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A B S T R A C T   

Automotive wheel misalignment is the most significant cause of excessive wear on tires, which will severely 
affect the stability and safety of vehicle handling, and cause serious consequences for human health and the 
environment. In this study, an energy-efficient onboard wheel alignment wireless monitoring system (WAWMS) 
is developed to detect wheel misalignment in real time. To minimise power consumption, a dual wake-up 
strategy is proposed to wake the microcontroller by a real-time clock (RTC) and an accelerometer. Further-
more, an online self-calibration method of inertial measurement unit (IMU) sampling frequency is investigated to 
improve measurement accuracy. Eventually, real-world wheel misalignment tests were performed with the 
WAWMS. The error-correcting output codes based support vector machines (ECOC-SVM) method successfully 
classifies different wheel alignment conditions with an average accuracy of 93.2% using nine principal com-
ponents (PCs) of 3-axis acceleration spectrum matrixes. It validates the effectiveness of the designed WAWMS on 
automotive wheel alignment monitoring.   

1. Introduction 

Camber, caster and toe are three primary alignment angles of vehicle 
wheels [1]. They regulate the positions of wheels relative to the sus-
pension and the ground. Camber and toe angles are related to the wheel 
orientation, while the caster is a measurement of the suspension ge-
ometry. Misalignment of vehicle wheels, especially titled toe angles, will 
cause severe uneven and excessive surface wear of tires, roads and other 
suspension components. This not only increases fuel and/or electricity 
costs but also affects the stability and safety of vehicle steering and 
handling [2]. More importantly, harmful particulate matter (PM) 
emissions caused by tire wear have a serious and noticeable impact on 
human health and the environment. Therefore, four-wheel alignment 
including correct inspection and adjustment of the characteristic angles 
is significantly essential [3]. 

Currently, commercial wheel alignment inspection and correction is 
carried out offline by means of expensive specialist equipment and 
advanced alignment technology at the service centre, which is a time- 
consuming and laborious process. Generally, vehicle owners or opera-
tors are advised to send their vehicles for proactive maintenance 
frequently to correct wheel alignment. Currently, researchers are mainly 

committed to the investigation of alignment techniques to improve 
calibration precision and speed during maintenance. Most existing 
wheel alignment measurements are carried out with expensive machine 
vision equipment. For example, more than 300 wheel alignment mea-
surements were performed by Patel et al. [4] to capture the effects on 
static wheel alignment accuracy. The test results showed that both 
platform levelness and tire pressure errors significantly affected the 
wheel alignment accuracy. Furferi et al. [5] and Padegaonkar et al. [6] 
developed 3D machine vision-based systems for contactless measure-
ment of wheel alignment respectively, which were effectively validated 
by measuring toe and camber angles. Shao et al. [7] designed a new type 
of four-wheel calibration device driven by three motors to accurately 
calibrate four-wheel alignment parameters. Furthermore, they proposed 
a local fractal dimension analytical method relying on blanket tech-
nology to optimize the measurement range to avoid repetitive large- 
scale computations during the estimation of alignment parameters [8]. 
Kim et al. [9] investigated a quick, reliable and cost-efficient wheel 
alignment inspection approach for automakers by employing two laser 
modules and several jigs to measure the toe and camber angles for the 
suspension module. Its accuracy was compared and validated with the 
results of the vision system with two CMOS cameras. Niu et al. [10] 
developed an analytical assembly variation analysis method based on 
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equilibrium equations of incremental forces applied for 3D suspension 
systems, which was validated to be effective for the accurate control of 
wheel alignment parameters with the simulated model. 

Generally, wheel misalignment is mainly caused by sudden impact or 
wear of suspension parts of vehicles, especially those heavy goods ve-
hicles (HGVs). It occurs at any time so that is difficult or even impossible 
to immediately or punctually predict and maintain unless regular and 
periodic inspection for customers [1]. Therefore, it is essential to 
develop an onboard system for condition-based preventive maintenance 
to reduce the probability of failure and cost and improve safety. Addi-
tionally, these types of wireless sensing systems can reduce the cost and 
complexity of wheel misalignment detection operations. The continu-
ously measured data can be uploaded to the cloud platform in real time 
for storage, management, and processing with predictive and prescrip-
tive machine learning modelling to achieve the auto-align system. When 
the misalignment occurs or is imminent, the platform can inform and 
remind the driver in time to perform preventative maintenance to 
reduce the fuel cost, uneven tire wear, PM emissions and enhance the 
stability and safety of vehicle handling and steering. The conventional 
tire-pressure monitoring system (TPMS) as the onboard system has been 
broadly applied in commercial vehicles to continuously measure the 
wheel tire pressure status. Recently, the promising intelligent tire 
embedded with multiple sensors is drawing the attention of both re-
searchers and automakers because of the increasing demand within the 
automotive industry for progressively safer vehicles [11]. 

