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The evolution of lung cancer and impact of 
subclonal selection in TRACERx

Lung cancer is the leading cause of cancer-associated mortality worldwide1. Here we 

analysed 1,644 tumour regions sampled at surgery or during follow-up from the first 

421 patients with non-small cell lung cancer prospectively enrolled into the TRACERx 

study. This project aims to decipher lung cancer evolution and address the primary 

study endpoint: determining the relationship between intratumour heterogeneity 

and clinical outcome. In lung adenocarcinoma, mutations in 22 out of 40 common 

cancer genes were under significant subclonal selection, including classical tumour 

initiators such as TP53 and KRAS. We defined evolutionary dependencies between 

drivers, mutational processes and whole genome doubling (WGD) events. Despite 

patients having a history of smoking, 8% of lung adenocarcinomas lacked evidence  

of tobacco-induced mutagenesis. These tumours also had similar detection rates for 

EGFR mutations and for RET, ROS1, ALK and MET oncogenic isoforms compared with 

tumours in never-smokers, which suggests that they have a similar aetiology and 

pathogenesis. Large subclonal expansions were associated with positive subclonal 

selection. Patients with tumours harbouring recent subclonal expansions, on the 

terminus of a phylogenetic branch, had significantly shorter disease-free survival. 

Subclonal WGD was detected in 19% of tumours, and 10% of tumours harboured 

multiple subclonal WGDs in parallel. Subclonal, but not truncal, WGD was associated 

with shorter disease-free survival. Copy number heterogeneity was associated with 

extrathoracic relapse within 1 year after surgery. These data demonstrate the 

importance of clonal expansion, WGD and copy number instability in determining  

the timing and patterns of relapse in non-small cell lung cancer and provide a 

comprehensive clinical cancer evolutionary data resource.

Lung cancer is the leading cause of cancer-related death worldwide, and 

represents 18% of cancer-related mortality and 11% of cancer incidence1. 

Yet, the biological mechanisms that underlie this aggressive tumour 

behaviour remain poorly understood. Multiregion sequencing provides 

an opportunity to leverage observed intratumour heterogeneity (ITH) 

to infer tumour phylogeny2–4. However, previous studies that used 

multiregion sequencing of primary tumour samples, herein referred 

to as ‘regions’, have been limited to 100 patients or fewer for a given 

tumour type, which limits statistical power for genomic and clinical 

analyses5. The functional relevance of ITH has also been subject to 

debate, with important consequences for personalized medicine6–8.

Tracking non-small cell lung cancer (NSCLC) evolution through 

therapy (TRACERx) (ClinicalTrials.gov identifier: NCT01888601) is a 

prospective multicentre cancer study designed to delineate tumour 

evolution from diagnosis and surgical resection to either cure or disease 

recurrence. The co-primary endpoints of TRACERx are to determine the 

association between ITH and clinical outcome and the effect of adjuvant 

platinum-based chemotherapy on ITH in relapsed disease (the latter of 

which is explored in a companion article9). In 2017, an analysis of the first 

100 patients enrolled into TRACERx revealed pervasive genomic ITH 

and a significant association between somatic copy number alteration 

(SCNA) heterogeneity and poor prognosis3. However, no relationship 

between mutational ITH and outcome was observed. In this project, 

we extend our understanding of the evolutionary underpinnings of 

NSCLC and further investigate the relationship between established 

and new measures of ITH and clinical outcome. To achieve this, we 

leveraged multiregion exome primary tumour data from the first 421 

patients prospectively enrolled into TRACERx.

Prospective recruitment of 421 patients into TRACERx

The TRACERx 421 cohort represents the first 421 patients prospectively 

recruited across 19 hospital sites in the United Kingdom. Recruitment 

conformed to a study protocol3 implemented and monitored by the 

Cancer Research UK and University College London Cancer Trials 

Centre (Fig. 1 and Supplementary Table 1). Recruitment was broadly 

representative of an early-stage operable NSCLC population in the 

United Kingdom according to ethnicity, age, sex and smoking status. 

The cohort consisted of 233 males and 188 females, with a median age 

of 69 years (range of 34–92 years), and 210 patients with stage I dis-

ease, 132 with stage II disease and 79 with stage III disease (of which 

98 patients have been previously reported3). In total, 1,644 tumour 

regions sampled either at primary surgery (1,554) or during follow-up 

(90) passed quality control. These tumour samples were subjected to 

whole-exome sequencing (WES) at a median depth of 413× (interquar-

tile range (IQR) = 367–474) and included in the analyses.
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Fig. 1 | Longitudinal patient timelines for the TRACERx 421 cohort.  

The timing of clinical events including treatment, relapse or detection of a  

new primary and either time of death or latest follow-up is depicted for the  

421 patients enrolled into the TRACERx study. Patients are arranged by histology 

and the presence or absence of a new lesion detected during follow-up. CRUK 

identifiers are coloured on the basis of whether the patient did not develop a 

new lesion after surgery (black) or if the first event after surgery was classified 

as recurrence (dark grey) or a new primary tumour (light grey). The overall 

patient stage at surgery and smoking status is depicted alongside metrics of 

ITH measured using multiregion WES of surgically excised samples including 

mutational ITH (the fraction of subclonal mutations), SCNA ITH (the fraction of 

the aberrant genome with subclonal SCNAs) and the estimated number of 

truncal and subclonal WGDs using our method ParallelGDDetect.
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These 421 patients harboured 432 genomically independent tumours 

at surgery as follows: 248 LUADs; 138 lung squamous cell carcinomas 

(LUSCs); and 46 ‘other’ NSCLC histological subtypes, including 14 

adenosquamous, 14 pleomorphic, 8 large cell neuroendocrine, 6 large 

cell carcinomas, 1 carcinosarcoma and 3 tumours of mixed histology 

(Extended Data Figs. 1 and 2). If tissue was available for sequencing 

from several spatially distinct tumours in the same patient, WES-based 

assessment of shared clonal origin (Methods) generally agreed with 

clinical diagnosis of either multiple primary lung cancers or the pres-

ence of metastases on the basis of histology and the disease course. 

