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The cellular response to genotoxic DNA double strand breaks (DSBs) uses a multitude of
post-translational modifications to localise, modulate and ultimately clear DNA repair
factors in a timely and accurate manner. Ubiquitination is well established as vital to the
DSB response, with a carefully co-ordinated pathway of histone ubiquitination events
being a central component of DSB signalling. Other ubiquitin-like modifiers (Ubl) includ-
ing SUMO and NEDD8 have since been identified as playing important roles in DSB
repair. In the last five years ∼20 additional Ub/Ubl proteases have been implicated in the
DSB response. The number of proteases identified highlights the complexity of the Ub/
Ubl signal present at DSBs. Ub/Ubl proteases regulate turnover, activity and protein–
protein interactions of DSB repair factors both catalytically and non-catalytically. This not
only ensures efficient repair of breaks but has a role in channelling repair into the correct
DSB repair sub-pathways. Ultimately Ub/Ubl proteases have essential roles in maintaining
genomic stability. Given that deficiencies in many Ub/Ubl proteases promotes sensitivity
to DNA damaging chemotherapies, they could be attractive targets for cancer treatment.

Introduction
DNA double stranded breaks are highly toxic lesions that occur when both strands of DNA are
broken. The breaks can be formed from endogenous processes such as DNA replication, or exogenous
sources such ionising radiation. Two major pathways repair double strand breaks (DSBs) (Figure 1).
Non-Homologous End Joining (NHEJ) occurs throughout the cell cycle and uses small regions of
homology present in DNA overhangs followed by direct re-ligation for repair. If the overhangs are not
compatible loss of nucleotides can lead to mutations. The second pathway Homologous
Recombination (HR) is restricted to late S/G2 phases of the cell cycle as it relies on homologous DNA
sequences, provided by sister chromatids, for homology directed repair. HR repair is generally error
free [1]. Ub plays essential roles in orchestrating both repair pathways. A central function of Ub in
DSB repair is maintaining the balance between NHEJ and HR in S/G2 cells. RNF168 mono-
ubiquitination on K15 of H2A or H2AX promotes the recruitment of the pro-NHEJ factor 53BP1,
while BRCA1–BARD1 mediated mono-ubiquitination of H2A K125/K127 or K129 promotes displace-
ment of 53BP1 and subsequent DNA end-resection, the essential precursor step for HR [2].
Maintaining the correct balance is critical, as too much NHEJ can be mutagenic, but un-restrained
DNA end-resection is also toxic. To co-ordinate DSB repair Ub and the Ubl SUMO and NEDD8 play
multiple roles, they promote the recruitment and retention of repair factors at damaged chromatin,
alter protein–protein interactions and enable clearance and termination of repair signalling [3,4]. As
all of these processes require exquisite temporal and spatial tuning, a plethora of Ub/Ubl proteases are
deployed by DNA damage signalling to ensure efficient and accurate DSB repair [5]. The profound
consequences that result from the mis-regulation of these proteases offers fascinating insight into the
intricacies of DSB repair.
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Ku70/80 and the MRN complex
DSBs are rapidly detected by two complexes, the Ku70/Ku80 heterodimer which promotes NHEJ and MRN
(MRE11A/RAD50/NBS1) which, with the exonuclease CtIP promotes HR [6,7]. Multiple Ub-E3 ligases ubiqui-
tinate Ku heterodimers which ultimately results in extraction by the VCP/p97 complex [8,9]. The importance
of this regulation is highlighted by the toxic effects of trapped Ku heterodimers which not only prevent NHEJ
repair termination but also block the early steps in HR repair [9]. Ubiquitination of Ku heterodimers is coun-
tered by at least two DUBs (De-ubiquitinating proteases). UCHL3 de-ubiquitinates and stabilises Ku80 which
is required for Ku80 retention at DSBs [10]. OTUD5 also stabilises Ku80, loss of OTUD5 reduces NHEJ repair
efficiency [11] (Figure 2).
The MRN complex performs several activities, including DNA unwinding, promotion of DNA end resection

and recruitment of the master DSB kinase ATM to the DSB [6]. ATM phosphorylates multiple DSB repair pro-
teins, including histone H2AX at Ser139 (γH2AX) [12]. Pellino generates K63-Ub chains on NBS1 promoting
ATM activation and HR repair, suggesting that Ub signalling also regulates MRN activity [13]. Indeed, USP4 is
recruited to DSBs through interaction with NBS1 where it also regulates CtIP ubiquitination [14].