Basically, the vibration responses captured by the sensing unit come 
from the excitation of the road and axle via the tyre and rim. The 
excitation from roads is a broadband source, which can be represented 
by the road power spectrum density. As shown in Fig. 1, different wheel 
misalignment cases have different angles with respect to the road exci-
tation, which can be considered as the change of input. The alignment 
conditions also change the slip angle and slip ratio which are the vari-
ation of the transmission system [12]. The input and transmission sys-
tem vary with the alignment conditions and consequently, the responses 
contain the information of the wheel alignment conditions. Accordingly, 
few researchers explore the possibilities of developing onboard wireless 
wheel alignment inspection systems with micro-electromechanical sys-
tems (MEMS) to continuously measure the automotive wheel alignment 
status from the viewpoint of dynamics [13]. For example, Sonali [12] 
designed a wireless sensing system utilising an accelerometer to measure 

the automobile wheel parameters, including camber and toe. Michael 
and Isaac [14] integrated an automotive wheel alignment system with 
MEMS components with the power consumption of about 185mW and 
727mW in idle and active modes, respectively. Young et al. [3,15] 
employed a 3-axis MEMS accelerometer and a MEMS gyro to capture 
signals from wheels to implement camber angle and toe angle inspection 
based on a microcontroller unit (MCU). The proposed calibration 
approach achieved a precision of low to ± 0.015◦. Liu et al. [16] applied 
MSP430 as the microcontroller to realize data communication between 
a two-axis inclination sensor and a hand-held terminal to effectively 
assist the four-wheel alignment. Paudel et al. [17] implemented sensor- 
less detection of wheel alignment error for a wheeled mobile robot by a 
disturbance observer. The wheel torque profiles detected by the motor 
current were analysed and it was demonstrated that they were effective 
and efficient to detect camber or toe errors. Mohamad et al. [18] built a 
portable IoT based wheel alignment monitoring system and graphical 
user interface to perceive the customers’ early detection of misalign-
ment issues. D’Mello et al. [1] designed an IoT based wheel alignment 
system with an MPU6050 and an ESP32 microcontroller to detect the 
camber and toe angles. 

However, because of the burdensome tasks (including collecting, 
storing, processing, and transmitting numerous datasets) of the MCU, 
the biggest challenge for the wireless sensor node is the extremely high 
demand for battery capacity, especially when it works in a harsh envi-
ronment. In general, to prolong the service life of the wireless sensor 
node, there are two effective solutions: reducing power consumption 
[19] and energy harvesting [20,21]. Although energy harvesting can 
prolong the service life of the wireless sensor nodes, the energy har-
vested in harsh areas or environments is very limited. Therefore, the 
primary priority is to reduce the power consumption of the nodes, which 
provides a prospect of autonomous wireless alignment detection systems 
with the prospective assistance of energy harvesting [22] in the future. 
This would enable the sensor node to be widely used in other forth-
coming applications as well, like rotating machinery monitoring in 
various industrial fields [23]. Some researchers commit to improving 
the power efficiency of the components, such as reducing the power 
consumption in broadcast, radio transmission and reception. It is 
important to reduce the instantaneous power of the components, but if 
the components always work, the average power consumption will un-
doubtedly increase. Consequently, making them enter the sleep modes is 
an optional approach. To automatically wake up the processor from 
system off mode, researchers commonly use wake-up methods including 
wake-up radio [24,25], timers or clocks [26], accelerometers [27] and 
so on. However, it requires collecting valid dynamic signals for wheel 
alignment monitoring, and a single wake-up method is difficult to meet 
the requirements. Therefore, a low-power and efficient onboard wheel 
alignment wireless monitoring system with a dual wake-up strategy and 

Nomenclature 

ACC accelerometer 
ADC analogue to digital converter 
ECOC error-correcting output codes 
FFT fast Fourier transform 
FIFO first in first out 
GPIO general-purpose input/output 
HGV heavy goods vehicle 
IMU inertial measurement unit 
IoT Internet of things 
MCU microcontroller unit 
MEMS micro-electromechanical systems 
PC principal component 
PCA principal component analysis 
PDF probability density function 
PM particulate matter 
RTC real-time clock 
SVM support vector machines 
TPMS tire-pressure monitoring system 
WAWMS wheel alignment wireless monitoring system 
WDT waterdog timer  

Fig. 1. Different wheel alignment conditions.  

X. Tang et al.                                                                                                                                                                                                                                    



Measurement 211 (2023) 112578

3

adaptive self-calibration is developed to achieve long-term online 
alignment monitoring of automotive steering axle wheels in this study. 
The main contributions of this article include:  

1) An efficient dual wake-up strategy is proposed to not only prolong 
the service life of the designed WAWMS but also guarantee the val-
idity of the collected data for wheel alignment monitoring. 

2) An online adaptive self-calibration method of IMU sampling fre-
quency is investigated with the recorded data packet time duration 
to alleviate the measurement uncertainty and improve the sensor 
accuracy.  

3) Some wheel misalignment experiments were carried out with the 
designed WAWMS in the field, and the ECOC-SVM method was 
applied to the collected data to demonstrate the effectiveness and 
efficiency of WAWMS in wheel alignment monitoring.  

4) An energy-efficient onboard WAWMS is designed and manufactured 
to monitor the condition of automotive wheel alignment in real time, 
and its power consumption is analysed at entire working stages. It 
has great potential to substitute for the conventional TPMS and can 
be versatile in condition monitoring of automotive. 

The rest of this paper is arranged as follows. Section 2 describes the 
design and integration of the WAWMS, and then introduces the pro-
posed dual wake-up strategy to reduce the average power consumption. 
Section 3 analyses the power consumption of the integrated WAWMS. 
Section 4 proposes an effective and adaptive online self-calibration 
method for the sensor sampling rate. In Section 5, the wheel misalign-
ment experimental studies were performed and the captured measure-
ments are analysed to demonstrate the effectiveness and efficiency of the 
designed WAWMS. Finally, conclusions and future work are presented. 

