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Abstract
Background: Driven by increased prevalence of type 2 diabetes and
ageing populations, wounds affect millions of people each year, but moni-
toring and treatment remain limited. Glucocorticoid (stress hormones)
activation by the enzyme 11β‐hydroxysteroid dehydrogenase type 1 (11β‐
HSD1) also impairs healing. We recently reported that 11β‐HSD1 inhibition
with oral AZD4017 improves acute wound healing by manual 2D optical
coherence tomography (OCT), although this method is subjective and
labour‐intensive.
Objectives: Here, we aimed to develop an automated method of 3D OCT
for rapid identification and quantification of multiple wound morphologies.
Methods: We analysed 204 3D OCT scans of 3 mm punch biopsies rep-
resenting 24 480 2D wound image frames. A u‐net method was used for
image segmentation into 4 key wound morphologies: early granulation tis-
sue, late granulation tissue, neo‐epidermis, and blood clot. U‐net training
was conducted with 0.2% of available frames, with a mini‐batch accuracy of
86%. The trained model was applied to compare segment area (per frame)
and volume (per scan) at days 2 and 7 post‐wounding and in AZD4017
compared to placebo.
Results: Automated OCT distinguished wound tissue morphologies,
quantifying their volumetric transition during healing, and correlating with
corresponding manual measurements. Further, AZD4017 improved
epidermal re‐epithelialisation (by manual OCT) with a corresponding trend
towards increased neo‐epidermis volume (by automated OCT).
Conclusion: Machine learning and OCT can quantify wound healing for
automated, non‐invasive monitoring in real‐time. This sensitive and repro-
ducible new approach offers a step‐change in wound healing research,
paving the way for further development in chronic wounds.
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1 | INTRODUCTION

In 2017‐2018, the UK National Health Service treated
3.8 million people with wounds; with one‐third failing to
heal within a year.1 Direct costs were over £8 billion,
and annual wound prevalence increased by over 70%
between 2012 and 2018, highlighting the urgent need to
improve wound monitoring, management, and treat-
ment.1 The financial burden of chronic wounds is
mainly attributable to amputations in people with type 2
diabetes mellitus (T2DM).2 Since 1980, global rates of
T2DM have more than quadrupled, with half of patients
failing to meet recommended care goals.3,4

Glucocorticoid (stress hormone) excess also drives
wound chronicity,5,6 affecting virtually every phase of
wound healing, including inflammation7,8; re‐
epithelialisation9,10; granulation tissue formation10; and
collagen remodelling.11,12 Local glucocorticoid levels are
regulated by 11β‐hydroxysteroid dehydrogenase (11β‐
HSD) isozymes that activate (11β‐HSD1) and deactivate
(11β‐HSD2) natural and synthetic corticosteroids. Our
recent double‐blind, pilot phase 2b randomised
controlled trial in adults with T2DM treated with the se-
lective 11β‐HSD1 inhibitor AZD4017 (AZD) for 35 days
found a 48% reduction in day 2 punch biopsy wound
width versus placebo (PCB) using optical coherence to-
mography (OCT).13 However, automated 3D imaging
solutions for the objective measurement of wound heal-
ing in clinical research and practice are currently lacking.
Wound tracing methods are subjective, time‐consuming
and do not capture detailed wound tissue composition
and heterogeneity. This reduces the sensitivity and ac-
curacy of wound healing research and limits identifica-
tion of hard‐to‐heal wounds, leading to delays in novel
treatment development and clinical intervention, and
poorer healing outcomes.
OCT is a real‐time tomographic imaging technique

that uses low‐intensity infrared light to visualise living
tissues. This method enables high‐resolution 2D and
3D cross‐sectional imaging and OCT has been devel-
oped as a clinical tool for several dermatological con-
ditions including hypokeratosis,14 psoriasis,15,16

scleroderma17,18 and cancer.19,20 OCT imaging has
also been validated for skin wound healing.21–26

An important advantage of OCT compared to
photography‐based wound imaging is that the structure
of healing tissue can be visualised below the skin sur-
face, potentially providing useful information about the
underlying wound bed without invasive biopsies. How-
ever, current manual annotation of 2D scans is labour‐
intensive, subjective, and limits OCT imaging potential.
Hence, an automated approach to OCT tissue quanti-
fication using machine learning could enable practical
and scalable application of OCT as a more standard
modality for studying and monitoring wound healing.
Here, we developed a volumetric OCT machine

learning algorithm to identify and quantify key

morphological features of wound healing, which also
corroborated our recent clinical trial findings towards a
novel wound healing therapy.13

