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Models of thermal conduction
and non-local transport of
relevance to space physics with
insights from laser–plasma
theory

T. D. Arber1*, T. Goffrey1 and C. Ridgers2

1Physics Department, University of Warwick, Coventry, United Kingdom, 2York Plasma Institute,
Department of Physics, University of York, York, United Kingdom

Models of solar and space plasmas require an accurate model for thermal
transport. The simplest such model is to assume that the fluid approach is valid
and that local transport models can be used. These local transport coefficients
are derived under the assumption that the electron mean-free path is “small”
compared to the temperature scale length. When this approximation breaks
down, non-local transport models or thermal flux limiters must be used to
maintain a physically realistic model. This article will review the background
theory of how small is “small” for the mean-free path and what options there are
for including non-local transport within the fluid framework. Much of this recent
work has been motivated by laser–plasma theory, where mean-free paths can
be large and the Spitzer–Harm approach is never used.
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1 Introduction

The energy balance of the solar chromosphere, transition region, and corona is
determined by the energy input, transport, and radiation. The energy input can be diffused
and steady from, for example, wave heating, or can be rapid and localised from flares.
Flares themselves cover a range of energies and timescales from nanoflares to large X-
class events. Irrespective of the time and length scale of the energy input, it will always be
transported, primarily along the magnetic field lines. This energy transport is the origin
of white light and X-ray emission from the chromosphere, and the balance between these
heatingmechanisms and optically thin radiative losses determines the location and structure
of the transition region. With 3D modelling of the solar corona playing an increasingly
important role in the study of coronal heating and flares, it is important that the best models
for this energy transport are used.There are, however, always compromises to bemade, and a
full Vlasov–Fokker–Planck (VFP) treatment of this transport is computationally intractable
on length scales and timescales probed by 3D MHD simulations. This paper reviews the
options available for reduced thermal transport models, from localised models to non-local
transport. Much of this recent work has been undertaken by the laser–plasma community
in order to improve the accuracy of predictive models for laser-driven fusion. Here, we not
only review models in common use by the solar community but also give outlines of the
methods used in laser–plasmas thatmay be of benefit to next-generation coronal simulations.
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The coronal temperature is typically in the range 1–10 MK.
The temperature length scales can be of or over 10 Mm for
a steady uniform heating model and can be down to about
100 km in the transition region. Shorter scale lengths may still be
generated in nanoflare heatingmodels.The important parameter for
determining the optimal heat flux model is the Knudsen number
Kn = λTei/LT. Here, λTei is the thermal electron mean-free path, i.e.,
the characteristic scale over which electron collisions are important
for electrons moving at the thermal speed, and LT = T/|∇T| is the
temperature scale length. Thermal transport is usually dominated
by electrons, so here, we ignore the ion transport effects. For a 1 MK
coronal plasma, with a number density of 1015 m−3, the electron
mean-free path based on the local thermal speed is approximately
50 km, while for 10 MK, it is around 5 Mm. We will see below
that local transport models begin to fail when Kn > 0.01, not when
Kn > 1, as is often mistakenly assumed. As a result, for a 1 MK
plasma, the local approximation fails on length scales less than
about 5 Mm, while for a 10 MK plasma, it fails for scales less than
500 Mm. As a result, it is possible that for a quiet corona at 1 MK,
the local Spitzer–Harm (Spitzer and Härm, 1953) approach is valid,
except in a small section of the transition region. For any MHD
scale modelling of flares, however, it is extremely unlikely that the
Spitzer–Harm model is correct. Indeed, the observations of wave
damping indicate that thermal transport is reduced relative to the
Spitzer–Harm conductivity in the solar corona (Wang et al., 2018).

It is important when discussing energy transport in the solar
corona, especially in the active regions, to be clear of the distinction
between thermal and non-thermal transport. Thermal transport
arises from perturbations of the distribution due to a temperature
gradient. This can only be a sensible physical model if the
distribution function is close enough to being Maxwellian that
temperature is a meaningful statistical tool for describing that
distribution. It is always possible to define temperature from the
second moment of a distribution, but this is not helpful unless that
distribution is close to the local thermal equilibrium. Some models,
such as the Schurtz–Nicolai–Busquet (SNB)model described below,
are based on an expansion of the distribution function to first
order, and as a result, when Kn > 1, this is unlikely to be satisfied.
New models, which are expected to be valid for lower Kn, have
recently been developed (Del Sorbo et al., 2015), but their accuracy
and computational efficiency are yet to be assessed. What cannot be
handled by any thermal transport model are beams or significant
deviations from a Maxwellian distribution function. Here, the
temperature of the whole distribution is not a meaningful measure,
and hence, the transport of energy in such cases is non-thermal and
not covered in this article. We are primarily interested in what is
possible within the MHD approximation, where temperature and
pressure are sensible fluid moments.

