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A B S T R A C T   

Vibrations from underground railways are known to affect receptors located close to the tunnel. Understanding 
the transmission pathway between these tunnels and receptors is important in determining the magnitude of 
vibrations which can be transmitted. Rail tunnels can be excavated in a range of geological conditions, including 
jointed rock masses. Jointed rock masses have been found to display certain resonant characteristics, namely 
spring resonance. Therefore, this paper studies the resonant characteristics of jointed rock masses using a series 
of models solved using the combined discrete element-finite difference method and the finite difference method. 
Modelling assumptions are tested as well as different equivalent material models. It is found that spring reso-
nances occur at the same frequencies as predicted by analytical functions when different modelling assumptions 
are used. This indicates that the spring resonance effect will prevail in complex rock masses under a range of 
geological settings. The spring resonance mechanism is found to cause jointed rock masses to behave like pe-
riodic metamaterials in respect to the transmission of stress waves, which can operate as a band-pass or low pass 
filter, depending on the number of joints within the material. New evidence is presented showing that periodic 
metamaterials exhibit spring resonance. Results for metamaterials in laboratory scale frequency sweep tests are 
shown to feature high transmission zones occurring at the predicted spring resonant frequency for that material. 
Finally, the effects of the spring resonance mechanism operating within the jointed rock masses are appraised in 
the context of vibrations from railway tunnels.   

Introduction 

With jointed rock masses being common throughout a wide range of 
geological settings, stress waves generated from within a rock mass are 
likely to encounter joints at some point in the propagation pathway. 
Jointed propagation pathways have been found to have the potential to 
affect the amplitude of stress waves as they are transmitted [1–4]. Many 
different types of vibration sources can excite a rock mass. These will 
have the amplitude of their waves modified along the transmission path 
by effects such as changes in material stiffness, joints, and damping, to 
name a few. Such sources include, but are not limited to, trains in tun-
nels [5–9], trains on embankments [10], blasting [11] and construction 
[12] for synthetic sources and earthquakes [13,14] for natural sources. 
This research is orientated towards train vibrations, which are shown in 
Fig. 1. All these sources can excite stress waves at a range of different 

frequencies. Trains can generate a range of frequencies from a range of 
different sources, generated at the wheel-rail interface, including wheel 
corrugation and out of roundness, rail head corrugation and sleeper 
passage, among others (Fig. 1) [10]. Although frequencies exceed 1 kHz 
can be generated, much of the frequency content is in the range of 
0–250 Hz [15]. Trains can generate ground-borne noise (reradiated 
noise) and ground vibrations (structural vibrations). 

Vibrations propagating through the ground can impact upon re-
ceptors located close by. There are well known examples of the 
destruction caused by earthquakes, although the effects of other sources, 
which typically generate much lower amplitudes, are less obvious. Rail 
vibrations for instance have been found to interfere with vibration 
sensitive structures, such as recording studios and scientific laboratories, 
which can have a detrimental effect on the use of such buildings [16]. 
The health of people exposed to ground borne vibrations can also be 
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impacted. Heart rate has been found to accelerate by up to 3 bpm during 
sleep, affecting the long term cardiovascular function of exposed pop-
ulations [15]. There has been a large body of research looking into train 
vibrations from tunnels; however, the majority of this has been con-
ducted in soft ground tunnelling conditions [5,17,18]. There has been 
limited work examining trains in tunnels embedded hard in rock 
tunnelling conditions. Avci et al. [9] studied annoyance from train 
tunnels embedded in rock, although the role of joints was not investi-
gated, with the rock mass treated as a homogenous layer with a high 
stiffness. Eitzenberger [7] did study the role of joints in the transmission 
of stress waves from underground sources. It was shown that joints can 
affect the propagation of stress waves, with joints acting as wave guides. 
The results were analysed qualitatively, and no specific resonance ef-
fects were identified, although their presence was alluded to. 

The transmission of stress waves through joints are well studied, with 
analytical expressions derived for single joints [19] and multiple joints 
[1,3,4,20,21]. For linear elastic joints, Pyrak-Nolte et al. [19] showed 
that energy is transmitted and reflected from a single joint, shown by 
Eqs. (1) and (2). The energy reflected (R1) and transmitted (T1) from one 
joint is dependent upon the joint stiffness (k), block seismic impedance 
(z) and wave angular frequency (ω). The k/zω term, included in Eqs. (1) 
and (2), is often referred to as the non-dimensional joint stiffness. The 
analytical expressions for single joints have been found to agree with 
numerical modelling results by Cai and Zhao [1], among others. 

T1 =
2 k

zω

2 k
zω − i

(1)  

R1 =
i

2 k
zω − i

(2)  

Where i is 
̅̅̅̅̅̅̅
− 1

√
. 

Transmissions through multiple joints have been found to be a 
complex process, with wave reflections and interactions being possible. 

Pyrak-Nolte et al. [3] presented equation (3) as an indication of the 
possible transmission through N joints (TN), although this does not take 
into account wave superposition, and addresses the problem as the cu-
mulative reduction in transmission due to each individual joint. 
Schoenberg and Sayers [22] proposed that joint spacing influences the 
transmission of stress waves through multiple joints, suggesting that 
when the wavelength is much larger than the joint spacing an equivalent 
medium can be assumed. 

|TN | = |T1|
N (3) 

Cai and Zhao [1] presented analytical expressions for the trans-
mission of stress waves through multiple parallel joints in terms of 
normalised joint spacing (ξ), given as the joint spacing (s) divided by the 
wavelength (λ) (ξ = s/λ). This study considered the amplitude of first 
arrivals of a single period sine wave. It was also found that for nor-
malised joint spacings of less than 0.3 a high transmission zone exhists. 
This high transmission zone at a low ξ, which is equivalent to a low 
frequency, is proposed to be caused by wave superposition effects, with 
many subsequent studies appearing to corroborate this view [23–27]. 
On the face of it, this conclusion appears to be divergent from the con-
clusions of Schoenberg and Sayers [22], as the wavelength associated 
with a low frequency will be large. The high transmission zone is an 
effect of the jointing and therefore is not consistent with an equivalent 
medium where joints will not be discretely modelled, despite the large 
wavelength. 