MDC1 (Mediator of Damage Checkpoint 1)
MDC1 interacts with γH2AX via its BRCT repeats [15], and has multiple roles in DSB signalling, it aids in the
retention of ATM which further propagates the γH2AX signal along damaged chromatin and it recruits RNF8

Figure 1. NHEJ occurs at all stages of the cell cycle.

Ku70/80 heterodimers bind and stabilise the ends of the DSB. Other factors are also recruited by the Ku dimer. DNA end

processing chemically modifies the bases to allow re-ligation. Ligase 4 (LIG4), XLF and other repair factors ligate the broken

DNA ends. HR is restricted to S/G2, initial DNA 30 end resection is initiated by the MRN complex and CtIP. Further resection

promoted by the BRCA1–BARD1 heterodimer, EXO1 and DNA2 promote long range resection. The ssDNA generated by end

resection is coated in the RPA heterotrimeric complex, which is then displaced by RAD51 nucleofilaments with the aid of the

BRCA1–PALB2–BRCA2 complex. After RAD51 filament formation, homology search followed by invasion of the sister

chromatid and synthesis of new DNA occurs. As the biology of these later processes in the context of Ub/Ubl modifications is

poorly understood they are not illustrated here. As NHEJ can also occur in S/G2 pathway choice between HR and NHEJ

occurs. The pro-NHEJ factor 53BP1 is recruited by K15 Ub modified H2A/H2AX while modification of K125/K127 or K129 by

mono-Ub aids in nucleosome remodelling and displacement of 53BP1, this favours DNA end-resection and HR. Thus

maintaining the balance of Ub signals dictates repair pathway choice.
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Figure 2. The DNA bound Ku70/80 heterodimer is ubiquinated and SUMOylated by multiple E3 ligases. Part 1 of 2

Ultimately this signals for Ku70/80 dimer removal from chromatin by VCP/p97. MDC1 is constitutively protected from excessive

SUMOylation through its interaction with SENP2. This interaction is disrupted by ATM signalling which allows the DSB located

MDC1 to be hyperSUMOylated by PIAS4 which also localises to DSBs. The SUMOylated MDC1 is then recognised by the

SUMO directed Ub ligase RNF4 which ubiquitinates MDC1 and promotes extraction from chromatin by VCP. The RNF4 step

can be countered by ATXN3, slowing MDC1 turnover at DSBs. RNF8 is recruited by MDC1 where it forms K63-Ub linkages on
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[16,17]. While MDC1 recruitment is phosphorylation dependent, turnover at DSBs in G1 requires
SUMOylation and ubiquitination. Following recruitment to DSBs MDC1 is SUMOylated by PIAS4 [18–22].
MDC1 SUMOylation promotes recognition by RNF4, an Ub-E3 that interacts with SUMOylated substrates
[23]. This in turn promotes VCP/p97 dependent extraction of MDC1 from DSBs [20–22,24]. The basal
SUMOylation state of MDC1 is maintained by the SUMO protease SENP2 which dissociates from MDC1
shortly after DSB induction. This allows un-restrained SUMOylation of MDC1 by PIAS4 on DSBs which ultim-
ately triggers MDC1 removal by VCP. In the absence of SENP2 the constitutively hyperSUMOylated MDC1
undergoes premature PIAS4-RNF4-VCP dependent clearance from DSBs resulting in ablated RNF8 accrual
and K63-Ub signalling [24]. The RNF4 dependent clearance of MDC1 is antagonised by ATXN3, a DUB that
is rapidly recruited to DSBs by SUMO [25]. USP7 also interacts with and stabilises the MDC1–MRN complex
[26].