2 | METHODS

2.1 | Study participants

This study was conducted with approval from the North
West Greater Manchester Central Research Ethics
Committee (17/NW/0283), with study participant written
informed consent. Briefly, participants were rando-
mised in a double‐blind manner to PCB (n = 14) or
400 mg twice daily of the 11β‐HSD1 inhibitor AZD
(n = 14) for 35 days. At day 0 (baseline, pre‐treatment),
two 3 mm diameter full‐thickness lower outer arm
punch biopsies were conducted under local anaes-
thesia, repeated in the contralateral arm at day 28.
Wounds were treated with a breathable dressing for
24 h and imaged on days 2 and 7 post‐wounding (i.e.,
days 2 and 7 after day 0 biopsies, and days 30 and 35
after day 28 biopsies). Full study details and patient
demographics are as previously reported.13

2.2 | Gross morphology and re‐
epithelialisation

Gross wound morphology was measured manually from
aerial camera images (built‐in to theOCT scanner) using

What is already known about this topic?

� Optical coherence tomography (OCT) imag-
ing offers a biopsy‐free wound healing im-
aging method.

� OCT image analysis is currently limited to
subjective and time‐consuming 2D manual
analysis that does not reflect complex wound
healing tissue morphology.

What does this study add?

� Application of machine learning enabled un-
biased, automated quantification of key
wound tissue types by OCT in 3D.

� Validation of this sensitive and reproducible
wound imaging tool confirmed and strength-
ened clinical trial OCT findings.

� This approach offers a step‐change in reli-
ability and robustness of OCT as a clinical
wound imaging tool, both for research and
future development as a companion
diagnostic.
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ImageJ (National Institute ofHealth).Re‐epithelialisation
wasmeasuredmanually fromOCTsurface images using
ImageJ.

2.3 | Optical coherence tomography

We used a Michelson‐Diagnostics (Maidstone) Viv-
oSightTM scanner to capture 120 image frames
50 μm apart (6 mm) for each 3 mm punch biopsy. A
total of 355 scans from 36 participants were con-
ducted with two biopsies at each time point per pa-
tient. This data included unwounded skin scans,
replicated scans of the same biopsy (e.g., scan fail-
ure) and study eligibility screen failures not rando-
mised to AZD or PCB. In a small number of cases
only one biopsy was scanned (e.g., due to active
bleeding). Three scans were removed prior to ma-
chine learning input due to image anomalies (e.g., a
single scan capturing two adjoining biopsies). After
omitting unwounded skin, replicate scans, screen fails
and anomalies, we retained 204 scans (24 480 image
frames) representing all 28 randomised study
participants.

2.4 | Machine learning

Within each scan frame, seven distinctive image
subtypes were defined: early granulation tissue, late
granulation tissue, neo‐epidermis, blood clot, intact
tissue (peripheral to the wound), active bleeding, and
non‐tissue. We used a u‐net‐based convolutional
neural network for image segmentation of each 2D
OCT frame, and the ground truth labels were
manual annotations of the seven subtypes.27 We
acknowledge that other networks can also be
used,28,29 but for this early proof‐of‐concept study,
we used classical u‐net architecture. Downstream
data analysis after segmentation focussed on wound‐
relevant image subtypes that is, early granulation
tissue, late granulation tissue, neo‐epidermis, and
blood clot that is, non‐tissue, intact tissue and active
bleeding (which only appeared in a few cases) were
not analysed.
From the original set of 355 OCT scans (each

comprising 120 frames), we manually selected 84
frames (0.2%, representing all participants and time
points) for u‐net training. Selection followed the princi-
ple of enabling the training process to ‘see’ a variety of
wound morphologies manually annotated for the seven
image subtypes. We acknowledge the existence of
various image augmentation methods could be used in
the future to further improve training.30 U‐net architec-
ture was trained in a Linux cluster with three T K80
graphics processing units, requiring 100 epochs with
1344 iterations per epoch, using a stochastic gradient

descent with a momentum of 0.9 that was optimised at
an initial learning rate of 0.05. L2 regularisation was
0.0001. Minimum batch size was 16 images, and
training data were shuffled at every epoch. Training
took 3483 min and yielded a mini‐batch accuracy of
85.85% at the final iteration. Due to the small sample
size, we did not perform rigorous testing for example,
independent test set to for u‐net prediction robustness.
However, machine leaning outputs were validated (and
correlated well) with manual measurements.
To predict image subtypes for all OCT frames, we

used the trained model followed by operations to
remove isolated pixels and small islands. Boundaries
between classes were smoothed with a Fourier
descriptor. Due to imaging limitations associated with
OCT penetration, we limited analysis to a skin depth of
1 mm, with 2D frame outputs in mm2 multiplied by the
scanning interval (50 μm) for 3D scan outputs in mm3