The use of normalised terms, such as ξ, are widely used in research of 
stress wave transmission through jointed materials. However, these lack 
relevance to engineering practice, where excitation sources are often 
introduced in non-normalised terms, such as frequency or wavelength. 
Therefore, the findings of these previous studies are not directly appli-
cable to practical situations. 

Parastatidis [28] investigated the effects of using equivalent mate-
rials on the transmission of stress waves through joints, using a finite 
difference (FD) model. Three different material models were 

Fig. 1. Source of ground vibrations from trains in jointed rock masses.  
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investigated: discrete joints, a localised equivalent medium and a ho-
mogenous equivalent medium. Discrete joints were modelled using a 
special element representing joints [29], while the localised and ho-
mogenous equivalent mediums were modelled using equivalent trans-
versely isotropic materials. The localised medium applied an equivalent 
medium to the FD grid nodes which were represented by joints in the 
discrete joint representation. The homogenous equivalent medium on 
the other hand applies equivalent material properties to the entire 
model. In order to capture the effect of the joints the cracks per unit 
length (1/L) is used, calculated as the surface area of each joint divided 
by the volume of the equivalent material. The calculation of crack per 
unit length is shown in Eq. (4), where A and B are the dimensions of the 
joint surface, C is the length of the equivalent material and N is the 
number of joints. Finally, the cracks per unit length is used to modify the 
elastic properties of the medium using the method of Coates and 
Schoenberg [30]. 

1
L
=

ABN
ABC

(4) 

Holmes et al. [4] revisited the concept of high transmission of stress 
waves through jointed rock masses by analysing a wide band excitation 
source propagating through a 1D model using transfer functions. The use 
of transfer functions allows the full-transmitted waveform to be ana-
lysed, as opposed to only the first arrival as used in previous studies and 
gives a new way of analysing transmission through joints [1]. This is a 
useful approach as the full waveform will be incident upon a receiver. A 
spring resonance mechanism, operating at low frequencies, and an 
acoustic resonance mechanism, operating at relatively high frequencies, 
were identified. Analytical expressions for these were presented, shown 
in Eqs. (5) and (6), for spring resonance, and Eq. (7), for acoustic reso-
nance. The spring resonance mechanism is a newly identified rock mass 
transmission effect, while the acoustic resonance effect has been iden-
tified previously [31–33]. The newly identified spring resonance 
mechanism raises practical problems for realistic vibration sources, such 
as trains. Therefore, further analysis is required to determine whether 
spring resonance arises in more complex scenarios than those previously 
modelled, which the current study undertakes. 

KmX = αMX (5)  

fn =
1

2π
̅̅̅̅̅
αn

√
(6)  

fn =
(n − Jn − 1)Cp

2s
(7)  

Where Km = stiffness matrix for joints and blocks; M = mass matrix for 
joints; X  = vector satisfying Eq. (5); fn = resonant frequency of mode n; 
α,αn = eigenvalues and eigenvalue n; n = mode number of resonant 
frequencies (low frequency + high frequency resonance combined); Jn 
= number of joints; Cp = p-wave velocity of intact material; s = joint 
spacing. 

Eqs. (5) and (6), for the spring resonance mechanism, give the same 
number of resonant frequencies as there are blocks within a model. A 
single block is contained between two joints, so the number of blocks is 
equal to Jn-1. The blocks between the end joints and the model 
boundaries behave as part of an infinite rock mass so are effectively not 
part of the jointed region of the model and not included in this number. 
Holmes et al. [4] found that when there are a large number of joints the 
spring resonances merge, giving a high transmission zone at low 
frequencies. 

The body of research presented above shows evidence that jointed 
rock masses have the potential to modify stress waves as they are 
transmitted, with Eqs. (5) to (7) providing accurate predictions for the 
resonances of a jointed material. If it were so desired, an artificial rock 
mass could be constructed to have a particular set of frequency related 
properties, which is a similar concept to those used for the design and 

manufacture of periodic metamaterials [14,34,35]. Jointed rock masses 
could be considered a natural periodic metamaterial, composed of 
discrete blocks and joints, capable of transforming stress waves. In 
acoustics, the parallel jointed rock mass studied by Holmes et al. [4] 
could be considered a 1D phononic crystal. The jointed rock mass can 
absorb or transmit different frequencies. With a small number of blocks, 
this will act as a band-pass filter prohibiting wave frequencies that do 
not fall within the pass bands, which are coincident with the resonant 
frequencies of the material. As the number of joints increases the rock 
mass will transition to an effectively low-pass filter as the resonances 
begin to overlap one another. Defining jointed rock masses in such a way 
puts them in the context of current research into metamaterials, a cur-
rent and fast evolving field of research. Hussein et al. [36] investigated 
the mass between spring resonance shown by periodic metamaterials, 
showing these do exist in 1D monatomic lattices. Periodic metamaterials 
can be used for practical purposes, such as in wave barriers, to shield 
sensitive structures from the effects of vibrations [14,35,37]. 