WES-based assessment of clonal origin was consistent with the clinical 

classification of multiple tumours in 6 out of 6 (100%) synchronous 

primary tumours and in 3 out of 5 (60%) intrapulmonary metasta-

ses identified at surgery. We also found consistency between these 

approaches when comparing cancer-related disease identified during 

follow-up to the primary tumour in 47 out of 49 (96%) cases of recurrent 

disease, 10 out of 12 (83%) cases of second primary lung cancer and  

2 out of 2 (100%) cases of new non-lung primary cancer (Extended Data 

Fig. 3). However, in 6 out of 74 (8%) tumour pairs, WES revealed a clonal 

relationship that was discordant with clinical assessment, which may 

have warranted altered patient management. These discordant cases 

were identified both when the 2 tumours were sampled at primary 

surgery (2 out of 11 pairs discordant) and when 1 tumour was sampled at 

primary surgery and the second was sampled during follow-up (4 out 

of 63 pairs discordant). For further details, see Supplementary Note. 

In 3 out of 421 patients (1%), collision tumours of the same histologi-

cal subtype (LUAD) were genomically identified. Typically, a collision 

tumour is a rare entity in which two histologically distinct juxtaposed 

tumours exist in the same organ as a single continuous mass. However, 

multiregion sequencing data for these three tumour masses, which 

were diagnosed histologically as single primary LUADs, revealed that 

they represented collision tumours with two independent LUADs in 

patients CRUK0039 and CRUK0881, and three distinct LUADs in patient 

CRUK0704. In each of these three patients, one, but not all, of the inde-

pendent tumours forming the collision tumour harboured a targetable 

KRAS G12C driver mutation. Similar to a previously published case 

study10, patient CRUK0704 also harboured a distinct KRAS mutation 

(G13C) in the other colliding tumour.

Genome doubling on parallel phylogenetic branches

To decipher the timing of somatic events in each tumour, we attempted 

to construct tumour phylogenetic trees from the identified somatic 

alterations. In total, 1,553 freshly frozen surgically excised tumour 

regions were analysed, excluding 1 region that harboured a collision 

between 2 genomically distinct tumours (Methods)11. These included 

1,515 primary tumour and 38 lymph node regions sampled at surgery. 

Our companion article9 describes tumour evolutionary patterns 

associated with relapse. We developed a simulation framework that 

reproduced specific features of the tumours and sequencing data 

in the TRACERx 421 cohort (Methods) to validate our phylogenetic 

reconstruction approach, and this framework outperformed existing 

methods (Supplementary Note and Extended Data Fig. 4). We were able 

to construct phylogenetic trees for 401 tumours for which the tumour 

purity was sufficient to determine genome-wide copy number states 

in at least 2 regions (1,428 regions in total). On average, each tumour 

contained 4.2 truncal and 2.8 subclonal driver mutations, whereas 7% 

of patients harboured a pathogenic germline variant within a puta-

tive cancer predisposition gene (Supplementary Fig. 1, Methods12 and 

Extended Data Fig. 5).

Similar to previous observations3, we observed at least 1 WGD 

event in 307 out of 401 (77%) of tumours for which a phylogenetic 

tree could be constructed. However, using our benchmarked tool 

(ParallelGDDetect), which harnesses mutation copy numbers from 

each phylogenetic branch (Extended Data Fig. 6, Supplementary 

Note and Methods), we found that 78 out of 401 (19%) of tumours 

had at least 1 subclonal WGD event. Moreover, 39 out of 401 (10%) 

of tumours had multiple subclonal WGD events, each occurring on 

parallel phylogenetic branches. In 24 out of 39 tumours (62%) with 

parallel subclonal WGD, all regions had undergone the same number 

of WGDs; that is, all regions had reached a similar ploidy. However, 

distinct subclonal WGD events in these tumours could be detected 

via subclonal mutations whose mutation copy number had been dou-

bled in some but not other regions. Such tumours would have been 

mistakenly classified as harbouring only truncal WGD events using 

previously published methods3,13.

Lack of smoking mutagenesis in ever-smoker LUADs

Regarding smoking status, 43% of the patients in the TRACERx 

study were smokers, 50% were ex-smokers who had stopped smoking 

more than 1 year before diagnosis and 7% were never-smokers who 

had smoked fewer than 100 cigarettes in their lifetime. We examined 

the effects of tobacco smoke on NSCLC evolution and evaluated 

the clinical features that determined the likelihood of observing 

smoking-mediated mutagenesis.