(� standard deviation, S.D.). Automated annotation
interobserver reliability was assessed for all 204 scans,
representing 104 averaged biopsy samples.

2.5 | Statistical methods

All data groups followed a normal distribution. Grouped
analyses were performed using 95% confidence in-
tervals and a two‐way analysis of variancemixed‐effects
model with post hoc testing corrected for multiple
comparisons using Sidak's test (GraphPad Prism, La
Jolla, California). Correlations were analysed using
Pearson's correlation testing (95% CI) and Spearman's
rank for non‐parametric data.

3 | RESULTS

3.1 | Machine learning validation

Wound morphology was classified into four key
morphological features: (1) early granulation tissue; (2)
late granulation tissue; (3) neo‐epidermis; and (4) blood
clot. Illustrative examples of typical machine‐annotated
OCT frame outputs and 3D renderings from days 2 and
seven post‐wounding are presented in Figure 1 (and
Supplemental Figure S1).
Automated annotation accuracy was assessed for

all scans. Investigator agreement with machine anno-
tation accuracy (inter‐observer reliability) was excellent
(ICC > 0.8) for all sub‐types with ICC >0.95 for early
granulation, late granulation and neo‐epidermal tissue
and ICC >0.85 for clot tissue (Figures 2a–2d).
We observed a strong correlation (r = 0.81,

p < 0.001) between automated early granulation tissue
width and corresponding manual measurements
(Figure 2e). However, this was not observed for blood
clot depth (Figure 2f).
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F I GURE 1 Machine learning wound healing segmentation. Representative original OCT single frame outputs (a, b), annotated machine
learning OCT single frame outputs (c, d), and 3D OCT scan rendering. C, blood clot; D, dermis (intact tissue) at day 2 and seven post‐
wounding; E, epidermis; EGT, early granulation tissue; LGT, late granulation tissue; NE, neo‐epidermis. Scale bar = 500 μm.
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F I GURE 2 Machine learning reliability. Altman plots neo‐epidermis (a), late granulation tissue (b), early granulation tissue (c), and blood
clot (d) are shown. Intraclass correlation coefficients (ICC) are displayed on each plot. Solid lines indicate the bias values, and dotted lines (+2
SD and −2 SD) indicate the 95% limit of agreement (n = 204). Correlations between automated measurement and manual measurement for
early granulation tissue (e, n = 51) and blood clot depth (f, n = 50). I, investigator measurement; ML, machine learning measurement.
Significance *** = p < 0.001.
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3.2 | Wound morphology

3.2.1 | Gross morphology and re‐
epithelialisation

Gross wound area derived using conventional digital
photography was comparable between AZD and PCB
(Figure 3a). Using this indicator, healing improved from
37% to 49% between day 2 and day 7 with PCB
(p < 0.05, Figure 3c) in biopsies conducted on day
0 (set 1) but this was not significant in repeat biopsies
on treatment day 28 (set 2) or either set of biopsies with
AZD. Similarly, no treatment effect was observed
(Figure 3a,c).
By contrast, manual OCT image analysis found

increased re‐epithelialisation (mean � standard devia-
tion) at day 7 versus day 2 post‐wounding with PCB and
AZD (PCB set 1: 99.7 � 0.8 vs. 56 � 27, set 2:
99.3 � 2.4 vs. 64.6� 19.7, both p < 0.001, and AZD set
1: 100 � 0 vs. 65.3 � 23.6, p < 0.001, set 2: 100 � 0 vs.
84.7 � 13.5, all p < 0.01, Figure 3b,d).
Further, at day 2 post‐wounding after 30 days of

treatment, re‐epithelialisation by manual OCT was 30%
greater with AZD (p < 0.05, Figure 3d). Re‐epitheli-

alisation was complete in most cases by day 7 post‐
wounding (Figure 3d).