Holmes et al. [4] assumed a one-dimensional (1D) rock mass with 
infinite joints, and a plane wave. The assumptions adopted are a prac-
tical approximation for simplified numerical models studying the effect 
of joints; however, they are not realistic, as infinite joints and purely 
plane waves are unlikely in nature. Therefore, there are unanswered 
questions relating to the applicability of the resonance effects observed 
in realistic situations, especially considering the original approach 
adopted when analysing the results, i.e. transfer functions. This study 
explores the spring resonance mechanism predicted from Eqs. (5) and 
(6) in further detail by breaking modelling assumptions, such as sym-
metrical boundaries parallel to wave propagation, infinite joints, and 
plane waves. In addition to this, equivalent material models, as previ-
ously used by Parastatidis [28], are investigated to determine whether 
they exhibit resonance characteristics. The outcomes are appraised in 
the context of rail vibrations. With rail vibrations occurring at low fre-
quencies, only the spring resonance mechanism is studied. Acoustic 
resonance tends to occur at relatively high frequencies, which are likely 
to be outside the range of frequencies generated by railways. This study 
explores the likelihood that the spring resonance mechanism occurs in 
physical systems and therefore will indicate whether it is an effect that 
needs to be considered in vibrational studies through jointed materials. 
Considering these highly transmitted frequencies, will allow a more 
efficient design of mitigation measures for vibration sensitive structures. 
The effects of the number, stiffness and spacing of joints were investi-
gated by Holme et al [4], so is not studied here. 

Methodology 

This study uses two different numerical modelling methods to 
investigate resonance effects. The combined discrete element-finite 
difference method (DEM-FDM) is used to show how changing the 
modelling assumptions surrounding boundary conditions and the 
number of joint sets can affect the response of the model. The finite 
difference method (FDM) is used to investigate whether models give the 
same resonances when modelled using equivalent material models. The 
models in this study are used to investigate the concept of resonance in 
jointed rock masses and have been previously found to accurately and 
realistically model stress wave transmission through jointed materials 
[38,39]. Resonance of a material is a fundamental part of the trans-
mission of a waveform through that material, so considering that the 
models used in this study can accurately transmit vibrations indicates 
that, when data is analysed in an appropriate way, resonance effects can 
be identified. 

Detailed descriptions of each of the models used in this study are 
given below, split into two sections: the first considering discrete joints 
and testing modelling assumptions, with the second considering equiv-
alent material models. Subtly different model set ups are used for the 
DEM-FDM and FDM models. This provides an additional check that the 
resonance effects observed are not modelling artefacts. 

H. Holmes et al.                                                                                                                                                                                                                                 
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Discrete jointed models 

Models using two different numerical methods, the FDM, solved 
using the software WAVE2D [29], and the DEM-FDM, solved using the 
software UDEC (Universal Discrete Element Code) [40]. Two different 
numerical codes are used as there are a range of different scenarios being 
modelled, which the different codes are more suitable for. It has been 
previously shown that the two methods give comparable results for 1D 
rock mass transmission problems [4]. 

The FDM model is excited by a modified Ricker wave, with the DEM- 
FDM model excited by a Gaussian function, both with a 500 Hz driving 
frequency. Despite this representing a wider range of frequencies than 
those generated by rail traffic, this excitation ensures a wide band of 
frequencies is excited within the model, allowing a wide range of fre-
quencies to be analysed by the transfer functions. These are the same 
input waves which are used by Holmes et al. [4], with the frequency 
content of the waves shown in Fig. 2. The two waves do have slightly 
different frequency content to one another. However, due to the transfer 
function method used here, the actual frequency content of the waves 
does not affect the results. As such, the results of the transfer functions 
can be readily applied to different sources, such as train vibrations. As 
different numerical models and excitation waveforms are used through 
this study, any similarity in results cannot be a consequence of the model 
setups or the excitation. This provides an additional verification to the 
realism of the resonance mechanisms observed. 

Material damping is not applied to any model used, with linear 
elastic material properties applied to joints and intact blocks, as used by 
previous studies [1,2,4]. The material properties used in this study are 
given in Table 1. The use of linear elastic properties is undoubtedly an 
assumption which requires testing; however, considering a common 
vibrational source, such as rail vibrations, strains within the rock mass 
will be low [41]. This will ensure that the response of the material is well 
approximated by elastic material properties. Even considering a non- 
linear joint stiffness model, such as the Barton-Bandis model [42], a 
small portion of the stress–strain relationship for a joint will approxi-
mate a linear relationship. 

This study attempts to further understand the spring resonance 
mechanism and determine the robustness of the effect to changing 
conditions in a rock mass. In order to do this, assumptions adopted by 
Holmes et al. [4] are examined. The assumptions being tested are 
symmetrical boundary conditions, infinite joints, and plane waves. To 
achieve this, three new scenarios are modelled, two solved in the DEM- 
FDM (Models 2 and 3) and one solved in the FDM (Model 4). The two 
DEM-FDM models are 1D models, one without symmetrical boundaries 
(Model 2) and the other with multiple blocks orientated perpendicular 
to the direction of wave propagation but with symmetrical boundaries 
(Model 3). Model 3 could be considered not to be a 1D model due to the 
stack of blocks perpendicular to the direction of wave propagation. 
These are solved in the DEM-FDM model due to limitations in the 
boundary conditions and intersecting of joints imposed by the FDM code 
of Hildyard et al. [29]. Finite joints are to all intents guaranteed in na-
ture, as joints cannot be continuous, even if they are highly persistent. 
Therefore, testing this assumption means the model will be more real-
istic. The blocky rock mass in Model 3 contains finite joints, but also tests 
whether the resonance mechanism occurs when an additional joint set is 
modelled, orientated perpendicular to the first joint set. The FDM model 
is a two-dimensional (2D) plane strain model with an excitation located 
at a single node in its centre (Model 4), generating a non-planar wave. 
Non-planar waves are likely in nature, as many of the common vibra-
tional sources given in Fig. 1 will originate as a point source. Waves will 
spread out radially from the point source, breaking the plane wave 
assumption. The FDM code is adopted because of limitations in 