De novo extraction of mutational signatures revealed the pres-

ence of two mutational processes that have been linked to tobacco 

smoke: SBS4 and SBS92 (Fig. 2a and Methods). Consistent with our 

previous findings3, in LUAD, but not LUSC, the percentage of trun-

cal SBS4-associated mutations increased with tobacco smoke expo-

sure measured in pack-years (LUAD: Pearson’s r = 0.31, P < 0.001; 

LUSC: Pearson’s r = –0.14, P = 0.11). By contrast, the fraction of trun-

cal SBS92-associated mutations increased with tobacco smoke expo-

sure in LUSC but not LUAD (LUSC: Pearson’s r = 0.32, P < 0.001; LUAD: 

Pearson’s r = –0.11, P = 0.079) (Fig. 2b, Extended Data Fig. 7a,b and 

Methods). To our knowledge, SBS92 has previously been reported 

only in malignant and non-malignant bladder tissue, in which it was 

associated with smoking14. These data suggest that SBS4-associated 

and SBS92-associated mutations can act as surrogate markers for 

the amount of smoking-mediated mutagenesis in LUAD and LUSC, 

respectively.

In total, 161 out of 215 ever-smoker LUADs (75%) exhibited evidence 

of a clear smoking-mediated mutagenesis signature using WES analysis 

(Extended Data Fig. 7c and Methods). High-confidence detection of 

smoking-mediated mutagenesis (SBS4 or SBS92) occurred in only a 

minority of LUAD tumours from patients who had smoked for less 

than 15 years (4 out of 13 exhibited high-confidence SBS4 detection; 

Fig. 2c). Given that the majority of patients in the TRACERx study 

with LUAD started smoking at 14–18 years of age (median = 16 years, 

IQR = 14–18 years), these data suggest that smoking cessation before 

the age range of 30–35 years may reduce smoking-related lung can-

cer risk, a finding consistent with previous epidemiological analy-

ses15. However, we also identified LUADs without any evidence of 

smoking-mediated mutagenesis, despite being associated with more 

than 15 years of smoking history (13 out of 202 patients with LUAD 

who had smoked for over 15 years). Five out of 13 of these patients 

had in fact smoked more than the average for a patient with LUAD 

whose tumour harboured high-confidence SBS4 detection (median 

36 pack-years, equivalent to 24 cigarettes per day for 30 years). These 

data suggest that in a minority of cases, the initiation of NSCLC in the 

context of substantial exposure to tobacco smoke may be independent 

of smoking-mediated mutagenesis (Fig. 2d).

Altogether, 8% of LUADs lacked evidence of smoking-mediated 

mutagenesis in ever-smokers (17 out of 215 SBS4 undetected; 4 out 

of 13 with <15 years smoking and 13 out of 202 with >15 years smok-

ing). These ever-smoker LUADs in which smoking mutagenesis was not 

detected harboured an enrichment for EGFR driver mutations (Fisher’s 

exact test, two-tailed, P = 0.003, odds ratio (OR) = 11.7) and either MET 

exon-14-skipping events or RET–ROS1–ALK oncogenic fusions (Fisher’s 
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exact test, two-tailed, P = 0.002, OR = 15.6) compared with tumours with 

a clear smoking-related signature (high-confidence SBS4 detection; 

Fig. 2e, Extended Data Fig. 7d and Supplementary Note).

Finally, in LUAD, we observed a significantly increased number of 

truncal SBS4-associated mutations in tumours located on the right side 

of the lung in comparison with the left side (rate ratio = 1.63, P = 0.0022), 

and in the upper or middle lobe in comparison with the lower lobe (rate 

ratio = 1.98, P < 0.001) (Fig. 2f and Extended Data Fig. 7a). These data 

support the hypothesis that differences in airway length, ventilation 

and perfusion across different lobes may lead to changes in tobacco 

carcinogen exposure and underpin the established differences in the 

rate of tumour initiation at different anatomical sites of the lung16,17.

Frequent subclonal selection in lung cancer genes

We harnessed our inferred tumour phylogenies to evaluate the dynam-

ics of selection and timing of driver events during lung cancer evolution 

in treatment-naive primary lung cancer. Here we leveraged the statisti-

cal power of the TRACERx 421 cohort to directly quantify truncal and 

subclonal selection for mutations in common NSCLC cancer genes 

using the dNdScv method18.

Signals of selection were stronger for truncal than for subclonal 

mutations in most cancer genes (68% and 84% of common cancer genes 

in LUAD and LUSC, respectively; Methods). However, there was evi-

dence of significant subclonal selection for mutations in many cancer 

genes classically considered as tumour-initiating events, including 

STK11, TP53 and KRAS in LUAD (Fig. 3a). Indeed, in LUAD, the majority of 

frequently mutated cancer genes (22 out of 40) were subject to signifi-

cant positive subclonal selection (adjusted ratio of non-synonymous 

to synonymous mutations (dN/dS) lower, 95% confidence interval (CI)  

of >1), including PIK3CA, RB1 and SMARCA4. In 7 out of 22 of these genes, 

including HIST1H1C, KMT2D, PTEN, RUNX1 and SMAD4, no significant 

positive selection was detectable in truncal mutations. This result sug-

gests that these mutations have a role in late but not early tumour evolu-

tion. In LUSC, we observed evidence of significant subclonal selection 

in 11 out of 31 frequently mutated LUSC cancer genes, including ATM, 

B2M, KEAP1, NFE2L2, PIK3CA and SETD2.