This paper first covers local transport and the Spitzer–Harm,
also often called Braginskii, thermal conduction. This section
highlights the importance of the Knudsen number and velocity
dependence of the mean-free path. The Knudsen number is used to
define the limits of local transport and the breakdown of classical
Spitzer–Harm thermal conduction on the MHD scale. Models to
handle conduction, when the local approximation is not valid,
include flux limiters, models using non-local kernels, and the
current state-of-the-art from laser-plasma theory. All equations
presented in this article use S.I. units.

2 Local thermal transport

A full derivation of the local approximation thermal
conductivity is not needed in order to understand the limitations
of this theory. Here, for simplicity, we sketch a derivation for a
simplified collision operator, as this highlights all the key physics.
All electron transport coefficients can be determined by solving the
electron distribution function f from the VFP equation.

∂ f
∂t
+ v.∇ f − e

me
(E+ v×B) .∇v f = (∂ f∂t )c, (1)

where the right-hand side represents the change in fdue to collisions,
E is the electric field,B is themagnetic field, and v is the phase-space
velocity coordinate. In this paper, we restrict attention to thermal
transport along the magnetic field and, thus, drop the v×B term
and restrict the velocity to the component along themagnetic field v.
The two components of the heat flux perpendicular to the magnetic
field have conductivities smaller than the parallel conductivity by
factors of 1/ωceτTe and 1/(ωceτTc )2. Here, ωce = eB/me is the electron
cyclotron frequency, and τTc is the electron collision time defined
using the electron thermal speed. In most space plasmas, ωceτTc >
106.

Ideally, Eq. 1 would be solved using the full Fokker–Planck
collision operator, but for illustrative purposes, here, we use a simple
relaxation operator that returns the distribution function to local
Maxwellian fM on a collisional timescale τc, given as follows:(∂ f

∂t
)
c
= −( f − fM)

τc
, (2)

with fM , the local Maxwellian distribution function. In general, the
collision time τc is a function of electron speed and from basic
plasma theory τc ∝ v3. Once we have a solution for f, we can
immediately determine the heat flux from the following:

Qe = ∫(12mev2)v fd3v. (3)

It should be noted that while Eq. 3 is the general vector heat flux
here, we restrict attention to themagnitude of this heat fluxQe along
themagnetic field.The advantage of the simplified collision operator
is that under the assumption of a fixed, imposed temperature
gradient and an equilibrium state, we immediately get the solution
for f as follows:

f = fM − τcv∂ f∂x + τceme
E
∂ f
∂v
. (4)

It is at this stage that the local approximation ismade.We expand
f as a perturbation of the distribution function so that f = fM + f1 and
linearise Eq. 4. Estimating ∂xf ≃ f/L, with L being the scale length of
interest, we see the following:

τcv
∂ f
∂x
∼ τcv

L
f (5)

so that if τcv/L is small, i.e., first order, and E is also first order, then

f1 = −τcv∂ fM∂x + τceme
E
∂ fM
∂v
. (6)

The electric field is determined under the condition that the
heat flux cannot drive a current, ensuring that the plasma remains
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quasi-neutral. The distribution function, as a result of the heat flux,
is then fully determined. If we assume that τc is not a function
of speed and replace τc with τTc , then this procedure gives a heat
flux of Qe = −κ∇Te with κ = 5nek2BTeτTc /(2me). Here, the electron
collisional timescale is τc = 12√meπ3/2ε20(kBT)3/2/(√2Zneλeie4).This
is a reasonable estimate of the heat flux, but the full answer in
this local approximation must be obtained through the velocity-
dependentVFP collision term. For the solar coronal plasma, the final
heat flux is often approximated as follows:

Qe = −10−11T5/2
e ∇‖Te. (7)

It is based on using the Braginskii (Spitzer–Harm) conductivity
and the choice of the Coulomb logarithm ≃ 20. Here, the gradient
operator ∇‖ is along a guiding magnetic field, so that ∇‖Te is scalar.
These assumptions will be used throughout this article.