3.2.2 | Automated volumetric analysis

Representative histograms displaying tissue subtype
area for each OCT scan frame (120 frames per scan)
are presented in Figure 4, indicating that day 2 wound
morphology more closely resembles that of day 7
following 30‐day treatment with AZD.
Early granulation tissue volume was lower on day 7

versus day 2 post‐wounding with PCB and AZD in both
sets of biopsies (PCB set 1: 0.09 � 0.09 vs. 1.56 � 0.7,
set 2: 0.13 � 0.17 vs. 1.38 � 0.7, both p < 0.001 and
AZD set 1: 0.1 � 0.1 vs. 1.36 � 0.7, p < 0.001, set 2:
0.11 � 0.2 vs. 0.96 � 0.6, p < 0.01, Figure 5a). At day 2
post‐wounding (treatment day 30), the effect with AZD
was in the expected direction, but not statistically sig-
nificant (p = 0.48, Figure 5a). The change was also in
the expected direction but not statistically significant
with AZD at day 2 post‐wounding and treatment day 2
(p = 0.93). At 7 days post‐wounding, resolution of early
granulation tissue was largely complete.

F I GURE 3 Gross morphology and re‐epithelialisation. Representative images for post‐wounding day 2 (treatment days 2 and 30) and day
7 (treatment days 7 and 35) treated with AZD or PCB for gross morphology (a) and re‐epithelialisation (b), quantified manually as % gross
healing (c, PCB treatment day 2 [n = 13], day 7 [n = 14], day 30 [n = 8], day 35 [n = 10] and AZD treatment day 2 [n = 14], day 7 [n = 11], day
30 [n = 8], day 35 [n = 9]) and % re‐epithelialisation (d, PCB treatment day 2 [n = 14], day 7 [n = 14], day 30 [n = 11], day 35 [n = 13] and AZD
treatment day 2 [n = 14], day 7 [n = 14], day 30 [n = 12], day 35 [n = 13]). * = day 2 wound versus day 7 wound (repeated at treatment day 28
vs. day 35), # = PCB versus AZD. Significance * = p < 0.05, ** = p < 0.01, *** = p < 0.001.
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Late granulation tissue volumewas also lower on day
7 versus day 2 post‐wounding (PCB set 1: 0.87� 0.6 vs.
2.12 � 0.8, p < 0.001, set 2: 0.91 � 0.6 vs. 1.54 � 0.7,
p = 0.25 and AZD set 1: 0.81 � 0.8 vs. 1.75 � 0.5,
p < 0.05, set 2: 0.72 � 0.7 vs. 1.34 � 0.7, p < 0.001,
Figure 5b). At 2 days post‐wounding and treatment day
2, AZD had an effect in the expected direction, but this
was not statistically significant (p = 0.53, Figure 5b).
By contrast, neo‐epidermis volume was higher in

day 7 than day 2 wounds (PCB set 1: 1.46 � 0.5 vs.
0.9 � 0.6, p < 0.01, set 2: 1.29 � 0.5 vs. 0.65 � 0.2,
p < 0.001 and AZD set 1: 1.38 � 0.4 vs. 0.87 � 0.4,
p < 0.01, set 2: 1.39 � 0.5 vs. 0.92 � 0.3, p < 0.05,
Figure 5c). At day 2 post‐wounding and treatment day
30, there was also a trend towards a 42% increase in
neo‐epidermal volume by AZD (p = 0.09, Figure 5c).
This was not apparent at day 2 post‐wounding and
treatment day 2 (p = 0.99). At 7 days post‐wounding,
re‐epithelialisation was mostly complete.
Similarly, blood clot volume was higher in day 7 than

day 2 wounds (PCB set 1: 2.68 � 1 vs. 1.28 � 1.6, set
2: 2.35 � 0.6 vs. 0.91 � 0.7, both p < 0.001 and AZD
set 1: 2.73 � 0.7 vs. 1.16 � 0.7, p < 0.001, set 2:
2.83 � 0.9 vs. 1.21 � 0.4, p < 0.01, Figure 5d),
consistent with a more advanced stage of healing. At
day 7 post‐wounding, after 7 and 35 days of treatment,
the change in clot volume with AZD was in the expected
direction but not statistically significant (p = 0.99 and
p = 0.45, respectively, Figure 5d).