RNF8
RNF8 is recruited to DSBs via its FHA domain that recognises phosphorylated MDC1 [27], where along with
its partner E2 (UBE2N) K63-Ub chains are conjugated on histone H1 [28]. HUWE1 primes the ubiquitination
of H1 prior to extension by RNF8 [29]. Several DUB dependent modes of RNF8 regulation have been identi-
fied. OTUB1 blocks the generation of K63-Ub through a non-enzymatic activity that involves disruption of the
RNF8–UBE2N catalytic cycle [30,31]. The RNF8–UBE2N complex is also regulated by HERC2 which

Figure 2. The DNA bound Ku70/80 heterodimer is ubiquinated and SUMOylated by multiple E3 ligases. Part 2 of 2

H1.2. HUWE1 also contributes to the generation of Ub chains on H1.2. OTUB1 inhibits RNF8 activity by disrupting Ub

recognition by the E2 UBE2N. Conversely, HERC2 stimulates RNF8–UBE2N activity in a SUMOylation dependent manner.

HERC2 also interacts with two DUBs, USP16 and USP20 both of which are involves in DSB repair signalling. ATXN3 counters

RNF8 auto-ubiquitination. RNF168 interacts with RNF8 generated H1.2K63-Ub and amplifies this Ub signal through recognition

of its own Ub product — K15 mono-ubiquitinated H2A or H2AX. Two DUBs, (A20 and USP14) interfere with RNF168’s initial

recruitment to H1.2. Two more DUBs (USP7 and USP34) are needed to protect RNF168 from auto-degradation. The paralog

RNF169 competes with RNF168 for H2A/H2AXK15-Ub binding. 53BP1 recognises the K15-Ub modified H2A or H2AX generated

by RNF168. Additionally, 53BP1 is recruited by H4K20me2, a modification that is competitively bound by L3MBTL1.

Ubiquitination and extraction from chromatin of L3MBTL1 is required for efficient 53BP1 spreading along chromatin. The

turnover of L3MBTL1 is antagonised by OTUB2. Multiple DUBs regulate the spread of 53BP1 via regulating the amplitude of

Ub/UbK63 at DSBs, some of these DUBs directly counter the H2A/H2AXK15-Ub modification while others may act on other

uncharacterised K63-Ub modified proteins. RAP80 and the BRCA1-A complex are recruited to DSBs in a K63-Ub dependent

fashion, although RAP80 also recognises SUMO modifications (most likely generated by RNF4), suggesting that the RAP80–

BRCA1-A complex may recognise a different signal to 53BP1. BRCA1 recruitment into the BRCA1-A complex is thought to

divert its activity from promoting DNA end-resection. At least two DUBs (USP26 and USP37) specifically counter the Ub signal

that promotes RAP80–BRCA1 accrual. USP13 trims Ub from the RAP80 UIM domain to allow efficient Ub recognition. BRCA1–

BARD1 also recruit to DSBs independently of K63-Ub signalling. Ubiquitination inhibits the BARD1- HP1γ interaction needed

for efficient accumulation of BRCA1–BARD1 at DSBs. This disruptive ubiquitination event is countered by USP15. The

ubiquitination and turnover of BRCA1 is countered by USP9X. BRCA1–BARD1 also generates mono-Ub on the far C terminus

of H2A (K125, K127 or K129). This signal promotes DNA end-resection and aids in the displacement of 53BP1 from DSBs.

USP48 restricts the spread of H2AK125/127/129-Ub preventing excessive DNA end-resection. The MRN complex and CtIP, both of

which are essential for the early steps in DNA end-resection are ubiquitinated, USP4 antagonises these modifications.