2. WAWMS and power management 

2.1. WAWMS design and integration 

A peripheral device generally refers to a wireless sensor node that 
consists of a sensing unit, a power unit, an MCU and a communication 
unit. The sensing unit generally contains one or more sensors to sense 
the physical characteristics of the target object. The power unit normally 
includes a power supply battery or an energy harvesting device and a 
power management module, such as regulators. The MCU is the core of 
the overall system, which is responsible for the communication between 
different units, as well as the storage and processing of datasets, etc. 
Finally, the captured measurements or extracted features can be sent to 
the central devices by the communication unit, such as Wi-Fi, Bluetooth, 
Zigbee and 4G/5G modules and so on. According to the basic structure 
of a wireless sensor node, a WAWMS was designed with the architecture 

shown in Fig. 2. It primarily consists of a battery, a buck converter, a 
battery voltage monitoring module, a powerful MCU, a Bluetooth 5 
transmitter with an internal printed circuit board (PCB) antenna, a 9- 
DOF IMU, a temperature and pressure sensor, an RTC and a 3-axis 
accelerometer (ACC) used for the proposed dual wake-up strategy. 

The red and blue lines with arrows represent the power supply di-
rections and communication between different modules, respectively. 
The framework apparently shows that only the battery voltage moni-
toring module and the buck converter are directly powered by the bat-
tery. The battery voltage monitoring module can test the battery voltage 
in real time, which will be helpful to remind the customer to replace the 
battery before it is fully depleted. Then, the buck converter converts the 
battery voltage into a fixed DC voltage to power the MCU and the 
Bluetooth, the RTC and the accelerometer modules to make them work 
smoothly and stably. The IMU, temperature and pressure sensor are 
powered from a general-purpose input/output (GPIO) port of the MCU 
unit because the output voltage can be driven by the MCU based on the 
requirement of the loads to reduce the average power consumption of 
the entire system. On the other hand, the RTC and the accelerometer 
must always be powered by the output voltage of the buck converter 
according to the effective dual wake-up strategy proposed to wake the 
MCU from sleep mode. If these modules or loads are directly powered by 
the battery, there will be two issues. Firstly, when the powered modules 
or loads generate a relatively large current, the battery voltage will 
sharply drop, which will seriously affect the performance of the load 
device or produce significant noise interfaces, especially for sensors. 
Secondly, since different modules have different operating power 
voltage requirements, the improper battery voltage may lead to the low 
energy efficiency of certain modules. 

For the communication among different modules, the MCU reads the 
battery voltage measurements from an analogue input GPIO pin to 
monitor the voltage of the battery to alert the customer when the battery 
is nearly exhausted. Similarly, after the IMU and the temperature and 
pressure sensor record the signal profile, it is transferred to the MCU 
through the serial communication protocol, i.e. I2C or SPI, for storage 
and wireless transmission. However, advertisement, data collection and 
transmission consume a lot of power due to long working hours even 
though lots of researchers are devoted to the study of improving effi-
ciency and reducing power consumption of electronic components. 
Therefore, when all datasets are successfully transmitted or when the 
vehicle operating condition does not meet the criteria for quality data 
collection, the system should enter a deep sleep mode to reduce power 
consumption. Correspondingly, a wake-up strategy is required to wake 
up the MCU under appropriate circumstances so that the WAWMS can 
collect and transmit sensing measurements effectively. 

In order to reduce the dimensions of the designed WAWMS board, all 
components were selected and placed in a compact overall footprint on a 

Fig. 2. Architecture of the designed wheel alignment wireless monitoring system.  
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multi-layer PCB. The requirements and advantages of the selected 
components are summarized in Table 1. An integrated WAWMS is 
shown in Fig. 3 (a). Its dimensions including low cost, low power, high 
performance, compact dimensions, and appropriate functionality are 
only 34.40*13.60*4.34 mm which is given in Fig. 3 (b). 

2.2. Proposed dual Wake-up strategy 

The MCU of the peripheral device should automatically switch be-
tween the working state and the sleep mode according to certain rules to 
reduce the power consumption of the peripheral device of the WAWMS 
while ensuring operating performance. Contrastly, the central device 
does not experience the same trade-off constraints between power 
consumption and operating performance as the peripheral device. 
Considering the automotive application, a dual wake-up strategy is 
proposed to alternately wake the system from deep sleep according to 
the interrupt signals generated by an external accelerometer and an RTC 
which are framed with the purple dashed line in Fig. 2 (a). Simulta-
neously, a soft reset of the system was set to prevent the system from 
hanging or freezing. 

Firstly, since the collected data is useless when the vehicle is sta-
tionary or at a very low speed, it is necessary to wake up the system for 
sampling by the accelerometer when the vehicle speed is appropriate. 
Fig. 4 illustrates the acceleration analysis at the sensor installation po-
sition (the blue dot) on the vehicle wheel to induce the wake-up 
mechanism by the accelerometer. The radius of the tire and the dis-
tance from the sensor installation position to the centre of the tire are R 
and r, respectively. When the vehicle runs, the wheel rotates around the 
centre O at an angular velocity ω. The rotation angle is θ. A 3-axis 
accelerometer is installed in the X and Y directions to sense the 

centrifugal acceleration ac and the tangential acceleration at together 
with the components of gravity g, i.e. gx and gy, on these two axes. The 
centrifugal acceleration ac is given as 

ac = ω2r = (2πf )2r (1)  

where f is the rotating frequency of the wheel. The linear velocity v of 
the vehicle can be expressed as 

v = ωR = 2πfR (2) 

Therefore, the acceleration, a, measured by the accelerometer on the 
X-axis is calculated in (3). 

a = ac − gx = (2πf )2r − g • sinθ = (v/R)2r − g • sinθ (3) 

As R, r and g are constant, and the rotation angle θ is regarded as 
changing within the range of [0, 2π], the acceleration a changes within 
[
(v/R)2r − g, (v/R)2r + g

]
. Therefore, the acceleration threshold can be 

set to be or a little lower than (v/R)2r − g, and the corresponding vehicle 
speed threshold is v. When the vehicle speed reaches the set threshold 
and lasts for a set duration of seconds, the accelerometer will generate 
an interrupt signal, which can successfully wake the MCU through a 
GPIO port. Then the sensors are powered to collect wheel alignment 
characteristics and transmit them to the central device. After that, the 
MCU will enter deep sleep mode again. 