Fig. 2. Input waves to UDEC and WAVE2D models from [4]: (a) Time series of sources, and (b) Frequency content of sources. UDEC is a 500 Hz Gaussian wave and 
WAVE2D is a 500 Hz modified Ricker wave. 

Table 1 
Modelling material properties.  

Property Value 

Joint Stiffness 1 GPa/m 
Joint Spacing 2 m 
Number of Joints 2 
Intact Material P-Wave Velocity 3328 m/s 
Intact Material S-Wave Velocity 1922 m/s 
Intact Material Density 2600 kg/m3  

H. Holmes et al.                                                                                                                                                                                                                                 
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manually setting the time step of the models in the DEM-FDM model 
used for Models 2 and 3, which complicates the generation of the 
transfer functions. 

Model 1 – 1D Model – DEM-FDM 
A 1D model has been generated based on the model used by Holmes 

et al. [4], which is shown in Fig. 3. This is to provide a control to 
compare the results in the previous study. It was found that the single 
element thick model used in the previous study gives resonances which 
are lower than those predicted by Eqs. (5) to (7). In contrast, generating 
more than one element in the vertical direction gives resonances which 
more accurately match those predicted. This is likely to be due to 
boundary effects in the narrower model. A model height of 1 m is used, 
which is consistent with the model height used by Cai and Zhao [1], 
among others. A vertical mesh size of 0.25 m is generated, giving four 
elements in the direction perpendicular to wave propagation. The hor-
izontal mesh size is 0.125 m. Given this mesh size and the properties 
given in Table 1, this model will be able to transmit frequencies up to 
2662 Hz, based on the recommendations for the minimum wavelength 
to be at least ten times the mesh size [43]. 

Model 2 – No Symmetrical Boundaries – DEM-FDM 
Model 2 is identical to the Model 1, shown in Fig. 3, without sym-

metrical horizontal boundaries. These boundaries are now modelled as 
being free. This model is solved using the DEM-FDM. Without sym-
metrical boundaries this model will not contain infinite joints, allowing 
the assumption of infinite joints to be tested. The model setup is shown 
in Fig. 4. 

Model 3 – Blocky Material – DEM-FDM 
Model 3 is a modified version of Model 1, with three blocks stacked 

on top of each other perpendicular to the direction of wave propagation. 
The vertical spacing of the joints is 1 m, so the model height has been 
increased to 3 m. The blocks represent finite joints, despite symmetrical 
boundaries being modelled. This gives an additional test of the infinite 
joint assumption, also tested in Model 2. The model set up is shown in 
Fig. 5. Horizontal and vertical joints have the same properties, as shown 
in Table 1. The mesh size remains as 0.25 m vertically and 0.125 m 
horizontally, as used in Models 1 and 2, also allowing frequencies up to 
2662 Hz to be transmitted. 

Model 4 – 2D Model – FDM 
Model 4 is a 2D model with a source located in the centre of the 

model, which propagates outwards radially. The source applies a ver-
tical point force to a single node in the centre of the model. The joints in 
this model are infinite; however, the wave is not a plane wave, allowing 
the plane wave assumption to be tested. The model set up is given in 
Fig. 6. A square finite difference mesh is generated within the model, 
with 0.1 m edge lengths. Frequencies up to 3328 Hz can be transmitted 
in Model 4, given that the mesh size is smaller than that used in Models 1 

to 3. The difference in mesh size will not affect the transfer function 
below this maximum transmitted frequency. All external boundaries are 
modelled as absorbing. 

Equivalent Material Models 

Equivalent materials are investigated to determine whether the 
resonance effects are preserved when the method of representing joints 
is changed. The modelling is undertaken using a 1D FDM model using 
WAVE2D [29], shown in Fig. 7. This model is equivalent to Model 1, 
solved in a different software. This model has a mesh size of 0.08 m, with 
dimensions of 2080 × 4800 elements. With the material properties given 
in Table 1 this model will be able to transmit frequencies up to 4160 Hz. 
Again, this change in mesh size will not affect the transfer function 
below this maximum transmitted frequency. 

Parastatidis [28] modelled jointed materials using three different 
material models: a discrete representation of joints (DM), a localised 
equivalent medium (LEM) and a homogenous equivalent medium 
(HEM). All three of these material models are used here, with the 
addition of a localised homogenous equivalent medium (LHEM). The 
LHEM only applies transversely isotropic material properties between 
the first and last joints. This will increase the 1/L of that medium, and 
therefore change the material properties used in this area, when 
compared to the HEM. These material models are illustrated in Fig. 8. 
The LHEM is introduced as joints only fill a small portion of the model 
shown in Fig. 7, while they populate the entire model used by Para-
statidis [28]. Due to the size of the model the effect of the joints in the 
HEM is diluted across the entire model, while the effect of the joints in 
the LHEM is contained between the first and last joint, which can be 
thought of as the jointed region of the model. 

