖Φ′(x)−1‖ ≥ 1/c0 > 0.

So for all y ∈ B(x, ρ), we have (L ◦ Φ)′(y)[v] ≥ 1/c0 − c1ρ. If we assume that ρ ≤ ρ0 := 1/(2c0c1), then
we get (L ◦Φ)′(y)[v] ≥ 1/(2c0), so by the implicit function theorem, B(x, ρ)∩M is contained in a rotated
version of a set Γ as in Lemma 3.4. Moreover, the constants K1 and K2 corresponding to this Γ will be
uniform with respect to x. So by Lemma 3.4 we get

µ
(
B(x, ρ) ∩ N (M, ερ)

)
.× εβµ(B(x, ρ)).

Since Φ is bi-Lipschitz (after shrinking U), this inequality implies that the pushforward measure Φ[µ] is
absolutely β-friendly.
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3.3. Measuring neighborhoods of quadratic hypersurfaces.

Lemma 3.5. For every quadratic hypersurface Z ⊆ Rk, for every ball B = B(w, ρ) ⊆ Rk with w ∈ Supp(µ)
and 0 < ρ ≤ 1, and for every ε > 0,

µ(B ∩N (Z, ερ)) .× εβµ(B).

We emphasize that the implied constant here must be independent of Z.

Proof. We assume that k ≥ 2, as otherwise the conclusion is trivially true. Write Z = ZP for some
quadratic polynomial P : Rk → R. By a perturbation argument, we can without loss of generality assume
that the quadratic part of P is nondegenerate. Then by applying a translation, we can without loss
of generality assume that P has no linear part. Finally, by applying a rotation we can without loss of
generality suppose that

P (x) =

k∑

i=1

cix
2
i − b

for some c1, . . . , ck 6= 0 and b ∈ R. This is because every symmetric matrix can be diagonalized by an
orthogonal matrix.

Let

Z̃ = {x ∈ Z ∩ [0,∞)k : |cixi| ≤ |ckxk| ∀i = 1, . . . , k − 1}
= {x ∈ Z ∩ [0,∞)

k
: c2ix

2
i ≤ c2kx

2
k ∀i = 1, . . . , k − 1}.

Then Z = G(Z̃), where G is the finite group of signed permutation matrices. So to complete the proof,
it suffices to show that for every ball B = B(w, ρ) ⊆ Rk with w ∈ Supp(µ) and 0 < ρ ≤ 1 and for every
ε > 0,

(3.3) µ(B ∩ N (Z̃, ερ)) .× εβµ(B).

Let f : Rk−1 → R be the unique positive solution to P (x, f(x)) = 0, i.e.

f(x) =

√√√√ b

ck
−

k−1∑

i=1

ci
ck

x2
i ,

and let

S =
{
x ∈ Rk−1 : (x, f(x)) ∈ Z̃

}
=

{
x ∈ [0,∞)

k−1
: ckb − ck

k−1∑

i=1

cix
2
i ≥ c2jx

2
j ∀j = 1, . . . , k − 1

}
.

Then Z̃ = Γ(S, f) in the notation of Lemma 3.4. We compute f ′ and f ′′, using the notation xk = f(x):

f ′(x)i = − cixi

ckxk

|f ′(x)i| ≤ 1 (x ∈ S)

f ′′(x)ij =
cixi

ckx2
k

f ′(x)j −
ciδij
ckxk

= −
[
cixicjxj

c2kx
3
k

+
ciδij
ckxk

]

|f ′′(x)ij | ≤
1

xk
+

1

xi
≤ 2

minkℓ=1 xℓ

(x ∈ S).

Since our bound for ‖f ′′(x)‖ depends on x, we need a stronger property than just the quasiconvexity of S:

Claim 3.6. If R =
∏k

i=1[ai, bi] ⊆ [0,∞)
k
is a coordinate-parallel rectangle, then the set

SR = {x ∈ Rk−1 : (x, f(x)) ∈ Z̃ ∩R}
is

√
k − 1-quasiconvex.
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Proof. Let φ : [0,∞)
k−1 → [0,∞)

k−1
be defined by the equation

φ(x) = (x2
1, . . . , x

2
k−1).