The evolutionary timing of the observed positive selection depended 

on the histology for a number of genes. In LUAD, significant truncal 

but not subclonal selection of B2M point mutations was observed, 

whereas in LUSC, there was evidence for significant subclonal but not 

truncal selection (Fig. 3a). This may indicate differences in the timing 

of immune selection pressures in LUAD and LUSC. When grouping 

cancer genes into canonical cancer pathways (Extended Data Fig. 8a), 

mutations in the SWI–SNF complex (for example, SMARCA4, ARID1B 

and SMARCB1) and certain members of the NOTCH signalling pathway 

(for example, EP300 and NCOR1) were under significant subclonal, but 

not truncal, selection in LUAD. By contrast, mutations in the receptor 

tyrosine kinase, MYC and NRF2 pathways were only under significant 

truncal, not subclonal, selection in LUAD. Recurrent patterns of focal 

loss and gains were observed both truncally and subclonally in LUAD 

and LUSC, as previously described19 (Extended Data Fig. 8b,c).

Consistent with the subclonal selection observed using dN/dS ratios 

for mutations in chromatin-modifying genes, we observed parallel 

evolution of driver mutations in B2M (n = 2), SMARCA4 (n = 2), BAP1 

(n = 1) and KMT2D (n = 1). Parallel evolution of SCNAs was also observed, 

including losses in PTEN (n = 10), B2M (n = 9) and SMAD2 (n = 6) and gains 

in MYC (n = 14), PIK3CA (n = 12) and EGFR (n = 7) (Extended Data Fig. 8d,e).

e
EGFR mutation

Fusion

MET exon 14 skipping

No event12

3

10

5
4

4

2

3

3

1

3

35

9

154

Smoked

N
ev

er
 s
m

ok
ed

SB
S4 

no
t d

et
ec

te
d

SB
S4 

lo
w
-

co
nfi

den
ce

 d
et

ec
te

d
SB

S4 
hi
gh

-

co
nfi

den
ce

 d
et

ec
te

d

0

25

50

75

100

T
u

m
o

u
rs

 (
%

)

d

0

50

100

P
a
c
k
-y

e
a
rs

No. of truncal 
mutations

1,000
2,000
3,000

0

20

40

60

80

Truncal 

SBS4-
assigned

 mutations (%)

C>A C>G C>T T>A T>C T>G

0

2

4

6

8

S
B

S
 (
%

) SBS4

C>A C>G C>T T>A T>C T>G

0

2.5

5.0

7.5

S
B

S
 (
%

) SBS92

A
C

A
A

C
C

A
C

G
A

C
T

C
C

A
C

C
C

C
C

G
C

C
T

G
C

A
G

C
C

G
C

G
G

C
T

T
C

A
T

C
C

T
C

G
T

C
T

A
T

A
A

T
C

A
T

G
A

T
T

C
T

A
C

T
C

C
T

G
C

T
T

G
T

A
G

T
C

G
T

G
G

T
T

T
T

A
T

T
C

T
T

G
T

T
T

f

100
150
200
250

Median truncal 

SBS4 count

RUL

RML

RLL LLL

LUL

20

40

60

Tumour 
count

a b c

r = 0.31, P = 7.1 × 10–7

r = –0.14, P = 0.11

r = −0.11, P = 0.079
  

r = 0.32, P = 0.00013

SBS4 SBS92

L
U

A
D

L
U

S
C

0 50 100 0 50 100

0

20

40

60

80

0

20

40

60

80

Pack-years

T
ru

n
c
a
l 
S

B
S

-a
s
s
ig

n
e
d

 m
u

ta
ti
o

n
s
 (
%

)

0

20

40

60

80

100

5 10 15 20 25 30 35 40 45 50 55 60 65 70

Upper limit of smoking duration (years)

T
u

m
o

u
rs

 (
%

)

SBS4 detected
SBS4 undetected

S
B
S
4 

no
t d

et
ec

te
d

S
B
S
4 

lo
w

-

co
nfi

de
nc

e 
de

te
ct

ed

S
B
S
4 

hi
gh

-

co
nfi

de
nc

e 
de

te
ct

ed

Fig. 2 | Clinical and physiological determinants of SBS4-associated 

mutagenesis in NSCLC. a, Signature profiles of SBS4 and SBS92 as reported 

using COSMIC (v.3.2). b, The correlation between smoking-mediated mutations 

(SBS4 and SBS92) and pack-years in 386 LUAD and LUSC tumours from patients 

with a smoking history. Pearson’s correlation tests were used. c, Cumulative 

percentage of all LUAD tumours with SBS4 detection or lack of SBS4 detection 

with increasing maximum years smoked. A total of 223 tumours were analysed. 

d, Comparison of pack-years between patients with LUAD with different SBS4 

detection statuses in their tumour. A total of 215 patients were included.  

Each data point represents a patient with LUAD and an ever-smoker.  

e, The percentage of LUAD tumours harbouring EGFR mutations, RET–ROS1–

ALK oncogenic fusions and MET exon-skipping events in patients who never 

smoked and in patients who have smoked split by SBS4 detection status.  

A total of 248 tumours were included. f, Frequency of tumours in the  

TRACERx 421 cohort located in each lung lobe and the median number of 

truncal SBS4-associated mutations for tumours located in each lung lobe.  

A total of 358 LUAD and LUSC tumours from ever-smokers were included.  