If the plasma is collision-dominated, then Eq. 7 is a good
approximation for thermal conduction in the solar corona.Crucially,
however, this requires that the dimensionless parameter τcv/L is
small. For conduction, we can take L = LT , but we need to specify
τc. By definition, the mean-free path is λei = τcv. In general, λ = τv,
so that λei = λei(v) and λTei = λei(vT), where we take the thermal speed
as v2T = kBTe/me.The electronmean-free path (not averaged over the
distribution) is proportional to v4, so that the following is observed:

λei = ( vvT)4λTei. (8)

The heat flux is determined by high-order moments of the
perturbed electron distribution function, and for near-Maxwellian
plasmas, it is dominated by electrons in the distribution with speeds
in the range of 2.5–3.5vT. These are the electron speeds for which
the integrand in Eq. 3 is the largest. The mean-free path of these
electrons is 40–150 times the thermal mean-free path. For this
reason, the local approximation used to derive Qe; i.e., the term in
Eq. 5 is a first-order quantity, breaks down for electrons with speeds
of 2.5–3.5vT, when Kn > 0.01 and not when Kn > 1.
3 Flux limiters

For a coronal plasma, a good approximation for the electron
thermal mean-free path is as follows:

λTei = 5.5× 107(T2

ne
), (9)

which can be used to rewrite the heat flux as follows:

Qe = −3.2 (nekBT)vT λTeiLT
. (10)

The free-streaming limit is defined as Qfs = nekBTvT, and it
corresponds to the heat flux if the local thermal energy density(nekBT) is advected at the thermal speed. This is clearly a sensible
estimate for the upper limit of the heat flux for a near-Maxwellian
plasma. In addition, as noted previously, the thermal flux is not
carried by the whole electron distribution, but it is dominated by
the fraction of electrons with speeds of 2.5–3.5vT. Flux limiters aim
to account for these natural limits by restricting the heat flux to
being less than some multiple of Qfs. Most commonly, in explicit

treatments of thermal conduction, this would be implemented by
defining a limited heat flux through the following:

1
Qe
= 1
QSH
+ 1
αQ fs
. (11)

The factor α is called the flux limiter and in laser–plasma
modelling is typically between 0.05 and 0.2, for example, in the
study by Jones et al. (2017), and QSH is the heat flux predicted by
the Spitzer–Harm approach. It should be noted, however, that these
values are arrived at by varying α to get the best agreement between
simulations and observations. This is a purely empirical fix and is
problem-dependent. In the solar wind, for example, it is typical to
use α ≃ 1 (van der Holst et al., 2014), while in tokamak scrape-off
layers, limiters up to α ≃ 3 are used (Fundamenski, 2005).

3D flare models using a flux limiter (Cheung et al., 2019) with
α = 1/6 have shown that this may reproduce a power-law X-ray
spectrum from purely Maxwellian electrons. 1D models require a
power-law, high-energy component of the electron distribution to
match the observed X-ray spectrum. However, different regions of
the flaring 3D atmosphere reach different temperatures at different
times. The sum of the contributions from this multi-thermal,
dynamic atmosphere may give rise to an integrated X-ray spectrum,
which resembles a power law. Assessing this result is beyond the
scope of this article, but the study by Cheung et al. (2019) is an
example of active region modelling where an improved thermal
transport model is needed.

4 Non-local kernel models

The α parameter in the flux-limited model needs to be
determined based on a best fit for observations, and so, it has
limited predictive capacity. The second issue is that as the Knudsen
number increases, the heat flux becomes non-local, i.e., it no longer
depends on the local temperature gradient. Any non-local model
for conduction must capture two important effects. First, it must
naturally give rise to a limited flux without the need for an ad hoc,
semi-empirical limiter. Second, itmust correctlymodel preheat.This
is where the most energetic electrons transport heat faster than bulk
thermal conduction. This occurs as the most energetic electrons
have the longest mean-free paths, and this effect is not captured
by flux limiters. The non-local energy transport models used in
solar 1D ((Karpen and Devore, 1987; West et al., 2004)) and 3D
(Silva et al., 2018) models have relied on the kernel model derived
for laser–plasmas (Luciani et al., 1983), commonly referred to as the
LMVmodel. In this model, the heat flux is calculated by convolving
the local conductionwith a non-local kernel.This gives the following
heat flux:

Qe (x) = ∫w(x,x′)Qsh (x′)dx′, (12)

where w (x,x′) is a kernel used to introduce non-local effects. The
kernel used in the LMVmodel is as follows:

w(x,x′) = 1
2aλTei (x′) exp(− ∫

x′
x
ne (y)dy

2ane (x′)λTei (x′)). (13)
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The free parameter a is set in LMV to 32 to get a best fit to VFP
simulations. Other kernels are possibly based on simplified collision
operators. Thus, kernel-based models are able to capture the non-
local effect, but there remain free parameters, such as a in the LMV
model, and there is no unique choice of kernel universally proven to
be optimal in all conditions. 3D flare simulations (Silva et al., 2018)
have included LMV style non-local electron transport in MHD flare
models and shown that this significantly changes the predictions for
the temperature of the transition region and upper chromosphere.

5 The SNB model

The LMV model was originally derived in the context of laser-
produced plasmas, where large mean-free paths are common. LMV
has been superseded in laser–plasma modelling by the SNB model
(Schurtz et al., 2000) as the most efficient way to treat non-local
transport while maintaining fluxes close to those from VFP on
the MHD scale. The SNB model has been verified against full
VFP simulations (Marocchino et al., 2013; Brodrick et al., 2017;
Sherlock et al., 2017). The SNB model is now routinely used in
laser–plasma radiation hydrodynamic codes, e.g., in the study by
Farmer et al. (2018). It has also been shown to bemore accurate than
models used in simulations of magnetically confined fusion plasmas
(Brodrick et al., 2017), where non-local transport plays an important
role in heat exhausts (Omotani and Dudson, 2013; Wigram et al.,
2020). It lacks the full detail of a VFP solution (impractical in 3D
simulations) but does reproduce the non-local preheat and flux-
limiting properties well for temperature profiles one would expect
in the corona. The advantage of SNB over LMV is that it is easier to
implement in 3D models. LMV requires tracing 3D magnetic field
lines and applying the LMV non-local model along enough field
lines to reconstruct the temperature in 3D, whereas SNB involves
solving PDEs. Also, there is no need to choose a kernel function or
set free parameters; SNB is a predictive and self-contained theory.

The SNB model can be derived from VFP, and outlines of this
derivation can be found in studies by Schurtz et al. (2000) and
Brodrick et al. (2017).The essential feature of this method is that the
VFP equation is approximated in energy bins. These energy bins,
usually uniformly distributed, span the distribution function. The
solutions in these bins are combined to calculate a correction to the
local heat flux. The full equation set from this energy discretisation
for the non-local heat flux Qnl is as follows:

Qnl = QSH −∑
g

λg
3
∇Hg, (14)

with λ2g = λeiλee being defined for each energy group Eg . The
functionsHg are found for each energy group through the following:[ 1

λg
−∇ ⋅ (λ′

3
∇)]Hg = −∇ ⋅Ug. (15)

This introduces yet another averaged mean-free path, also a
function of energy, given as follows:

1
λ′ = 1

λg
+ 1
βλs
,

where β = Eg/kBT and λs = kBT/eE (E is the electric field and is
discussed below). The scaled heat flux for each energy group is

Ug =WgQSH , where Wg is defined by an integral over the energy
bin range, given as follows:

Wg = 1
24
∫βg
βg−1β4e−βdβ.

Wg is the contribution to the source term Ug from the energy
group Eg . Once the source term Ug has been determined from
Wg , Eq. 15 can be inverted to determine Hg , which is then used to
compute the non-local correction to the heat flow in Eq. 14.