SUMOylation promotes degradation of the DNA exonuclease EXO1, to control DNA end-resection which is countered by

SENP6. The loading of the RPA hetero-trimer onto single stranded DNA (generated through DNA end-resection) and its

exchange with RAD51 are essential steps in HR. The RPA70 subunit is SUMOylated and degraded by RNF4, this is countered

by SENP6. Loading of RAD51 onto ssDNA is promoted by BRCA2 in the BRCA1–PALB2–BRCA2 complex. This complex can

only form due to the activity of USP11 which removes an inhibitory Ub modification that is disruptive to BRCA1–PALB2

interactions. USP11 levels are cell cycle regulated by KEAP1. USP1–UAF1 non-catalytically aids in the loading of RAD51,

UCHL3 de-ubiquitinates RAD51 promoting its ability to load onto DNA, while USP21 protects the unstable BRCA2 protein from

degradation.
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stimulates the generation of K63-Ub at DSBs by stabilising or promoting the interaction of RNF8 with UBE2N
[32]. This activity is promoted by SUMOylation of HERC2 through PIAS4 [33]. HERC2 interacts with USP20,
a DUB that is recruited to DSBs and is involved in checkpoint signalling in response to replication stress and
HR repair [34–37]. HERC2 also interacts with and stabilises USP16 which is involved in H2A de-ubiquitination
in DSB repair [38]. RNF8 auto-ubiquitination is countered by ATXN3, which is required to balance VCP/p97
dependent extraction from damaged chromatin [39].

RNF168
H1K63-Ub is recognised by a MIU domain of RNF168, which conjugates mono-ubiquitin to H2A or H2AX at
K15 [28,40]. This serves as a docking site for the resection antagonist/pro-NHEJ factor 53BP1 [41,42]. A
second MIU domain in RNF168 also recognises its own Ub product, allowing spreading and amplification of
H2A/H2AX-UbK15 [28]. RNF168 is de-stabilised following DSB induction and at least two DUBs, USP34 and
USP7 are involved in countering RNF168 turnover. Loss of either DUBs results in reduced RNF168 and less
K63-Ub signalling at DSBs [43,44]. RNF168 accumulation at damaged chromatin is also regulated by DUBs.
A20 interacts with RNF168 upon DSB induction and disrupts recruitment to H1K63-Ub non-catalytically [45].
USP14 also recruits to DSBs where it interacts with RNF168 via its MIU1 domain and impairs RNF168 Ub sig-
nalling [46].
USP3, USP51 and USP16 de-ubiquitinate H2A/H2AXK15-Ub with varying degrees of specificity [47–49]. Loss

of these DUBs causes excessive spreading of H2A/H2AXK15-Ub and its downstream reader 53BP1. In addition
to K63-Ub, RNF168 generates K27-Ub conjugates, which are required for the recruitment of 53BP1 and
RAP80–BRCA1 [50]. Although the biology of K27-Ub in DSB repair is not well understood, it has since been
shown that RNF168 generated K27-Ub conjugates can be antagonised by UCHL3 [51].
H2A/H2AXK15-Ub is also recognised by the RNF168 paralog RNF169 which competes with 53BP1. RNF169

therefore limits the recruitment of the pro-NHEJ/anti-resection factor 53BP1 and promotes HR repair [41,52–55].
Like RNF168, RNF169 is also stabilised by USP7 [56].
Several DUBs were characterised for their roles in DSB signalling prior to the identification of H2A/

H2AXK15-Ub generated by RNF168 and therefore it is not clear if they only target this modification, other sites
on H2A/H2AX or non-histone K63-Ub modified proteins. USP44, USP17L2/DUB3, USP11, ZUFSP and POH1
loss promotes the excessive spreading of Ub at DSBs and concomitant excessive accumulation of 53BP1 [57–65].

H2a-K118/K119
H2A is predominantly mono-ubiquitinated at K118/K119 by BMI1:RING1B E3 ligase. H2AK118/K119-Ub has
important, but not fully understood the role in DSB repair [66]. BAP1 is the dominant H2AK118/K119-Ub DUB
[67] and is rapidly and transiently recruited to DSBs [37,68,69]. BAP1 loss specifically reduces HR but not
NHEJ [68,69].