LLL, left lower lobe; LUL, left upper lobe; RML, right middle lobe; RLL, right 

lower lobe; RUL, right upper lobe. The schematic in f was created using 

BioRender (https://biorender.com).
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Evolutionary dependencies

Significant context dependency between genomic events driven by 

synthetic lethality or functional redundancy is known to occur in can-

cer20, but has not been explored with respect to the evolutionary timing 

of events. We defined mutually exclusive or co-occurring relationships 

specifically for truncal (early) events and subclonal (late) events, control-

ling for histological subtype (Methods and Fig. 3b). Significant context 

dependency was common between truncal events. For instance, we 

observed a significant trend for mutual exclusivity between truncal 

mutations in TP53 and truncal mutations in KRAS (q < 0.001) and EGFR 

(q = 0.031). Truncal mutations in KRAS were also mutually exclusive with 

truncal SBS2 and SBS13 (signatures of APOBEC mutagenesis, q = 0.001). 

Several mutually exclusive relationships were also observed subclonally. 

For example, subclonal SBS1, a clock-like mutational signature reflecting 

spontaneous deamination of methylated cytosines, displayed mutual 

exclusivity with subclonal SBS2 and SBS13 (q = 0.008). Subclonal SBS1 

was also mutually exclusive with subclonal WGD (q < 0.001) and sub-

clonal TERT (q = 0.001) or subclonal MYC amplification (q = 0.095).

Accurate timing of events in this large cohort afforded us the statisti-

cal power to explore whether truncal alterations to specific genes were 

associated with an increased or decreased likelihood of subsequent sub-

clonal alterations (Methods and Fig. 3c). As expected, for established 

cancer genes such as TP53, we observed that the likelihood of observing 

a subclonal alteration was influenced by whether a truncal alteration 

in the same gene had already occurred (TP53, q < 0.001, OR = 0.02). We 

observed an increased likelihood of subclonal SBS2 and SBS13 (APOBEC 

mutagenesis) following a truncal TP53 mutation (q = 0.013, OR = 2.15) 

and increased likelihood of subclonal TERC amplification after either 

truncal SBS2 and SBS13 (APOBEC mutagenesis) or truncal TP53 muta-

tion (APOBEC, q = 0.001, OR = 3.88; TP53, q = 0.012, OR = 3.53). We also 

observed an increased likelihood of subclonal WGD following a truncal 

TP53 mutation (q = 0.015, OR = 2.51) and a decreased likelihood of sub-

clonal TP53 mutation following a truncal WGD (q = 0.001, OR = 0.18).

Large subclonal expansions reflect positive selection

Expansion of subclones within tumour regions has been previously 

observed and can result in subclonal mutations that are present in 

100% of cancer cells in some but not all tumour regions, thereby giv-

ing rise to subclonal mutations displaying an illusion of clonality3,21,22. 

We reasoned that subclones with an illusion of clonality in at least one 
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Fig. 3 | Timing of selection and evolutionary dependencies. a, Gene-level 

selection in point mutations measured using dN/dS ratios comparing truncal 

and subclonal mutations in LUAD and LUSC with 95% CIs for dN/dS ratios for 

358 tumours. Error bars indicate 95% CIs. dN/dS values below 0.5 and 

associated with 95% CIs overlapping 1 are limited to 0.5. b, Mutual exclusivity 

and co-occurrence relationships among driver gene mutations, SCNAs and 

signatures between 401 tumours in the TRACERx cohort of 421 patients for 

both truncal and subclonal contexts using DISCOVER. c, Ordering interactions 

found in the TRACERx 421 cohort in which the presence of a truncal event 

modifies the probability of a given subclonal event downstream using 401 

tumours. d, Comparisons of the overall amount of selection in point mutations 

of lung-cancer-driver genes in LUAD and LUSC using dN/dS, considering all 

truncal mutations, all subclonal mutations and subsets of subclonal mutations 

with and without an illusion of clonality using 358 tumours. The percentage of 

subclonal mutations with and without clonal illusion in LUAD and LUSC is 

displayed. Amp, amplification; Del, deletion; Mut, mutation.
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tumour region may reflect a large subclonal expansion and therefore 

might exhibit a signal of positive selection. Consistent with this idea, 

in LUAD, we found evidence for significant subclonal selection (dN/

dS = 2.09, 95% CI = 1.29–3.39) when considering subclonal mutations in 

established lung cancer genes with an illusion of clonality in at least one 

tumour region (Methods and Fig. 3d). However, subclonal selection was 

weaker for subclonal mutations in lung cancer genes that did not exhibit 

an illusion of clonality in any region (dN/dS = 1.33, 95% CI = 1.00–1.76). 

When considering all lung cancer gene mutations, we did not observe 

significant evidence for subclonal selection in LUSC using dN/dS ratios 

(Fig. 3d). However, significantly more subclonal expansions with an 

illusion of clonality in at least one region were identified in LUSC than 

LUAD (Wilcoxon test, two-tailed, P = 0.0049; Extended Data Fig. 9a,b).

The majority of subclonal expansions that resulted in an illusion of 

clonality were ‘ancestral’ (89%), whereby the emergence of additional 

subclones descended from the expanded subclone were observed 

(examples shown in Extended Data Fig. 9b). However, in 26% of tumours, 

we observed at least one ‘recent’ subclonal expansion, whereby a ter-

minal node on the phylogenetic tree had expanded to create an illu-

sion of clonality in at least one region. In such tumour regions, there 

was no additional detectable evolution following the expansion event 

(Extended Data Fig. 9b). Large recent subclonal expansions were associ-

ated with low regional subclonal diversity (Wilcoxon test, two-tailed, 

P < 0.001; Extended Data Fig. 9c).