Furthermore, the MCU can be awakened by another interrupt signal 
generated by the RTC when the countdown timer or the alarm timing 
ends. The interrupt signal is a falling edge trigger that will be efficient 
and effective to reduce power consumption and prevent the wake-up 
behaviour continuously triggered by the accelerometer during the 
running of the vehicle. With this proposed dual wake-up strategy, the 
designed WAWMS will be more suitable for actual application scenarios 
because it not only effectively prevents repeated and meaningless 
sampling, such as when the vehicle is stationary or running at low speed, 
but also prominently prolongs the service life of the WAWMS. The 
workflow of the designed WAWMS is illustrated in Fig. 5. 

The peripheral effectively works with the proposed dual wake-up 
strategy and follows the steps shown in Fig. 5. Once the peripheral de-
vice is powered or reset, the MCU sets two essential parameters ac-
cording to the vehicle speed for the accelerometer, i.e. acceleration 
threshold and duration. It then enters the deep sleep mode to save 
power, leaving only the accelerometer to monitor the speed of the 
vehicle. Once the acceleration exceeds the threshold for a defined 
duration, an interrupt signal is generated by the accelerometer to wake 
the MCU from the deep sleep state. Synchronously, the interrupt signal 
and accelerometer settings are cleared to stop the vehicle speed moni-
toring. After that, the MCU sends instructions to request the sensors to 
complete the data collection tasks after confirming a successful 
connection with the central device. The collected datasets are sent back 
to the MCU through I2C/SPI and packaged for transmission to the 
central device via Bluetooth. For better power management, the MCU 
will go to the deep sleep state again after setting and enabling a 
countdown timer or an alarm timer by the RTC. An interrupt signal 
generated as the countdown timer or the alarm timer event can trigger 
the MCU to wake up to set parameters for the accelerometer, which can 
prevent the MCU from being needlessly awakened by the accelerometer 
interruption from a moving vehicle. This is the energy-efficient working 
cycle of the peripheral. 

On the central side, the data packets can be received by the designed 
Bluetooth receiver or any portable device, like laptops, smartphones, 
and tablets. Finally, they will be transmitted to the cloud for storage and 
further analysis. 

3. Power consumption of the WAWMS 

To validate the effectiveness of the proposed dual wake-up strategy 

Table 1 
Requirements and advantages of selected components.  

Components Requirements and Advantages 

Buck Converter  • Ultra-low power (60nA operating quiescent 
current) and low cost  

• Suitable input (1.8 V to 6.5 V) and output voltage 
ranges (selectable output voltage)  

• High conversion efficiency (80 % efficiency at the 
output current of 1uA)  

• Tiny dimensions (2 mm × 1.5 mm × 1 mm) 

MCU and BLE  
• Low power (0.4µA@3V in System OFF mode, no 

RAM retention) and low cost  
• High control and signal processing capabilities 

(ARM Cortex-M4 32-bit processor with FPU, 64 
MHz)  

• Compact structure, tiny dimensions (11.6 mm ×
10.0 mm × 2.23 mm) with an internal PCB antenna 

9-DOF IMU  
• High performance (embedded FIFO, 16-bit data 

output. etc.), compatibility, sample rate (up to 952 
Hz), resolution and wide measurement range  

• Low power (operating mode down to 1.9 mA) and 
low cost  

• Compact and tiny dimensions 

Pressure and 

Temperature  

• Relatively high accuracy and resolution (1.57 mbar, 
0.0086 ◦C)  

• Low power (down to 0.6µA) and low cost 
Ultra-small dimension (3.3 mm × 3.3 mm × 2.75 

mm)  
• Better with a water-resistant package 

RTC  
• Ultra-low power (down to 45nA) and low cost  
• High accuracy (Factory calibrated: ±1 ppm, 

32.768 kHz XTAL oscillator: ±5 ppm) 
With the interrupt function 
High compatibility and tiny dimensions (3.2 mm 

× 1.5 mm × 0.8 mm) 

Accelerometer    • Ultra-low power (down to 2μA) and low cost  
• With the interrupt function and wide measurement 

range (±2g/±4g/±8g/±16 g dynamically 
selectable full scale)  

• Tiny dimensions (3 mm × 3 mm × 1 mm)  
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in terms of low power consumption of the system, the power con-
sumption of the integrated system is analysed under different working 
conditions in this section. 

3.1. Power consumption analysis 

Duty cycle and current in various activities and sleep states were 
recorded by Analog Discovery 2. Since some commonly used recharge-
able lithium-ion batteries have a nominal voltage of 3.7 V, the experi-
ments were carried out at a voltage of 3.7 V. A full duty cycle and its 
average current cost under different operating states are analysed and 
marked in Fig. 6. 