Then SR = φ−1(TR), where

TR =

{
y ∈

k−1∏

i=1

[a2i , b
2
i ] : ckb− ck

k−1∑

i=1

ciyi ≥ c2jyj ∀j = 1, . . . , k − 1,
b

ck
−

k−1∑

i=1

ci
ck

yi ∈ [a2k, b
2
k]

}
.

Fix x(0),x(1) ∈ SR, and let y(0) = φ(x(0)), y(1) = φ(x(1)). Since TR is convex, for each t ∈ [0, 1]

y(t) := y(0) + t(y(1) − y(0)) ∈ TR

and thus

x(t) := φ−1(y(t)) ∈ SR.

Let γ be the path t 7→ x(t). Since for each i = 1, . . . , k − 1 the map t 7→ x
(t)
i is monotonic, we have

length(γ) =

∫ 1

0

∥∥∥∥
∂x(t)

∂t

∥∥∥∥ dt ≤
k−1∑

i=1

∫ 1

0

∣∣∣∣∣
∂x

(t)
i

∂t

∣∣∣∣∣ dt =

k−1∑

i=1

|x(1)
i − x

(0)
i | ≤

√
k − 1‖x(1) − x(0)‖,

which completes the proof. ⊳

Now let B = B(w, ρ) be a ball with w ∈ Supp(µ) and 0 < ρ ≤ 1, and fix ε > 0. Fix n ∈ N and let

ρn = 2−nρ, Rn =

{
x ∈ [0,∞)k : ρn+1 ≤

k
min
i=1

xi ≤ ρn

}
, Sn = SRn

.

Since Rn can be written as the union of k different coordinate-parallel rectangles, Sn can be written as the
union of k different

√
k − 1-quasiconvex sets. Thus since

‖f ′′‖Sn
.× 1/ρn,

the hypotheses of Lemma 3.4 are satisfied for balls of radius ρn. Now let A be a maximal ρn-separated
subset of B(w, ρ) ∩Rn ∩ Supp(µ), so that

µ
(
B ∩N (Γ(Sn, f), ερ)

)
≤

∑

x∈A

µ
(
B(x, ρn) ∩N (Γ(Sn, f), ερ)

)

.×

∑

x∈A

(2nε)βµ
(
B(x, ρn)

)
(Lemma 3.4)

.× (2nε)βµ
(
N (B ∩Rn, ρn)

)
. (bounded multiplicity)

Let V denote the union of the coordinate hyperplanes in Rk, so that Rn ⊆ N (V, ρn). Then

µ
(
B ∩ N (Γ(Sn, f), ερ)

)
≤ (2nε)βµ

(
2B ∩ N (V, 2ρn)

)

.× (2nε)β(2−n)αµ(2B) (α-decaying property)

≍× 2−n(α−β)εβµ(B). (doubling property)

µ(B ∩ N (Γ(S, f), ερ)) ≤
∞∑

n=0

µ
(
B ∩ N (Γ(Sn, f), ερ)

)

.× εβµ(B)
∞∑

n=0

2−n(α−β) ≍× εβµ(B),

demonstrating (3.3). �

Recall that d = k + 1.
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Corollary 3.7. Let U ⊆ Rk be an open set containing Supp(µ), let Ψ : U → Zreg be a local coordinate
chart on a quadratic hypersurface Z ⊆ Rd, and let ν = Ψ[µ]. Then for every affine hyperplane L, for every
ball B = B(x, r) ⊆ Rd, and for every ε > 0,

ν
(
B ∩ N (L ∩ Z, ερ)

)
.× εβν(B).

In this corollary, the implied constant can depend on Z.

Proof. By Proposition 3.2, it suffices to show that there exists a covering of Zreg by coordinate charts
with the required property. We show that coordinate charts whose inverses are linear have the property.
Indeed, suppose that L ◦ Ψ(x) = x, where L : Rd → Rk is some linear map. Let L ⊆ Rd be an affine
hyperplane. Then L ∩ Z is a quadratic hypersurface in L, so L[L ∩ Z] is a quadratic hypersurface in
Rk, unless L ↿ L is singular in which case L[L] is a hyperplane in Rk. Either way, the µ-measure of
neighborhoods of Ψ−1(L) ⊆ L[L ∩ Z] can be bounded using Lemma 3.5. Since Ψ is bi-Lipschitz, this
completes the proof. �

We record the following corollary of Lemma 3.1 for use in the proof below:

Corollary 3.8. Let Z ⊆ Rd be a hypersurface, and let K ⊆ Zreg be a compact set. Then there exists κ > 0
such that for every ball B = B(x, ρ) ⊆ Rd, the set

{
p

q
∈ Qd ∩K ∩B : q ≤ κ/ρ

}

is contained in an affine hyperplane L = LB,Z .