Genomic ITH and prognosis

A primary endpoint of the TRACERx study is to explore the relation-

ship between genomic ITH and clinical outcome. Consistent with our 

previous findings3, a significant association was observed between 

SCNA ITH and shorter DFS (Fig. 4a; hazard ratio (HR) = 1.38, 95% 

CI = 1.03–1.83), and no significant relationship was observed between 

mutational ITH and DFS (Fig. 4b; HR = 0.85, 95% CI = 0.64–1.13). The 

median follow-up time in the TRACERx 421 cohort was substantially 

longer than in our publication of the first 100 patients enrolled into 

TRACERx3 (median of 1,702 days compared with 554 days). During 

this period, the majority of DFS events in the post-operative setting 

are expected to have occurred. SCNA ITH-high tumours were signifi-

cantly enriched for early relapses, occurring within 1 year after surgery 

(adjusted restricted mean time-lost ratio at 12 months of 2.23, 95% 

CI = 1.39–3.56, Cochrane–Armitage test, P < 0.001; Extended Data 

Fig. 10a–c and Methods), and for extrathoracic metastasis (Fisher’s 
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Fig. 4 | Associations between ITH and prognosis in the TRACERx 421 cohort. 

a, The difference in DFS between 392 patients harbouring tumours with greater 

or less than the median value of SCNA ITH; that is, the fraction of the aberrant 

genome with subclonal SCNAs (Methods). The number of patients at risk in 

each group is indicated below each timepoint. b, The difference in DFS between 

392 patients harbouring tumours with greater or less than the median value  

of mutational ITH; that is, the percentage of mutations which are subclonal 

(Methods). c, Proportions of intrathoracic only versus extrathoracic metastatic 

sites in 132 patients that relapsed either <1 year or ≥1 year after diagnosis split 

by SCNA ITH status. d, The difference in DFS in 392 patients harbouring 

tumours with different WGD statuses. e, The difference in DFS between  

392 patients harbouring tumours with greater or less than the median value  

of the recent subclonal expansion score (Methods). f, A multivariable Cox 

proportional hazards model including subclonal WGD, SCNA ITH, recent 

subclonal expansion score and other clinical variables that are known to have 

an impact on outcome for 392 patients (Methods). HR 95% CIs are indicated in 

parentheses. Asterisks indicate P value ranges: *P < 0.05, **P < 0.01, ***P < 0.001. 

Error bars indicate 95% CIs.
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exact test, two-tailed, P = 0.0083, OR = 2.7; Fig. 4c) compared with 

SCNA ITH-low tumours.

Given that WGD has previously been linked to poor prognosis, accel-

erated cancer genome evolution and ITH23,24, we next investigated 

whether the heterogeneity of WGD events is associated with prognosis. 

Whilst the presence of any WGD event was not associated with progno-

sis (Extended Data Fig. 10d), we found that the presence of a subclonal 

WGD event was significantly associated with shorter DFS (subclonal 

WGD compared with no WGD, HR = 1.63, 95% CI = 1.08–2.47; subclonal 

WGD compared with truncal WGD, HR = 1.56, 95% CI = 1.11–2.22; Fig. 4d 

and Extended Data Fig. 10e). Subclonal WGD was an independent pre-

dictor of DFS in a multivariable model, including SCNA ITH (Extended 

Data Fig. 10f). By contrast, tumours with one or more truncal, but not 

a subclonal, WGD had a similar prognosis to those without any WGD 

event (HR = 1.04, 95% CI = 0.73–1.49).

Given that subclonal expansions were associated with the selection of 

mutations in LUAD, we proposed that the presence of subclonal expan-

sions may be associated with rapid tumour evolution and clinically 

aggressive disease. In cases of ancestral subclonal expansion with an 

illusion of clonality in at least one region, it is not possible to determine 

whether the ancestral subclone was responsible for its own expansion 

or whether the expansion was the result of hitchhiking on its expand-

ing descendant (or descendants) (Extended Data Fig. 9b). By contrast, 

for recent subclonal expansions (that is, on nodes terminal to the phy-

logenetic tree), clone size measured a single expansion of that clone 

(Extended Data Fig. 9d,e). In addition, almost all tumours had a large 

ancestral subclonal expansion, whereas the extent of any recent sub-

clonal expansion was variable across tumours (Extended Data Fig. 9f). 

We defined a recent subclonal expansion score to quantify the size of 

terminal nodes using their phylogenetic cancer cell fraction, which 

accounts for mutation losses3,25 (Extended Data Fig. 9d,e and Methods).

Patients with tumours with large recent subclonal expansions were 

associated with significantly shorter DFS (split by the median, HR = 1.70, 

95% CI =  1.27–2.28; or as a continuous variable, HR = 1.32 per 0.3 increase 

in recent clonal expansion score, 95% CI = 1.12–1.55; Fig. 4e, Extended 

Data Fig. 10g and Methods). This result was consistent with findings in 

our companion papers9,26, in which metastatic seeding was associated 

with a higher propensity for subclonal expansion9 and proliferative 

transcriptional signatures26. Overall, these data highlight the need to 

consider not only the number or proportion of subclonal mutations 

but also the clonal architecture specific to each tumour region when 

exploring the association between genomic ITH and prognosis.