The highest current is drawn during data collection. After data 
transmission and BLE disconnection, the MCU enables the RTC and 
enters the deep sleep state. In the sleep state, the WAWMS consumes as 
low as 9.13µA. The MCU is awakened by the interrupt signal generated 
when the RTC countdown ends. It is followed by disabling the RTC and 
enabling the accelerometer. Following this sequence, the MCU enters 
deep sleep again with the current consumption of only 10.46µA. 

The input voltage range of the selected buck converter is from 1.8 V 
to 6.5 V, and its output voltage is from 1.8 V to 3.3 V in 100-mV steps. 
Because the supply voltage range of each component is different, the 
influence of the input and output voltages of the buck converter on the 
average current consumption of the designed WAWMS under different 
working conditions is analysed and compared in Fig. 7. For the buck 
converter, the input voltage supplied by an adjustable DC power supply 
station is changed from 2.25 V to 6.5 V, and the output voltage VOUT is 
set to 2.3 V, 2.5 V, 2.8 V, 3.0 V and 3.3 V successively to implement the 
high performance of the components. 

When the input voltage is slightly lower than the output voltage, the 
buck converter still operates but the stability and reliability of 

Fig. 3. Designed WAWMS: (a) PCB board, and (b) dimensions.  

Fig. 4. Component analysis of wheel acceleration.  

Fig. 5. Workflow of the designed WAWMS.  
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performance are sporadic. In the normal operating range with output 
voltage constant, the current drawn by the electrical components de-
creases with an increase in input voltage. Conversely, when the input 
voltage is constant, the current drawn increases with the output voltage 
rising. Consequently, considering the gradually decreased battery 
voltage and the trade-off between performance and current consump-
tion, 2.5 V is selected as the output voltage of the buck converter in this 
design. Fig. 8 presents the current change trends under various working 
conditions at the output voltage of 2.5 V as the battery voltage drops 
from 6.5 V to 2.0 V in 0.25 V steps. The current consumption of the 
designed WAWMS is very low, especially in the deep sleep mode. 

3.2. Comparison of power Consumption: A hypothetical case study 

To illustrate the superiority of the proposed dual wake-up strategy in 
terms of power consumption and application, it is compared with the 
other three working modes: idle with a waterdog timer (WDT) enabled, 
sleep with RTC enabled, and sleep with accelerometer enabled. Suppose 
the MCU collects data for 5.042 s after being awakened. The related 
working conditions, current consumption and working periods are listed 
in Table 2. 

To estimate the battery life of the WAWMS device, a hypothetical 
case study is set up using several well-founded assumptions. According 
to the EU regulations on driving hours, the maximum driving time 
cannot exceed 9 h a day. In addition, a break or breaks totalling at least 

Fig. 6. The current of the WAWMS under different operating states at the voltage of 3.7 V.  

Fig. 7. Influence of the input and output voltages of the buck converter on current under various working conditions.  
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45 min are required after every 4 h 30 min driving interval. A 24-hour 
timeline is given in Fig. 9. An assumption is made that the driver 
starts driving at 9:00 for 4 h. The driver stops for a 1-hour break in- 
between and then continues to drive for another 4 h. With these as-
sumptions, the driver works for 8 h a day and will complete the workday 
at 18:00. The working cycles within 24 h of four different working 
modes are displayed below the timeline in Fig. 9. 

For Mode 1, when the MCU has no task, it enables the WDT and 
enters the idle state. The countdown time is set to 4 h. Once the 
countdown is over, a timeout signal will be generated to restart the 
MCU. Then, the sensor starts to collect data regardless of the current 
state of the vehicle. Mode 2 is like Mode 1, the difference is that when 
the MCU is idle, it will enter the deep sleep mode and only wake up by an 
interrupt signal generated by the RTC. In Mode 3, the accelerometer 
interrupt will be enabled before the MCU enters deep sleep. Once the 
vehicle speed exceeds the set threshold and lasts for a set duration, an 
interrupt signal generated by the accelerometer will wake up the MCU. 

Data starts to be collected and transmitted. Mode 4 is the proposed dual 
wake-up strategy described in Section 2. The countdown time is set as 4 
h and the acceleration threshold is set as the same as Mode 3. The 
narrow pulses represent the data acquisition and transmission process. A 
separate vertical line represents state switching from RTC enabled to 
ACC enabled. Once the cycle starts, the first RTC with red colour in 
Mode4 will disappear. Because after enabling the accelerometer, it will 
not trigger until the vehicle speed reaches the set threshold after 9:00 the 
next day. 

For Mode 1 and Mode 2, approximately 6 datasets are collected every 
day. However, at most two sets of data are valid. Although there is also a 
slight probability that, on a given day, no data meets the criteria because 
the vehicle speed is too low or even zero when the data is collected. For 
Mode 3, since the vehicle speed suit the conditions of triggering the 
accelerometer after the vehicle starts, the data collection process will 
always repeat until the vehicle stops. However, only two valid datasets 
will be collected in 24 h with the proposed dual wake-up strategy in 
Mode 4. This not only reduces power consumption but also guarantees 
the validity of the collected data. 

After calculation, a 1000mAh battery with a nominal voltage of 3.7 V 
can support the sensor node to work for about 89 days (Mode 1), 82 days 
(Mode 2), 22 days (Mode 3) and 1739 days (Mode 4) in these four 
different working modes, respectively. It further proves the effectiveness 
and practicality of the proposed dual wake-up strategy. 