An example of the effect of limiting and preheating in
the SNB model is shown in Figure 1. These heat fluxes and
Knudsen numbers are calculated for a fixed temperature profile,
T = T0 (1+ 0.1 exp (−(x/σ)2)), with T0 = 1 MK and σ = 2 Mm and a
uniform electron number density of ne = 1015 m−3. Based on this
density and peak temperature, the mean-free path is about 55 km.
Even for moderate Knudsen numbers less than 0.06, the SNBmodel
shows flux reductions, compared to the Spitzer–Harm approach, by
a factor of around 6 (flux limiting) and the heat flux propagating
ahead of the Spitzer–Harm solution (preheat). The flux reduction
is a result of a depletion in the number of heat-carrying electrons
in the region of the strongest temperature gradient as they stream
long distances, due to their longmean-free paths, causing preheating
of the plasma far away. This is similar to the effect achieved by
modelling the electron distribution function as a kappa distribution
but is calculated self-consistently based on the plasma conditions.

During the expansion and ordering procedures for deriving
the SNB model, the electric field, a function of the perturbed
distribution function and, therefore, the source of non-linearity,
is dropped from the SNB equivalent of Eq. 4. Its effect is
phenomenologically re-introduced as a correction factor in the
mean-free path λ′. In the original SNB model, the electric field is
the local Spitzer–Harm electric field E = kBTe (∇ logne + 1.7∇logTe).
More recent studies have shown that this electric field term has
little effect and is, therefore, usually omitted. It is kept here, as
it may be that turbulent scattering affects thermal conduction
(Bian et al., 2016). This effective reduction of the mean-free path
may be included in the SNB model in a similar way to the electric
field correction mentioned above. Another limitation of SNB is that
since it is based on an expansion of the distribution function to
first order, ( f = f0 + f1), it is unlikely to be a good approximation
for Kn > 1 when the assumption is that fM > f1 will be violated. The
precise upper limit on the Knudsen number for SNB to be valid in
the solar corona is as of yet unknown.Certainly, however, forKn ≫ 1,
alternative models must be used for the high-energy electrons.

In laser–plasma, the SNB model has been compared against
other non-local models and VFP in the study by Brodrick et al.
(2017) and for inertial fusion in the study by Sherlock et al. (2017).
These showed that SNB can accurately predict non-local heat fluxes
even when the distribution is not close to the VFP distribution.
This suggests a level of robustness in finding heat fluxes even for
distributions far from the Maxwellian ones, but as of yet, this has
not been tested for solar coronal problems. It should be noted
that there is an alternative approach based on solving the VFP
equation for the high-velocity part of only the distribution function
(Ljepojevic & Burgess, 1990). A comparison of this model to SNB
would be informative.
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FIGURE 1
Left: Heat flux from the Spitzer–Harm model and the SNB flux for the same temperature profile. Right: The Knudsen number for this temperature
profile. The dashed lines indicate the band where the magnitude of the Knudsen number is <0.01. A local model for heat flow is not valid outside of this
band.

6 Conclusion

Classical thermal conduction in plasmas requires that the
plasma is collision-dominated. The key step in this derivation is
that the mean-free path of the electrons carrying the majority of
the heat must be less than the temperature scale length. Since
the mean-free path scales as v4 and the heat is primarily carried
by electrons with speeds between 2.5 and 3.5 vT, this means
that local transport models fail when the Knudsen number is
greater than 0.01. This condition will be easily satisfied in the solar
atmosphere.

The two effects of non-local transport are that the thermal
flux becomes limited and there is preheat associated with high
energy, and least collisional component of the electron distribution
function. The first of these can be accounted for by applying a flux
limiter. However, this has to be tuned to match the observations,
and it is problem-dependent and cannot capture preheat. Kernel-
based non-local models, such as LMV, can simulate both flux
limiting and preheat, but they are dependent on the choice of
the kernel function, require some arbitrary tuning parameters,
and are computationally expensive in 3D. The expense is because
the method must solve along field lines, requiring many field
lines to be traced, and LMV should also be solved along each of
them.

Recent advances in the modelling of laser–plasmas, mostly
motivated by fusion research studies, have led to the development
of the non-local SNB model. This has the advantage, compared to
LMV, of being solved using corrections to local fluxes, hence not
requiring integration along the field lines. This makes SNB more
computationally efficient than LMV. SNB has also been extensively
tested against VFP codes, where it has been shown to accurately

capture preheat and flux limiting without having to tune free
parameters. Based on the review, in this article, it is clear that
for active region solar atmospheres, there is little justification for
using Spitzer–Harmconductivity in theMHD theory.Theminimum
model required is a flux limiter, but for the highest fidelity solution
for thermal transport, SNB is recommended.
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