Finally, we combined our previous (SCNA ITH) and two new ITH-based 

prognostic indicators (subclonal WGD and recent subclonal expansion) 

in a multivariable model that included tumour stage, age, pack-years, 

histology and adjuvant therapy status. Recent subclonal expansion 

score, but not SCNA ITH or subclonal WGD, remained a significant 

predictor of DFS (split by the median, HR = 1.53, 95% CI = 1.13–2.1; or 

as a continuous variable, HR = 1.25 per 0.3 increase, 95% CI = 1.06–1.5; 

Fig. 4h). This result demonstrated the additional prognostic value 

of recent clonal expansions beyond standard clinical indicators of 

outcome. When considering only patients who developed recurrent 

disease, SCNA ITH was an independent predictor for both time to 

relapse (P = 0.0063, coefficient of –201 days, 95% CI of –343 to –58) 

and extrathoracic compared with intrathoracic disease relapse site 

(P = 0.0087, OR = 3.17, 95% CI = 1.36–7.73) in multivariable regressions 

that included the same covariates, unlike either subclonal WGD or 

recent subclonal expansion score (Extended Data Fig. 10i,j). These data 

suggest that several evolutionary metrics might be used together to 

predict the likelihood, timing and site of future relapse.

Discussion

The extent to which genomic ITH reflects the growth of subclones under 

positive selection or neutral evolution in the absence of treatment has 

been the subject of considerable debate6–8,27,28. However, previous analy-

ses have either relied on single tumour region datasets29–31, in which ITH 

is systematically underestimated, or leveraged multiregion sequencing 

in 100 or fewer patients2–4,21,22,32–38, thereby limiting statistical power.

By analysing more than 400 multiregion sequenced tumours, we 

were able to quantify subclonal mutation selection at the gene level 

in treatment-naive early-stage NSCLC. Subclonal selection was fre-

quently detectable for mutations in many lung-cancer-driver genes, and 

stronger than truncal selection for mutations in a minority of specific 

cancer genes and pathways. Subclonal selection was most evident in 

subclonal mutations present in 100% of cancer cells within at least 

one region, which would be incorrectly classified as truncal without 

multiregion sequencing. Patients with tumours with evidence of recent 

subclonal expansion (or expansions) in at least one tumour region 

had shorter DFS, which suggests that ongoing clonal expansions may 

drive worse outcomes. Such outcomes may conceivably occur through 

an increased likelihood of metastatic dissemination from expanded 

subclones, as described in our companion article9.

We identified 17 patients with LUAD who had a history of smoking 

but an absence of the smoking-related mutational signatures SBS4 and 

SBS92 and an increased frequency of driver alterations canonically asso-

ciated with never-smoker NSCLC. These data support recent work show-

ing recovery of stem cells without smoking-related mutations after 

smoking cessation in the normal bronchial epithelium of ex-smokers39 

and epidemiological studies that have shown early smoking cessation 

substantially limits subsequent smoking-related risk of lung cancer15. 

These data suggest that there are tobacco-mutagenic independent 

mechanisms of NSCLC initiation and provide impetus to study alterna-

tive tumorigenic processes, such as the role of tobacco-smoke-induced 

tumour promotion through inflammation of respiratory epithelium, 

building on two-step models of tumour initiation and promotion as 

previously elaborated40.

Consistent with our previous results3, we observed a significant asso-

ciation between high SCNA ITH and shorter DFS. Extensive follow-up in 

this study revealed that high SCNA ITH was specifically associated with 

early (<12 months after surgery) and extrathoracic relapse. Moreover, 

other evolutionary metrics (subclonal WGD and evidence of recent 

subclonal expansion) better predicted the overall likelihood of relapse. 

However, SCNA ITH was the only evolutionary metric to independently 

associate with short time to relapse and extrathoracic rather than 

intrathoracic relapse site.

In summary, we mapped the natural history of each tumour from 

421 patients with early-stage treatment-naive NSCLC enrolled into 

TRACERx, a prospective study in the context of a single-payer health 

economy in which patients are offered standard-of-care treatment. This 

study provides an extensively sampled tumour dataset with clinical 

and genomic metadata that will facilitate future cancer evolutionary 

studies intended to further our understanding of tumour biology with 

a view to improving cancer outcomes.
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Methods

The TRACERx 421 cohort

The TRACERx study (https://clinicaltrials.gov/ct2/show/NCT01888601) 

is a prospective observational cohort study that aims to transform our 

understanding of NSCLC, the design of which has been approved by 

an independent research ethics committee (13/LO/1546). Informed 

consent for entry into the TRACERx study was mandatory and obtained 

from every patient. All patients were assigned a study identity number 

that was known to the patient. These were subsequently converted to 

linked study identifiers (containing the CRUK prefix) such that patients 

could not identify themselves in study publications. All human sam-

ples (tissue and blood) were linked to the study identity number and 

barcoded such that they were anonymized and tracked on a central-

ized database, which was overseen by the study sponsor (UCL Clinical 

Trials Centre) only.

The cohort represents the first 421 patients whose samples were 

received for processing and who met the eligibility criteria. In addition, 

it was ensured that high-quality multiregional sequencing data could 

be obtained from the tumour samples collected at primary surgery as 

per the filtering steps outlined in the Extended Data Fig. 2.