4. Experiment: Adaptive online sensor Self-Calibration 

Because of the manufacturing errors of MEMS components and 
environmental influence, the measurement accuracy of MEMS sensors is 
susceptible, which increases the measurement uncertainty of the 
designed WAWMS. In addition, the dynamics of the vehicle system can 
be affected by uncertain factors [28] and this, therefore, requires more 
accurate measurements. Hence, we investigated an adaptive online self- 
calibration method of the IMU sensor to improve its accuracy and per-
formance in vibration measurement. 

4.1. Experimental setup 

The IMU calibration tests were carried out on a shaker test rig. As 
Fig. 10 shows, two IMU sensors and one traditional high-performance 
integrated electronics piezoelectric (IEPE) accelerometer were 
installed on the surface of the shaker. The signal generator generated 
sinusoidal signals with a frequency from 25 Hz to 450 Hz in steps of 25 
Hz, respectively. The specifications of these two types of sensors are 
listed in Table 3. 

The IEPE accelerometer recorded 10 s data at a sampling frequency 
of 96 kHz, whereas the IMUs recorded 400 data packets of acceleration 
signals at a sampling frequency of 952 Hz. Each data packet has 24 
samples for the three axes so the recording period is about 10 s. The 

Fig. 8. Current change trends under various working conditions with different 
input voltages of the buck converter. 

Table 2 
Current and duration at various conditions in a working cycle @ VIN = 3.7 V, 
VOUT = 2.5 V.  

Working Conditions Current (mA) Duration (s) 

Advertising  5.59  60.0 
Connecting  5.43  2.5 
Data Collection  9.62  5.0 
Transmitting  5.26  27.0 
Disconnecting  5.44  11.8 
Idle (WDT Enabled)  0.43  – 
Sleep (RTC Enabled)  9.13*10-3  – 
Sleep (ACC Enabled)  10.46*10-3  –  

Fig. 9. A 24-hour timeline of four working modes.  
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duration of each data packet collected is recorded by the internal RTC, 
stored at the end of the data packet, and sent to the central device along 
with the acceleration samples. The recorded time durations are applied 
to implement the adaptive self-calibration of the sampling frequency of 
the IMU sensor. 

4.2. Uncertainty of sampling frequency 

With the shaker test rig, the acquired sinusoidal waveforms of 25 Hz 
are plotted in Fig. 11 with the DC signal filtered. The signal acquired by 
the high-performance IEPE accelerometer is regarded as the baseline to 
compare with those collected by the IMU sensors. Although the sampling 
frequency of the IMU sensors is not comparable to the IEPE acceler-
ometer, the waveforms still have excellent observability. However, 
when their spectra are transformed by the sampling frequency of 952 
Hz, the drawback of the IMU sensors is uncovered, revealing that the 
actual sampling frequency of the MEMS sensor is uncertain. Fig. 12 
depicts the transformed spectra and frequency errors compared with the 
IEPE accelerometer. Using the two same IMU sensors, the actual sam-
pling frequency of the IMU8 is lower than 952 Hz, while the IMU9 is 
higher than 952 Hz. The observed frequency error is around ± 1 % 
compared with the IEPE accelerometer which further demonstrates the 
uncertainty of the MEMS sensors and the importance of adaptive online 
self-calibration. The amplitudes of the spectra are affected by spectral 
leakage, especially in the high-frequency band. But it has been cali-
brated by gravity before the tests. 

4.3. Proposed sensor Self-Calibration method and validation 

An adaptive online self-calibration method was proposed according 

to the real-time measurement of the acquisition duration of each data 
packet. The raw time durations are displayed with the blue star line in 
Fig. 13. It is apparent that the first several points have big errors. To 
determine the probability distribution of the recorded time durations, a 
large number of experiments were performed to obtain 30,000 samples 
of time duration. The distribution of these data points is shown in 
Fig. 14. 

As the parametric distribution is not properly described in the his-
togram, the probability density function (PDF) of the recorded time 
duration is represented by a kernel distribution fitted with a red dotted 
line in Fig. 14. The fitting result is a multimodal distribution [29]. 
Simultaneously, a Gaussian distribution is fitted with a magenta line. 
The means μi(i = 0, 1, 2) and variances σi(i = 0, 1,2) of the raw time 
duration variables, the fitted multimodal distribution and the Gaussian 
distribution are calculated and shown in Fig. 14, respectively. The 
calculated means and variances are similar. With the 2σ rule, approxi-
mately 95 % of the population lies within two standard deviations of the 
mean. Accordingly, a range of [μ0 − 2σ0, μ0 + 2σ0] is indicated with the 
green dashed lines to select the 95 % of the time duration samples for 
frequency calibration. The samples meeting the 2σ rule are selected and 
marked in red stars in Fig. 13. 

The effects of the frequency calibration using both the recorded raw 
time durations and the 2σ selected values are compared. The frequency 
errors compared with the baseline after calibration are estimated in 
Fig. 15. If the calibration is carried out with the raw time durations, the 
frequency error is only reduced to the range of [0.51%, 0.60%] and 
[0.42%, 0.62%] for the IMU8 and IMU9, respectively. But with the 
selected time durations, the frequency errors further decrease to a range 
of [0.05%, 0.16%] and [ − 0.04%, 0.16%] for these two IMU sensors. 

Fig. 10. Shaker test rig.  

Table 3 
Specifications of the sensors.  

Parameters Sensor Type 

IMU IEPE 

Sample Rate 952 Hz 96 kHz 
Range ±16 g − 10 ~ 10 V (50 g) 
Sensitivity 0.732 mg/LSB 10.41 mV/(m/s2) 
Record Period About 10 s 10 s  

Fig. 11. Sinusoidal waveforms at 25 Hz by different types of accelerometers.  