Transfer Functions 

Transfer functions are used to analyse the data from the models used 
in this study. These are generated using Eq. (8). Data is recorded giving 
an input waveform (uref) and an output waveform (u), which are trans-
formed into the frequency domain using a Fourier transform (to give u’ref 
and u’). These show how elements introduced into a propagation 
pathway can affect the amplitude of vibrations as the frequency of the 
vibration changes. The results are interpreted as Transmission Co-
efficients (TC) and plotted against the frequency of the vibration. A TC 
equal to one shows that the vibration at that frequency is not affected by 
a model, while values greater than one show an increase in the vibration 
amplitude and less than one a reduction in the amplitude. As this 
method gives the relative difference between the amplitude of vibrations 
at different frequencies, it is possible to compare different models which 
have been excited by different waveforms. Therefore, the different ex-
citations used in the models in this study, as described in the previous 
sections, will not affect the results, and the transfer functions derived 
can be applied to complex vibrational sources, such as rail vibrations. 

Fig. 3. DEM-FDM Model 1 (adapted from Holmes et al. [4]) showing finite difference mesh for finite joint verification case. Mesh fills entire model. Not to scale.  
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TC =
u′

ref

u′
(8) 

The transfer functions from Models 1–3 and the equivalent material 
models are generated by using a velocity–time history close to the source 
for the input and the velocity–time history after the joints as the output. 
However, in Model 4, due to geometrical damping, inevitable during the 
propagation of a non-planar wave, this procedure cannot be used. If the 
effects of damping were included in the calculation of the transfer 
functions the effect of joints could be hidden. To overcome this the 

transfer function is generated as a reduction factor, which are often used 
when evaluating the performance of wave barriers [14]. This is under-
taken by comparing the response of an identical model without joints 
with the jointed model, with measurements taken at identical locations 
in both models. The geometrical damping will be similar in both models, 
largely removing this effect from the calculation of the transfer function. 
Therefore, any differences in the waveforms will be caused by the 
presence of the joints within the model. 

Results 

Discrete Jointed Models 

Fig. 9 shows the results from Models 1 to 4, along with the analytical 
results, from equations (5) and (6). This Figure shows that all the models 
display comparable results, with maxima at comparable frequencies to 
the resonance predicted by the analytical function (Eqs. (5) and (6), at 
96 Hz. There are minor differences in the peak frequency in all the 
models, although all of these are broadly the same frequency. 

Despite the similarities none of the models exactly match the results 
of the 1D, infinite jointed, Model 1. The 2D Model 4 shows a trans-
mission coefficient of 0.92 at the resonant frequency, while the other 
models show a transmission coefficient of approximately 1 at this fre-
quency. Equally, the transmission coefficient at 0 Hz is much lower in 
Model 4 than in the other models. The local minimum, at approximately 
50 Hz, is also lower than the other models and the higher frequency 
transmission coefficients are also slightly different. The differences 
observed in the transmission coefficients of Model 4, relative to Model 1, 
are likely to be due in part to the different method of generating the 
transfer function for this model, but also refraction of the waves when 
they are incident upon the joints at non-normal angles. This is a 
consequence of the 2D nature of Model 4, so will not occur in the other 
models, and is likely to have affected the transfer function. 

The finite jointed Model 2 and the blocky Model 3 have similar 
transfer functions to Model 1, with similar high frequency content as 
well as similar transmission coefficients at the resonant frequency and at 
0 Hz. However, there are differences at the local minima in the transfer 
functions at approximately 50 Hz. Model 2 shows an undulating transfer 
function here, with a higher transmission coefficient than Model 1. 

Fig. 4. DEM-FDM Model 2 with no symmetrical boundaries showing finite difference mesh for finite joint verification case. Mesh fills entire model. Not to scale.  

Fig. 5. DEM-FDM Model 3 with multiple blocks showing finite difference mesh for finite joint verification case. Mesh fills entire model. Not to scale.  

Fig. 6. 2D FDM Model 4 showing finite difference mesh for finite joint verifi-
cation case. Mesh fills entire model. Not to scale. 
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Transportation Geotechnics 41 (2023) 101033

7

Model 3 shows a smooth transfer function, but at a lower transmission 
coefficient when compared to Model 1. The differences observed in the 
transmission coefficients of Models 2 and 3 are due to the different 

modelling assumptions used, as all other inputs and the signal process-
ing are identical. 

As Model 4 is 2D it is possible to view the transmission of waves 
across a surface within the model. This shows transmission of waves out 
of the propagation pathway directly above the source, as shown in 
previous figures. Fig. 10 shows the results from Model 4 as a 1D surface 
transfer function. This is generated by adding in extra, evenly spaced, 
response points along a surface in the model. The offset in Fig. 10 refers 
to the distance from the centre of model, directly above the source. 
Transfer functions are generated for each of these points, which are 
meshed and plotted as a contour plot. As the results for different offsets 
are generated using the same modelling run, the transfer function at 0 m 
offset is identical to that shown inFigure 9, for Model 4. Fig. 10 shows 
the analytical spring resonance predictions, from Eqs. (5) and (6), as a 
dashed black line. This Figure shows that these effects persist for offsets 
between +/- 20 m from the application of the load. There is some degree 
of frequency spreading of the high transmission zone at large offsets; 
however, it still occurs at the frequency predicted for spring resonance. 