53BP1
53BP1 is a major adapter protein that recruits to DSBs via histone phosphorylation [70], methylation [71] and
ubiquitination [42]. While 53BP1 has no enzymatic activity it does recruit a number of other proteins that
antagonise DNA end-resection and subsequent HR pathways mediated by BRCA1. The major effectors of
53BP1 include PTIP, RIF1 and the Rev7-Shieldin-CST complexes [72].
The Tudor domain of 53BP1 recognises H4K20me2, which is also recognised with higher avidity by

L3MBTL1 and JMJD2A [73,74]. To allow maximal 53BP1 recruitment these factors need to be displaced from
chromatin. L3MBTL1 is K48 ubiquitinated by RNF8 and extracted by VCP/p97 from chromatin [73]. This ubi-
quitination is antagonised by OTUB2, a DUB that is recruited to DSBs and slows L3MBTL1 Ub dependent
removal from chromatin. This limits excessive 53BP1 spreading [37,75]. SUMOylation at DSBs is also import-
ant for 53BP1 recruitment, and 53BP1 is itself SUMOylated by PIAS4 in G1 [18,76]. SUMOylation of 53BP1 is
antagonised by SENP1, as displacement of SENP1 from nuclear pores reduces 53BP1 SUMOylation and dis-
rupts NHEJ repair [77]. The 53BP1 interacting partner RIF1 is also PIAS4 SUMOylated with similar kinetics to
53BP1 [76].

RAP80 and the BRCA1-A complex
RAP80 is a reader of K63-Ub polymers at DSBs and serves as a docking module for the BRCA1-A complex
[78–81]. In addition to K63-Ub, RAP80 interacts with SUMO chains, likely through its recognition of mixed
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K63-Ub-SUMO linkages for which it has an eighty times higher binding preference over K63-Ub chains. RNF4
is the likely source of these linkages due to its localisation at DSBs and ability to generate mixed
K63-Ub-SUMO conjugates [82,83].
BRCC36 (BRCA1/2 Containing Complex 36) was the first DUB characterised in DSB repair [84] and resides

within the BRCA1-A complex. BRCC36 de-ubiquitinates H2A/H2AX and RAP80. Loss of BRCC36 results in
extensive spreading of K63-Ub at DSBs, suggesting its role is to limit the amplitude of K63-Ub at DSBs [85,86].
BRCA1-A components, including BRCC36 are antagonists of HR repair. The BRCA1-A complex has been pro-
posed to divert BRCA1–BARD1 Ub ligase activity to dampen DNA end-resection. Loss of BRCA1-A compo-
nents causes a hyper-resection phenotype [87,88]. USP26 and USP37 are both recruited to DSBs and act on
conjugates generated by RNF168. However, these DUBs act on the RAP80 pathway rather than the 53BP1
pathway. USP26/USP37 depletion increases size but not number of BRCA1 foci. This excessive spreading of
BRCA1 can be countered by depletion of RAP80, suggesting the BRCA1 is being recruited into enlarged
BRCA1-A complexes. In cells depleted of USP26/USP37, BRCA1 interacts less efficiently with PALB2, which
bridges interaction with BRCA2. As BRCA2 is required for RAD51 loading this is a likely cause of failed HR in
these cells [57,58]. The K63-Ub dependent interaction by RAP80 is disrupted by ubiquitination of lysines in
close proximity to its UIM domain. USP13 counters this modification to enable recruitment of RAP80 and the
BRCA1-A complex to DSBs [89]. BRCA1 recruitment in S/G2 is also regulated by USP1–UAF1, which antago-
nises K63-Ub chains that serve as recruiters for BRCA1. Unlike several other DUBs that antagonise K63-Ub,
over-expression of USP1 only affected BRCA1 recruitment and not 53BP1. USP1 is locally inactivated by
K11-Ub modification generated by APCCdh1/Ube2S which is also localised to DSBs. The APCCdh1 dependent
inactivation of USP1 thus removes the restraint on K63-Ub generation in a cell cycle dependent manner [90].