Fig. 12. Spectra and frequency errors compared with the IEPE accelerometer.  

Fig. 13. Recorded and selected time duration for data packets.  
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Therefore, the frequency calibration results with the time durations 
selected by the 2σ rule are much closer to the IEPE results. 

This validates that the proposed method is significantly effective and 
efficient for the adaptive online calibration of the sampling frequency of 
the IMU sensor in real time. The frequency error decreases from about 1 
% to less than 0.16 %. With the frequency calibration, even if the 
alignment conditions are classified incorrectly, it can be ruled out that it 
is caused by measurement errors. 

5. Experiment: Real-World validation 

5.1. Experimental setup 

To verify the effectiveness of the designed WAWMS, we conducted 
some real-world wheel misalignment field tests with a Ford van. The 
positive toe, also known as toe-in, is the front of the wheel pointing 
towards the centre line of the vehicle in the moving forward direction. 
Conversely, the negative toe, i.e. toe-out, points away from the centre 
line of the vehicle as displayed in Fig. 16 (a). The toe angles severely 
affect directional control, steering response and tire tread life. To verify 
the performance of WAWMS, five different toe alignment angles were 
adjusted for tests: − 2◦ (toe-out 2◦), − 1◦ (toe-out 1◦), 0◦ (normal), 1◦

(toe-in 1◦) and 2◦ (toe-in 2◦). Because the homogeneous characteristics 
of the wheel and similar broad-band road excitation, only one sensor 
was installed in a wheel to minimise the costs. The sensor housed in a 3D 
printed box was installed on the surface of the wheel hub cap as shown 
in Fig. 16 (b). The distance between the wheel centre and the IMU sensor 
is about 18 cm. From the official database, the rolling tire circumference 
is 1991 mm for the van used for the field tests. 

For the tests, the driver drove the van at relatively stable speed in-
crements, including 10 mph, 15 mph, 20 mph, 25 mph and 30 mph, for 

five wheel alignment scenarios, respectively. The experiments were 
conducted by four sensors across multiple days and at various locations 
around Basingstoke, UK. A total of 250 sets of acceleration data were 
selected at five different speeds for each alignment angle. Overall, the 
total data obtained is 1250 sets to validate the effectiveness and effi-
ciency of the designed WAWMS. The gyroscope and magnetic data will 
be investigated in the future. The length of each axis (x-, y-, and z-axis) 
for each dataset is 4800, with the set acceleration sampling frequency of 
952 Hz, that is, the acquisition duration is about 5 s. The real sampling 
frequency can be calibrated according to the proposed self-calibration 
method. 

5.2. Classification method 

Because of the complicated suspension construction of a vehicle, its 
effective dynamic features related to toe angle changes are difficult to 
extract. Therefore, a multi-class classifier will be applied to achieve 
alignment condition classification to validate the effectiveness of the 
collected acceleration signals by the designed WAWMS. 

Fig. 17 shows the diagram of the signal processing method. As 
introduced in the previous subsection, the initial matrix dimensions of 
the raw datasets are 1250 (samples) × 4800(features) × 3(axis). 
Although the driver was asked to carefully control the van speed, most 
datasets were collected at slightly varying speeds due to the nature of the 
van operation. Hence, the time waveform of each axis is evenly divided 
into five non-overlapping segments, which are regarded as five new 
samples of length 960, about 1 s. The new matrix dimensionality is 
reshaped as 6250 × 960 × 3. Furthermore, very low and high fre-
quencies are cut off with a band-pass filter to eliminate the influence of 
ambient noise and potential aliasing Then, the FFT is applied to extract 
the spectral features. Because the FFT data is symmetrical, only half of 
them need to be preserved to reduce the matrix dimension to 6250 ×
480 × 3. It is followed by reshaping the matrix to 6250 × 1440. It is 
significant that the features are redundant and have relatively high 
dimensionality. Principal component analysis (PCA) is a conventional 

+2 0-2 0

Fig. 14. Probability distribution fitting of recorded time duration.  

Fig. 15. Frequency error compared with the IEPE accelerometer after calibration.  

Fig. 16. Toe alignment angles and sensor installation: (a) toe angle drawings, 
and (b) sensor installation. 
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technique to reduce the dimensionality of features and preserve the key 
principal components of the data through a linear transformation. 
Therefore, the dimensionality of the normalised features can be reduced 

from 1440 to k (k ≪1440) with PCA, which means the total acceleration 
features extracted from all samples are 6250 × k. SVMs are powerful 
supervised machine learning models but are mainly used for binary 
classification. For a multi-class classification task, SVM can be combined 
with the ECOC technique because ECOC can convert a multi-class clas-
sification problem into a binary classification issue through encoding 
and error correcting. The ECOC-SVM [30,31] algorithm supported by 
MATLAB is applied to perform the five classes classification in this study. 
To validate the trained model, a K-fold cross-validation method is uti-
lised. Finally, a confusion matrix will be calculated to predict the 
occurrence of each wheel alignment condition. 

5.3. Results and discussion 

The time waveforms of a 9-DOF IMU are shown in Fig. 18. The ac-
celeration measured by the accelerometer shows strong periodicity 
which is the oscillation of the gravity with the rotating of the wheel 
because the MEMS accelerometer can measure DC acceleration. The 
angular velocity measured by the gyroscope is the rotating speed of the 
wheels and it can be used for calculating the instantaneous vehicle 
speed. The magnetic signal describes the magnetic field variation during 
the rotating of the sensor, which is useful for extracting the angular 
displacement of the wheel. However, the 3-axis acceleration signals are 
informative and then only acceleration signals are employed in this 
validation study. The gyroscope and magnetic signals will be investi-
gated in the future. 