Equivalent Material Models 

The model presented in Fig. 7 is modelled with the different equiv-
alent materials shown in Fig. 8. The results for this are shown in Fig. 11. 
The DM results are similar to those for Model 4, although not identical as 
model 4 is a 2D model with a non-plane wave and the DM results are 

Fig. 7. FDM model showing finite difference mesh used with equivalent material models.  

Fig. 8. Equivalent material models used in study.  

Fig. 9. Transfer functions for Models 1 to 4 and Analytical Function.  
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from an effectively 1D model with a plane wave. It is clear that there is 
an analogous profile to the transfer functions given by the DM and LEM 
models, with corresponding frequencies of local maxima. In the DM this 
occur at 96 Hz, while in the LEM this occurs at 92 Hz. These occur at 
similar frequencies to the analytical prediction of the spring resonance, 
occurring at 96 Hz, from Eqs. (5) and (6). The LHEM and HEM models 
show quite different transfer functions to the DM model. The HEM 
model shows a transmission coefficient equal to one at all frequencies. 
This is to be expected using a 1D model with no damping, as there is no 
potential for the wave to be modified during transmission. Up to 30 Hz 
the LHEM model shows similar transmission coefficients to the DM and 
LEM models. However, past 30 Hz the profiles of the transfer functions 
are quite different. The LHEM has an oscillation in the transfer function 
with maxima located at an even spacing of 146 Hz. This oscillating 
transfer function is likely to be related to the superposition of waves 
within the weaker, and therefore slower, block of equivalent material 
within the model. This is equivalent to the superposition resonance 
mechanism observed in jointed materials. This reduced stiffness block 
will not oscillate under the spring resonance mechanism as no joints, 
analogous to springs, are modelled. 

Discussion 

This study has tested various common modelling assumptions as well 
as material models to understand whether they influence the spring 
resonance mechanism identified in jointed rock masses and to assess 
whether such effects will occur in more complex, realistic scenarios. The 
assumptions tested in this study are symmetrical boundaries, infinite 
joints, and plane waves, as well as different methods of representing 
joints using different equivalent material models. 

Regarding the modelling assumptions, despite some differences in 
the transfer functions shown in Fig. 9, this Figure shows evidence of a 
peak in the transfer function at the frequency expected for spring reso-
nance in the models. The verification of the applicability of the spring 
resonance effect in this study suggests that these effects will persist in a 
wide range of rock masses and when plane wave conditions are not met. 

There are minor differences in the transfer functions form Models 2 
to 4, when compared to Model 1, although there are many similarities. 
For example, in Models 2 to 4 the amplitude of the transmission co-
efficients for resonant frequencies are clearly elevated, compared to 
surrounding frequencies. This implies that waves at the resonant fre-
quency are not significantly attenuated as they pass through joints. This 
has important implications for stress wave propagation through jointed 
rock masses, as stress waves propagating at the resonant frequency of 
the rock mass will deliver higher amplitude vibrations to a receiver, 
relative to non-resonant frequencies. The resonant frequencies for a rock 
mass with a large number of joints will show a high transmission zone at 
low frequencies where the resonant peaks are squashed together be-
tween 0 Hz and a cut off maximum spring resonance for the given rock 
mass. For a rock mass with the properties given in Table 1 the cut off 
spring resonant frequency is 137 Hz. Therefore, the rock mass from 
Table 1 could have a high transmission zone up to 137 Hz, given a 
sufficiently large number of joints. Following the high transmission zone 
will be a low transmission zone. This means that the rock mass is acting 
as a low pass filter, only allowing the transmission of low frequency 
waves through the joints. This is illustrated using a FDM model with a 
large number of joints in Fig. 12. There are minima seen in the high 
transmission zone in the transfer function in Fig. 12; however, this is due 
to the small size of the model and therefore a limited number of joints 
compared to a realistic rock mass. Despite this, the resonant frequencies 
do merge close to the cut off frequency, giving a clear high transmission 
zone. Therefore, given a large number of joints, a jointed rock mass 
could have the same transmission coefficient as a continuum material at 
low frequencies. Schoenberg and Sayers [22] proposed a similar effect, 

Fig. 10. 1D surface transfer functions from the FDM Model 4, infinite and finite 
jointed models and Analytical models. Colour bar indicates transmission coef-
ficient. Black dashed line shows the predicted spring resonant frequency. 

Fig. 11. Transfer functions for equivalent material models.  

Fig. 12. Transfer function for a continuously jointed rock mass. Transmission 
coefficient is given by the colour bar and is relative to an unjointed continuum 
model. Black dashed line shows spring resonance (equations (5) and (6). 
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where when the wavelength is much larger than the joint spacing an 
equivalent continuum can be assumed. It is clear from the presence of 
the spring resonance mechanism that this equivalency can only be 
possible in rock masses with a large number of joints, or within a het-
erogeneous jointed material. 

The maxima observed in Fig. 12 at frequencies of between 275 and 
200 Hz and an offset of 15 m, are interpreted to be a superposition effect 
caused by refraction and superposition of shear and compressional 
waves caused by the joints within the 2D model. This is not the same 
superposition resonance predicted using Eq. (7), which is based on the 
reflection of normally incident waves upon joints, which will occur at 
832 Hz. 