3.4. Finishing the proof using the method of [12]. As in Theorem 1.2, let µ be a measure on an open
set U ⊆ Rk which is absolutely α-friendly and Ahlfors δ-regular, let Ψ : U → Zreg be a local coordinate
chart on a quadratic hypersurface Z ⊆ Rd, let ν = Ψ[µ], and fix c ≥ 1. Let K ⊆ Zreg be a compact
neighborhood of Supp(ν). Then we can apply both Corollary 3.7 and Corollary 3.8.

We wish to show that the dimension bound (1.2) holds. To this end, after fixing s > δ − α
(
1− 1

c

)
,

we must construct a cover C of E := Wc,Z ∩ Supp(ν) satisfying the hypotheses of Lemma 2.2. We will
construct this cover as the union of several smaller collections of sets.

For each n ∈ N, let ρn := 2−n, let Sn ⊆ Supp(ν) be a maximal ρn-separated set, and let Sn :=
{B(x, ρn) : x ∈ Sn}. For each B = B(x, ρn) ∈ Sn, let Lx = L2B be as in Corollary 3.8, let Tx ⊆
B ∩N (Lx ∩ Z, ρcn) ∩ Supp(ν) be a maximal ρcn-separated set, and let Tx = {B(y, ρcn) : y ∈ TB}. Then let

Cn :=
⋃

x∈Sn

Tx

and

C :=
⋃

n∈N

Cn.

We claim that this collection satisfies the hypotheses of Lemma 2.2. First, fix z ∈ E = Wc,Z ∩ Supp(ν).

Choose c′ ∈ (c, ωZ(z)), and fix p

q ∈ Qd∩Z such that
∥∥∥z− p

q

∥∥∥ ≤ q−c′ . Let n be minimal such that q ≤ κρ−1
n .

Let x ∈ Sn satisfy z ∈ B = B(x, ρn) (such an x must exist since Sn is maximal).

If q is sufficiently large, then
∥∥∥z− p

q

∥∥∥ ≤ q−c′ ≤ ρn, so
∥∥∥x− p

q

∥∥∥ ≤ 2ρn. By Corollary 3.8, p

q ∈ Lx.

On the other hand, the minimality of n implies that q ≥ κρ−1
n+1 and thus if n is sufficiently large, then

q−c′ ≤ (2/κ)c
′

ρc
′

n ≤ ρcn. So

z ∈ B ∩ N (Lx ∩ Z, q−c′) ⊆ B ∩N (Lx ∩ Z, ρcn) ⊆
⋃(

Tx
)
= Cn.

It follows that z lies in infinitely many Cn, namely one for each approximant p

q .
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On the other hand, for all β < α

costs(C) ≤
∑

n∈N

∑

x∈Sn

∑

y∈Tx

(2ρcn)
s

≍×

∑

n

∑

x

∑

y

ν
(
B(y, ρcn)

)
(ρcn)

(s−δ) (Ahlfors δ-regularity)

≍×

∑

n

ρc(s−δ)
n

∑

x

ν
(
B(x, 2ρn) ∩N (Lx ∩ Z, 2ρcn)

)
(bounded multiplicity)

.×

∑

n

ρc(s−δ)
n

∑

x

(ρc−1
n )βν

(
B(x, 2ρn)

)
(Corollary 3.7)

≍×

∑

n

(ρn)
c(s−δ)+β(c−1)ν(Z) (bounded multiplicity)

< ∞,

where the last inequality holds assuming c(s− δ) + β(c− 1) > 0, i.e.

(3.4) s > δ − β

(
1− 1

c

)
.

For all s > δ−α
(
1− 1

c

)
, there exists β < α such that (3.4) holds, and thus dimH(E) ≤ s. This completes

the proof of (1.2).
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