To compare the signals at different wheel alignment conditions, both 
the time waveforms and the spectrums are displayed in Fig. 19. Fig. 19 
(a) to (e) present the temporal and spectral characteristics of healthy, 
toe-in 1̊, toe-in 2̊, toe-out 1̊, and toe-out 2̊, respectively. The time 
waveforms look similar and are difficult to distinguish visually. The 
corresponding spectra of the five cases show some differences, especially 
around 270 Hz. The amplitude at around 270 Hz increases with the 
misalignment of both toe-in and toe-out. Although there are some 

Fig. 17. Diagram of the classification method.  

Fig. 18. Time waveforms at 15 mph van speed: (a) acceleration, (b) gyroscope, and (c) magnetic.  
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characteristics in the spectra, it is still hard to distinguish different wheel 
alignment conditions via human observation because characteristic 
changes caused by wheel misalignment are ambiguous. Therefore, a 
multi-class classifier based on ECOC and SVM is applied to categorise the 
extracted features into five classes. As the vibration in the low frequency 
is usually noisy, the frequency band from 30 Hz to 400 Hz is selected for 
the feature extraction. 

As described in Section 5.2, the dimensionality of the normalised 
features will be reduced to k through PCA. The choice of k value has a 
direct impact on the classification results. Therefore, the weights of ei-
genvalues for the first 30 PCs are displayed in Fig. 20 (a). It can be seen 
that the first few PCs have no absolutely high proportion. The weight 
decreases gently from the sixth PC. The traditional 95 % of the total 
variance to determine k does not work well in this study. As a result, the 
SVM results were used to compare the optimal k value. The value of k 
was set from 1 to 20 to reduce the feature dimension, respectively. A 5- 
fold cross-validation method was applied to divide all dimensionality- 
reduced features into 5 sets, one of which was used as test data and 
the other four as training data. A Gaussian kernel was selected as the 
kernel function of SVM in this study. The means and standard deviations 
of SVM results under different k values are shown in Fig. 20 (b). The 
mean value increases to the peak of 93.2 % at k = 9 then falls with the 
increase of k values. Therefore, the first 9 PCs were selected as the 
features for different alignment angle classification in this research. 

The predicted results are shown with a confusion matrix in Fig. 21. 
Obviously, the discrimination of these five alignment angles can reach 
above 90 %. The average classification accuracy and the standard de-
viation are 93.2 % and 1.28 %, respectively. 

Consequently, the classification results can demonstrate the effec-
tiveness of the designed WAWMS for automotive wheel alignment 

monitoring. An advanced machine learning approach is being developed 
from the cloud server to achieve accurate and reliable real-time condi-
tion monitoring of wheel alignment for different types of vehicles and 
roads, and various loading and operating conditions with 9-DOF 

30Hz 400Hz

30Hz 400Hz

30Hz 400Hz

30Hz 400Hz

30Hz 400Hz

Fig. 19. Acceleration waveform and spectrum of different alignment conditions at 20 mph: (a) Healthy, (b) Toe-in 1̊, (c) Toe-in 2̊, (d) Toe-out 1̊, and (e) Toe-out 2̊.  

k

Fig. 20. Selection of principal components.  
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measurements. The accurate wheel alignment monitoring will promis-
ingly decrease unnecessary tyre wear and reduce environmental pollu-
tion, especially microplastics. 

6. Conclusions 

In this paper, an energy-efficient onboard WAWMS is developed to 
monitor automotive wheel alignment conditions. It was fabricated using 
the selected low-power and low-cost components. Additionally, a dual 
wake-up strategy is proposed, which can not only reduce the power 
consumption of the system but can also make the system more suitable 
for practical applications. Its current consumption is reduced to 9.13μA 
which prolongs the service life of a 1000mAh battery up to 1739 days. 
This makes WAWMS a promising future-proof solution as a fully 
autonomous self-sustaining sensing system especially after embedding 
energy harvesting technology into the design. The design includes a data 
packet time duration based online self-calibration method to adaptively 
calibrate the IMU sampling frequency to reduce the measurement un-
certainty and improve sensor accuracy. The sampling frequency error 
decreases from approximately 1 % to less than 0.16 %. Finally, five 
different alignment angles can be identified by the ECOC-SVM method 
to implement an average accuracy of 93.2 %, which verifies the effec-
tiveness and efficiency of the designed WAWMS. 

Compared with traditional wheel alignment equipment, this 
designed WAWMS is economical, convenient and smart. Since the 
designed WAWMS contains the IMU and the pressure and temperature 
sensor, it has the potential to substitute conventional TPMS equipment. 
Therefore, WAWMS will contribute to the extension of the automotive 
service life, improvement of stability and safety of vehicle handling, and 
reduction of vehicle maintenance costs. It can also be applied to other 
rotating machinery monitoring fields. 

To accurately monitor the wheel alignment conditions of many vans 
and cars in real time, an advanced deep learning method will be 
developed to run on a cloud platform in the future. Additionally, the 
dynamics of the wheel system will be studied to give an insightful un-
derstanding of the influence of wheel misalignment. Therefore, the 
findings can support the optimisation of the installation of the wireless 
wheel alignment monitoring system, and the feature extraction for 
effective automotive alignment monitoring. 
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