The results from the equivalent material models are shown in Fig. 11. 
This shows that the DM and LEM show similar frequencies for the local 
maximum at 96 and 92 Hz, respectively. This matches the predicted 
spring resonance frequency for this rock mass. This shows that the spring 
resonance mechanism occurring in the DEM model also occurs in the 
LEM model, which has not previously been identified. Furthermore, the 
similarity in the frequency of the resonances show that the methodology 
for defining the equivalent medium properties using cracks per unit 
length (Eq. (4), gives an interface with a near identical stiffness to the 
discrete jointed model. With the slight difference generated through 
rounding errors associated with the calculation of 1/L. The HEM shows a 
transfer function equal to one at all frequencies, which would be ex-
pected for a 1D continuum model. The pattern in the transfer function 
for the LHEM shows successive peaks and troughs, separated by 146 Hz. 
This effect is generated due to the difference in stiffness of the equivalent 
material and the original isotropic material. This will allow stress waves 
to reflected from the interface between the different mediums and su-
perimpose on each other, in a similar fashion to the superposition 
resonance mechanism. The spring resonance mechanism does not 
appear to develop. This is due to there being no joint present between 
the equivalent material and the original isotropic material, with the 
interface acting more akin to an infinite stiffness welded interface. 

The experiments conducted in this study provide convincing evi-
dence that the spring resonance does occur in simulations of jointed rock 
masses. However, as this study and the previous study of Holmes et al. 
[4] both use a numerical approach, physical evidence of the spring 
resonance mechanism is not provided. Examples can be found in studies 
relating to periodic metamaterials that show high transmission zones 
within frequency response functions, which are synonymous with the 
transfer functions presented in this study. Witarto et al. [35] presented a 
simple periodic metamaterial and analysed its performance using a 
frequency sweep on a shake table. Later, Huang et al. [14] modelled the 
same material using the finite-element method. The material being 
analysed was a concrete layer, sandwiched between polyurethane. Due 
to the stiffness difference in the materials, the polyurethane will act like 
a joint, while the concrete will act like a block. The properties of the 
materials used in the test are shown in Table 2, which give the spring 
resonance of this single block system as 8 Hz. Fig. 13 shows the fre-
quency response function from the studies of Witarto et al. [35] and 
Huang et al. [14], along with the spring resonance frequency from Eqs. 
(5) and (6). This shows that the amplified frequencies found by the 
previous studies closely match the resonant frequency predicted by the 
analytical equations for spring resonance, giving convincing evidence 

that the resonance effect can be isolated in physical models, and that it is 
a realistic phenomenon. 

The amplification observed by Witarto et al. [35] and Huang et al. 
[14] in Fig. 13 is related to the unconfined block within the models, both 
physical and numerical, which are used in those studies. A stiff concrete 
layer was excited, with vibrations then propagating through the less stiff 
rubber layers. The rubber layers allow greater deformation, allowing the 
unrestrained end block to displace to a greater degree than the block 
which was excited. On the other hand, the models used in the current 
study have end blocks which are restrained. Therefore, despite the po-
tential for the weaker layers representing the joints to increase the 
amplitude of vibrations, this does not occur in the figures presented in 
this study. The amplification of the end block does not change the 
resonant frequency of the mass-spring system, so the peak transmission 
still occurs at the same frequency as the spring resonant effect. 

Following the similarities between the resonances identified by the 
analytical spring resonance equations and the physical experiment of 
Witarto et al. [35] it is reasonable to assume that such effects are also 
likely to occur in other physical systems, such as jointed rock masses. 
This is provided by the joints behaving elastically, like the polyurethane 
in the metamaterial. When applied to a realistic rock mass with a real-
istic vibration source, the implication of the presence of the spring 
resonance high transmission zone is that certain vibration sources can be 
transmitted, while others will not be. Fig. 14 shows the range of fre-
quencies generated by common train and track vibrational sources from 
high speed rail. These are plotted against the maximum frequency of the 
spring resonance zone for common rock masses. The properties of the 
rock masses used for this are taken from Bandis et al. [42] and are 
included in Table 3, along with representative block material properties 
for each rock mass with maximum and minimum joint stiffnesses (fresh 
and weathered conditions, respectively) and joint spacings. The range of 
joint spacings were based on engineering judgement and in accordance 
with discontinuity descriptions in BS5930 [44]. These values are 
inputted to Eqs. (5) and (6) to give the maximum and minimum cut off 
frequencies for the spring resonance high transmission zone when there 
are a large number of joints within a rock mass. 

Fig. 14 shows the maximum frequency of the spring resonance 
mechanism for a range of common rock types in different rock mass 
conditions. Eqs. (5) and (6) show that a higher maximum spring reso-
nance frequency is given by a rock mass with small blocks and strong 
joints, while a low maximum frequency is given by large blocks with 

Table 2 
Material properties of the periodic metamaterial [35].  

Material Property 

Concrete  
Density 2300 kg/m3 

Elastic Stiffness 31400 MPa 
Poisson’s Ratio 0.2 
Thickness 0.05 m 
Polyurethane  
Stiffness 0.1586 MPa  

Fig. 13. Frequency response function for single block metamaterial from the 
laboratory experiment Witarto et al. [35] and corresponding numerical exper-
iment of Huang et al. [14]. Analytical spring resonance from equations (5) 
and (6). 
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weak joints. These conditions do not typify a strong or weak rock mass. 
A weak rock mass would be a combination of these two end members, 
with weak joints and small blocks. It is likely that for many rock masses 
encountered in the field the maximum spring resonance will fall be-
tween the two extreme cases. These end members have been used to 
designate the likelihood of vibrations being transmitted. All vibrations 
below the lower bound maximum frequency for the rock type are likely 
to be transmitted, and those above the upper bound maximum fre-
quency unlikely to be transmitted. Between these frequencies it is 
possible that frequencies could be transmitted. Based on the zones in 
Fig. 14 all vibrations generated by the train are likely to be transmitted 
through a jointed rock mass, while some track excitations may not be. 