BRCA1–BARD1
BARD1 aids in the recruitment of its heterodimeric partner BRCA1 to DSBs through a number of different
interacting partners, including HP1γ [91]. The BARD1 BRCT repeats are modified by K63-Ub which disrupts
interaction with HP1γ and therefore localisation of BRCA1–BARD1 to DSBs. This inhibitory ubiquitination is
removed by USP15, a cytoplasmic DUB that accumulates at DSBs through interaction with BARD1 [37,92].
The constitutive turnover of BRCA1 is countered by USP9X, loss of which causes reduction in BRCA1 protein
levels and reduced HR repair [93]. The BRCA1–BARD1 heterodimer constitutes an additional source of H2A
ubiquitination in the DSB repair response, being responsible for mono-ubiquitination of the extreme C ter-
minus of H2A at K125/127/129 [94]. This ubiquitination promotes chromatin alterations which facilitate long
range DNA end resection [95]. This modification is regulated by USP48 which specifically cleaves mono-
ubiquitinated H2AK125/127/129Ub. USP48 controls the extent of H2AK125/127/129 ubiquitination to prevent hyper-
resection. In the absence of USP48, DNA is over-resected and the cells utilise the single strand annealing (SSA)
sub-pathway in addition to HR. SSA is mutagenic due to the use of homologous repeats for bridging DSB
ends, resulting in sections of DNA being deleted [48].

CtIP
CtIP activity is essential for the early commitment to HR and is extensively regulated by both Ub and SUMO
E3 ligases [96,97]. Ubiquitination and SUMOylation are important for regulating CtIP steady state, promoting
recruitment to DSBs and limiting excessive resection. USP4 recruits to DSBs and interacts with both the MRN
complex and CtIP [14,98]. In its inactive ubiquitinated form USP4 cannot interact with these factors but due
to auto-de-ubiquitination these modifications are removed, enabling interaction with MRN-CtIP. It is not fully
understood how USP4 regulates CtIP activity [14,98].

EXO1
EXO1 is degraded after DSB induction as a means to limit hyper-resection [99]. EXO1 is SUMOylated by
PIAS4 in response to DSB induction, which promotes its degradation independently of RNF4. SENP6 antago-
nises EXO1 SUMOylation promoting stabilisation [100]. UCHL5 is also required for BLM/EXO1 dependent
end resection through de-ubiquitinating the INO80 subunit NFRKB, although the function of this subunit in
regulating end resection is not currently understood [37].
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RPA complex
USP1 both directly and indirectly — through its partner UAF1 affects HR repair [101–103]. UAF1 is critical to
the HR response through its association with RAD51AP1–RAD51–DNA complex which is required for effi-
cient RAD51 loading and unloading [101–103]. The RAD51AP1 interaction is mediated through a SUMO-like
domain, interestingly SUMO has previously been shown to be important for RAD51 foci formation [104]. The
RPA70 subunit is SUMOylated in response to DSB induction due to the release of the constitutive interaction
with SENP6. The SUMOylation of RPA70 improves interaction with RAD51 which is required for the exchange
of RPA subunits for RAD51 during HR [105].

BRCA2 and RAD51
Assembly of the BRCA1–PALB2–BRCA2 complex is restricted to S/G2 phases of the cell cycle. The Cullin3
adapter KEAP1 is responsible for preventing the formation of this complex outside of S/G2 by conjugating Ub
on the interface between BRCA1 and PALB2. This disruptive ubiquitination is countered by USP11 [106,107].
USP11 turnover is regulated by KEAP1 in a cell cycle dependent manner, with USP11 protein levels at their
lowest in G1. Thus cell cycle regulated turnover of USP11 allows a Ub dependent modification event to disrupt
the formation of the BRCA1–PALB2–BRCA2 complex. This prevents RAD51 loading from occurring outside
of S/G2 phases. Cells deficient of USP11 are defective in RAD51 loading due to failure in the formation of this
complex, resulting in loss of HR [107,108]. USP21 interacts with, and stabilises the BRCA2–RAD51 complex
by antagonising degradative BRCA2 ubiquitination. Down-regulation of USP21 results in failure of RAD51
loading and HR repair [109]. UCHL3 interacts with RAD51 and de-ubiquitinates residues that disrupt the
RAD51–BRCA2 interaction. In the absence of UCHL3, RAD51 interaction with BRCA2 is disrupted, leading to
reduced RAD51 foci formation and HR repair efficiency [110].