3.2.3 | Machine learning agreement with
wound re‐epithelialisation

Further to the correlation between manual and auto-
mated early granulation tissue width (Figure 2e), all four
automated wound morphology volumes correlated well
with wound re‐epithelialisation by manual OCT image
analysis (early granulation ρ = −0.90, late granulation
ρ = −0.73, neo‐epidermis ρ = 0.66 and clot ρ = 0.71, all
p < 0.001, Supplemental Figure S2).
To further assess algorithm robustness, we also

analysed all available unwounded (baseline and treat-
ment day 35) and day 30 post‐wounding (fully healed)
OCT scans. As anticipated, detection of wound mor-
phologies in these samples were negligible (Supple-
mental Figure S3).
Representative, annotated OCT scans for each

treatment and time point are presented in Supplemental
Figure S4.

4 | DISCUSSION

To our knowledge, this is the first use of machine
learning to automate volumetric OCT wound tissue
subtypes, representing a significant advance in OCT
development as a wound research tool. OCT is a vali-
dated, noninvasive method for monitoring skin wound
healing though ‘virtual biopsy’,21–25 but previous studies

F I GURE 4 Machine‐learning histograms. Representative histograms for post‐wounding day 2 (treatment days 2 and 30) and day 7
(treatment days 7 and 35) treated with AZD or PCB. Day 2 wound morphology at treatment day 30 more closely resembles that of day 7
wounds for AZD, but not PCB.
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were limited by subjective and labour‐intensive manual
annotation. Here, we present key advantages over
conventional digital photography or single‐frame OCT,
including higher sensitivity, objectiveness, and rapid
wound morphology multiplex analysis that would not be
feasible to conduct manually.
Despite relatively complex and dynamic OCT scans,

algorithm reliability (i.e., investigator agreement with
machine annotation) was excellent for all wound mor-
phologies, with negligible detection in unwounded and
healed tissue. Further, algorithm outputs were validated
against manual measurements from our randomized,
controlled trial,13 with a strong correlation for early
granulation tissue width. However, this was not
observed for clot depth, possibly due to lower machine
learning sensitivity (more heterogeneous morphology)
and overall data variability for this wound feature.
Importantly, machine learning outputs also corrobo-

rated our finding of improved wound healing in patients
with type 2 diabetes following oral 11β‐HSD1 inhibition

with AZD,13 with 30% greater re‐epithelialisation and
corresponding trend in reduced neo‐epidermis volume.
These results are supported bymechanistic findings that
glucocorticoids impair epidermal re‐epithelialisation by
suppressing keratinocyte growth factor signalling.9,10

However, a limitation of this pilot clinical trial was the
exclusion of patients with active ulcers, pending initial
healing outcomes in an acute wound setting. Therefore,
healing was relatively normal (potentially limiting
perceived AZD effectiveness), supported by our in vivo
studies in young, healthy mice.31

Although loss of 11β‐HSD1 inhibitor efficacy has
been reported in some tissues for example, adipose
(but not liver) following 2 weeks' treatment in healthy
volunteers,32 this was not apparent for AZD in skin.
Indeed, improved wound healing was more pronounced
at treatment day 28 versus treatment day 2,13 upheld by
machine learning results presented here. Loss of 11β‐
HSD1 inhibitor efficacy could depend on various factors
(e.g., compound composition, dose and formulation,

F I GURE 5 Machine learning volumetric quantification. Machine learning outputs for early (a) and late (b) granulation, neo‐epidermis (c),
and blood clot (d) tissue for post‐wounding day 2 (treatment days 2 and 30) and day 7 (treatment days 7 and 35) treated with AZD or PCB.
PCB treatment day 2 (n = 14), day 7 (n = 14), day 30 (n = 11), day 35 (n = 13) and AZD treatment day 2 (n = 14), day 7 (n = 14), day 30
(n = 12), day 35 (n = 12). * = day 2 wound versus day 7 wound (repeated at treatment day 28 vs. day 35). Significance * = p < 0.05,
** = p < 0.01, *** = p < 0.001.
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target tissue, disease, and patient demographics).
Demonstrating 11β‐HSD1 inhibitor efficacy at the tissue
level and identifying patients most likely to require and
respond to 11β‐HSD1 inhibitor therapy are important
areas of ongoing research.
Although beyond the scope of the current study,

algorithm development in chronic ulcers could identify
novel predictive biomarkers of healing for more tar-
geted patient management. Such biomarkers could
also improve stratification and robustness of future
clinical trials.
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