When comparing the transmission of stress waves in a continuum 
and a discontinuum, the spring resonance mechanism will not occur in 
the continuum. This is because the movement of the blocks, which are 
not present in a continuum, generate the observed resonances. With no 
barriers to affect the transmission of stress waves, an undamped con-
tinuum model will have a transmission coefficient equal to 1 at all fre-
quencies. Therefore, the entire transfer function can be thought of as a 
high transmission zone. While the high transmission zone is the most 
striking part of a jointed rock mass transfer function, it is in fact the low 
transmission zone outside of this which causes the transfer function of a 
discontinuum to vary from that of a continuum. Neglecting the effects of 
geometrical and material damping, within a continuum material all 
frequencies generated by a train will be transmitted with a transmission 
coefficient of one, as shown by the HEM model in Fig. 11. For a dis-
continuum material, such as the rock masses included in Fig. 14, only 
the frequencies which occur in the high transmission zone will be 

transmitted to a significant degree, with all frequencies which occur 
outside this zone being effectively eliminated. Consequently, high fre-
quency vibrations are unlikely to be transmitted through a jointed rock 
mass. High frequency vibrations are produced more by high speed rail, 
relative to other forms of rail traffic, although they also generate low 
frequency vibrations. Therefore, high speed rail trains with transmission 
pathways through jointed rock masses will not transmit a considerable 
proportion of the vibration spectra unique to high speed rail. Despite 
this, high amplitude low frequency vibrations can still be transmitted 
through rock masses. 

The models used in this study have attempted to see how modelling 
assumptions can affect the response of a model. However, with any 
numerical model, there are modelling assumptions still used in the 
generation of the models. Assumptions such as non-linear material 
properties, in-situ stresses and fully 3-dimensional (3D) settings have 
not been discussed. For example, Parastatidis [28] showed that an FDM 
model using a stress dependent joint constitutive model can more 
accurately match transmitted waveforms from experimental results. As 
such, there are many assumptions which have not been investigated in 
this study, although the models used here do support the theory that the 
observed resonance mechanisms will occur in physical jointed materials. 

Conclusions 

This study has shown that resonance effects, predicted by closed 
form analytical equations, occur in complex and realistic rock masses, 
including with finite and blocky joints, as well as with certain equivalent 
material models. The models analysed in this study represent more 
realistic scenarios which will be encountered in nature. Homogenous 
equivalent models of jointed rock masses do not exhibit resonance 
characteristics, while the discrete and localised equivalent materials do 
show the spring resonance effect. These resonance effects cause jointed 
materials to behave similar to periodic metamaterials. A bespoke anal-
ysis has been run to test modelling assumptions, with these compared to 
a 1D model and the analytical functions for spring resonance. Each 
model shows convincing maxima at the resonant frequency of the 
jointed rock mass to suggest that the resonance mechanism occurs. 
These validations show that the spring resonance effect is likely to occur 
in natural rock masses, including more complex blocky rock masses with 
additional joint sets. For rock masses with a large number of joints, a cut 
off frequency is introduced to indicate the maximum frequency of the 
spring resonance effect. This represents the maximum frequency of a 
high transmission zone, generated by spring resonance, meaning that 
the rock mass operates like a low pass filter up to this frequency. 

Credible evidence is presented from published literature of the 
presence of the spring resonance effect in a physical model. This is found 
to occur in a periodic metamaterial, with the analytical equations for the 
spring resonance effect predicting the frequency accurately. The previ-
ous studies tested a periodic metamaterial in physical and numerical 
experiments, using an additional code which has not been used in this 
study. This shows that the spring resonance effect occurs in laboratory 
scale physical experiments, giving support to the hypothesis that this 
effect will occur in natural materials. 

Jointed rock mass transfer functions are discussed in relation to rail 
vibration sources. This is undertaken using common rock masses with 

Fig. 14. Spring resonance high transmission zones for different rock masses 
plotted with ranges of train and track excitation frequencies from Connolly 
et al. [10]. They coloured boxes refer to the cut off frequencies of the spring 
resonance mechanism for different rock mass conditions, resulting in different 
probabilities of transmission through a rock mass. 

Table 3 
Properties used for resonance ranges in Fig. 14. All properties from Bandis et al. [42], except joint spacing which were based on engineering judgement in accordance 
with BS EN ISO 14689 Part 1 [44].  

Rock Type Block Elastic Stiffness 
(GPa) 

Density (Mg/ 
m3) 

Fresh Joint Stiffness (GPa/ 
m) 

Weathered Joint Stiffness (GPa/ 
m) 

Max. Joint Spacing 
(m) 

Min. Joint Spacing 
(m) 

Sandstone  24.0  2.41  34.9  8.8 6  0.06 
Siltstone  28.5  2.42  64.2  20.0 6  0.2 
Limestone  49.0  2.73  133.5  39.8 6  0.06 
Dolerite  78.0  2.90  75.3  24.7 0.2  0.006 
Slate  66.0  2.77  344.3  19.1 0.06  0.006  
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characteristic material properties and block sizes. It is concluded that 
the cut off frequency describes the upper limit of frequencies which will 
be transmitted through a jointed rock mass. This indicates that high 
speed rail sources located in a jointed rock mass, which are likely to 
generate high frequency vibrations, may be entirely cut out by the 
presence of the joints. In contrast, high amplitude low frequency 
vibrational sources, such as freight trains, are likely to be more prob-
lematic in jointed rock masses, than high frequency vibrations. 
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