Chromatin relaxation
USP8 forms a complex with the early DDR factor BRIT1. Under basal conditions BRIT1 is K63-Ub modified,
which is antagonised by USP8. Low levels of BRIT1 K63-Ub modification are needed for recruitment to
γH2AX which promotes the further recruitment of chromatin remodellers. The subsequent relaxation of chro-
matin then allows accumulation of downstream repair factors [111]. SENP7 maintains steady state
SUMOylation levels of the chromatin component KAP1. ATM dependent phosphorylation of KAP1 is required
to disrupt the SUMO dependent interaction with the CHD3 subunit of the NuRD complex. This disruption
allows dispersion of the NuRDCHD3 complex from DSBs and subsequent chromatin relaxation [112]. In the
absence of SENP7 the hyperSUMOylated KAP1 retains interaction with CHD3 resulting in failure of chromatin
relaxation and HR repair [113]. The NuRD complex also recruits USP11 to DSBs promoting both histone
de-ubiquitination and de-acetylation which enforces proper chromatin remodelling post DSB induction [65].

Maintaining the free pool of Ub/Ubl for effective DSB
response
Disruption of proteasome function results in attenuation of Ub driven DSB repair which can be overcome by
suppling excess free Ub [62,114]. In addition to the proteasome, Ub/Ubl proteases are required for maintaining
modifier availability, either by processing immature precursors or by recycling modifiers from substrates. Only
six SUMO proteases are responsible for the bulk of SUMO maturation and recycling. Loss of SENP6 provokes
a HR defect due to failure in RPA70 deSUMOylation and RAD51 filament formation [105], however, SENP6
is the major polySUMO2/3 protease, depletion of which causes substantial alterations in SUMO2/3 homeostasis
in cells. These pleiotropic effects contribute to the HR defect, as re-supply of SUMO2 restores HR in SENP6
depleted cells [113]. Depletion of SENP2 also causes SUMO starvation resulting in HR failure that can be
rescued with additional free SUMO [24].

NEDDylation and DSB repair
NEDD8 conjugates are enriched at DSBs [115]. NEDD8 likely plays multiple roles in DSB resolution, but a role
in H4 NEDDylation by RNF111, required for RNF168 accrual has been proposed [115]. To add further com-
plexity RNF168 has also been proposed to NEDDylate H2A acting as a competitor for Ub signalling [116].
Additionally RNF111 NEDDylates CtIP and thus regulates DNA end-resection [117]. NEDDylation is reversed
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by just two known active proteases — the JAMM type DUB CSN5 within the COP9 signalosome and SENP8
[118]. Given the role of NEDDylation in the DSB repair response it is unsurprising that the COP9 signalosome
and its DUB component CSN5 are recruited to DSBs in a NEDD8 dependent fashion. Disruption of this
complex reduces HR [37,119].

Ub/Ubl proteases and cancer
Imbalances in DSB associated Ub/Ubl protease activity can be caused by mutations or expression alterations.
For example, inactivating mutations in BAP1 are common in mesothelioma, renal clear cell carcinomas and
uveal melanomas. Cell lines carrying these mutations are particularly sensitive to ionising radiation and PARP
inhibitors due to the important roles BAP1 plays in HR repair [68,69,120]. The amplification of the long arm
of chromosome 3q is common in epithelial cancers, including lung squamous cell carcinoma, oesophageal, cer-
vical and ovarian cancer. The 3q amplification encompasses the RNF168, USP13 and SENP2 genes.
Over-expression of each of these individually promotes resistance to irradiation through altered Ub/SUMO sig-
nalling and DSB repair kinetics [24,89,121]. Several other DUBs are amplified in cancers including UCHL3 in
breast cancer [110] and USP21 in hepatocellular carcinoma [109]. Dependency on Ub/Ubl proteases for cancer
survival could make these useful targets in patient stratification. Indeed, inhibition of specific DUBs is currently
being investigated as a means to enhance sensitivity to chemo/radiotherapies [122]. USP1 inhibitors have been
proven effective in BRCA1 mutant tumours as USP1 is required for replication fork stability in the absence of
functional BRCA1 [123]. The USP13/USP10 inhibitor Spautin-1 improves the anti-cancer activity of PARP
inhibitors in a ovarian cancer model in mice [89]. USP7 inhibitors are also effective at sensitising therapy
resistant CLL cells to HR directed therapies [124].

Table 1 Summary table of the different roles played by Ub/Ubl proteases in the DSB response

Function Ub/Ubl Protease

Ku dimer retention UCHL3, OTUD5

MDC1 retention SENP2, ATXN3, USP7

RNF8 stabilisation ATXN3

RNF8–UBE2N catalysis antagonist OTUB1

RNF168 stabilisation USP34, USP7

RNF168 accumulation antagonist A20, USP14

H2A/H2AXK13Ub spread antagonist USP3, USP51, USP16

H2A-K118/119Ub antagonist BAP1

K63-Ub/53BP1 spread antagonist USP44, DUB3, USP11, ZUFSP, POH1, BRCC36, USP26, USP37

53BP1 spread (methyl dependent) antagonist OTUB2

RAP80–BRCA1-A complex regulators BRCC36, USP26, USP37, USP13, USP1-UAF1

BRCA1–BARD1 accumulation USP15

BRCA1 stabilisation USP9X

H2A-K125/K127/K129 antagonist USP48

CtIP-MRN regulators USP4

EXO1 stabilisation SENP6, UCHL5

RPA–RAD51 interaction USP1-UAF1, SENP6

BRCA2 stabilisation USP21

RAD51 loading USP11, UCHL3

Chromatin remodellers USP8, SENP7, USP11

Free SUMO pool regulators SENP2, SENP6

Note that many proteases play multiple roles in DSB signalling e.g. USP11.
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Perspectives
• The sheer number and lack of redundancy of DSB associated Ub/Ubl proteases highlights the

complexity of Ub/Ubl signalling in genomic stability (summarised in Table 1). In many cases,
the reduction or inactivation of a single Ub/Ubl protease is sufficient to entirely block DSB
repair.

• The RNF8–RNF168–K63-Ub signalling node generates easily detectable DSB associated foci
that can be visualised by a number of Ub specific antibodies such as FK2 and K63-Ub. As
these modifications are read by 53BP1 which also forms readily detectable foci much of the
initial research in the field focused on DUBs that regulate this step, indeed ∼8 DUBs have so
far been identified that regulate 53BP1 dependent foci spreading [2]. However in more recent
years Ub/Ubl proteases that regulate the earliest steps of DSB repair, the ordered clearance of
repair factors and the later steps of RAD51 loading have been identified, suggesting Ub/Ubl
modifiers are involved in multiple steps of DSB repair. Even greater nuance in Ub/Ubl modifier
roles in DSB repair has been highlighted by a number of DUBs that remove disruptive Ub con-
jugates that impair protein–protein interactions needed for DSB repair.

• Further layers of complexity arise from the multiple Ub chain types now implicated in DSB
repair. Additionally SUMOylation is unlikely to act separately from ubiquitination as
co-modification and mixed chains are important signalling elements of the DSB response
[125]. Therefore the diversity of chains types present at DSBs is likely many times greater than
currently appreciated. SUMOylation is essential for the recruitment, activity and clearance of
several DSB repair factors but we know relatively little concerning the activity of
deSUMOylases in the DSB response, indeed there appears to be little redundancy between
SENP enzymes as depletion of each causes specific DSB repair defects [24,105,113]. Finally,
in both NHEJ and HR repair pathways there are multiple steps that are regulated by Ub/Ubls
but the roles for their respective proteases await discovery.

Abbreviations
DSBs, double strand breaks; HR, homologous recombination; NHEJ, non-homologous end joining; SSA, single
strand annealing.
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