TRACERx inclusion and exclusion criteria

Please note that the study started recruiting patients in 2014, when 

the 7th edition of TNM staging was standard of care. The up-to-date 

inclusion and exclusion criteria now utilize the 8th edition of TNM.

Inclusion criteria. The following inclusion criteria were applied.  

(1) Written informed consent obtained. (2) Patients were ≥18 years of 

age, with early-stage I–IIIB disease (according to the 8th edition of TNM) 

who are eligible for primary surgery. (3) Histopathologically confirmed 

NSCLC or a strong suspicion of cancer on lung imaging necessitating 

surgery (for example, diagnosis determined from a frozen section in 

the operating theatre). (4) Primary surgery planned in keeping with 

National Institute for Health and Care Excellence (NICE) UK guidelines. 

(5) Agreement to be followed up at a TRACERx site. (6) Performance 

status (ECOG) 0 or 1. (7) Minimum tumour diameter of at least 15 mm 

to enable sampling of at least two tumour regions (if 15 mm, a high 

likelihood of nodal involvement on preoperative imaging is required 

to meet eligibility according to stage, for example, T1N1–T1N2).

Exclusion criteria. The following exclusion criteria were applied.  

(1) Any other malignancy diagnosed or relapsed at any time, which is 

currently being treated (including by hormonal therapy). Exceptions 

to other malignancies include non-melanomatous skin cancer, stage 0 

melanoma in situ and in situ cervical cancer. (2) Any other current  

malignancy or malignancy diagnosed or relapsed within the past 

3 years. Exceptions to other malignancies include non-melanomatous 

skin cancer, stage 0 melanoma in situ and in situ cervical cancer. An 

exception will be made for malignancies diagnosed or relapsed more 

than 2 years ago, but less than 3 years ago, only if a preoperative biopsy 

of the lung lesion has confirmed a diagnosis of NSCLC. (3) A psychologi-

cal condition that would preclude informed consent. (4) Treatment  

with neoadjuvant therapy for current lung malignancy deemed neces-

sary. (5) Post-surgery stage IIIC or IV. (6) Known HIV, hepatitis B virus, 

hepatitis C virus or syphilis infection. (7) Sufficient tissue, that is, a 

minimum of two tumour regions, is unlikely to be obtained for the 

study based on preoperative imaging.

Patient ineligibility following registration. The following criteria 

were applied. (1) There is insufficient tissue to generate high-quality 

multiregional sequencing data. (2) The patient is unable to comply 

with protocol requirements. (3) There is a change in histology from 

NSCLC following surgery or NSCLC is not confirmed during or after 

surgery. (4) The operative criteria are not met (for example, incomplete 

resection with macroscopic residual tumours (R2)). Patients with micro-

scopic residual tumours (R1) are eligible and should remain in the study.  

(5) Adjuvant therapy other than platinum-based chemotherapy and/

or radiotherapy is administered.

Central histopathological review

The diagnostic slides from all cases in the cohort were requested from 

the local pathology departments, scanned using a Hamamatsu Nano-

zoomer S210 slide scanner at ×40 scanning magnification and retained 

within a central digital histology archive. Full diagnostic slides were 

used for central pathology review to confirm the tumour subtype and 

to generate adenocarcinoma growth pattern fractions. In the small 

minority of cases for which full diagnostic slides were not available, 

pathology review was conducted using a combination of a single rep-

resentative diagnostic slide and slides but from regional TRACERx 

tissue samples. The tumour stage was based on the 7th edition of the 

TNM classification in the analysis. Diagnosis of synchronous multiple 

primary lung cancer was based on sequencing data. When sequencing 

data were not available for all tumours within a patient, the tumours 

were clinically diagnosed as multiple primary tumours if they showed 

distinct histopathological features.

Data collection relating to smoking history

Patients were asked to provide detailed information of their smok-

ing history, including the type, amount and duration of smoking. 

All cigar and pipe consumption amounts were converted to equiva-

lent cigarette counts. That is, one cigar is assumed to be equivalent 

to approximately 1.5 cigarettes, and for pipes, one bowl of tobacco 

is equivalent to 2.5 cigarettes (http://www.smoking2.nes.scot.nhs.

uk/module4/working-out-cigarette-equivalents.html). Patients who 

had smoked fewer than 100 cigarettes in their lifetime were classified as 

never-smokers. Ex-smokers were defined as patients who had smoked 

100 or more cigarettes in their lifetime and had quit more than 1 year 

before registration. Patients who had smoked 100 or more cigarettes 

in their lifetime and were smokers at the time of registration, or had 

quit less than 1 year before registration, were grouped as smokers. 

Pack-years >136 were truncated as 136 (the 99th centile) for the analysis, 

as very high self-reported pack-years may be unreliable.

Sample collection and sequencing

In the TRACERx study, we used a method to simultaneously extract 

DNA and RNA from the same sample using AllPrep DNA/RNA Mini kits 

(Qiagen). Frozen samples were transferred onto cold Petri dishes kept 

on dry ice and dissected into 20–30 mg samples. Before extraction, the 

freshly dissected tissue was transferred directly to homogenization 

tubes with RLT plus lysis buffer. Homogenization of tissues was carried 

out using TissueRuptor II probe or bead methods and by passing the 

lysate through a QIAshredder column (Qiagen). Extracted DNA was 

eluted in 200 µl of elution buffer (EB, no EDTA), and RNA was eluted 

in 200 µl of nuclease-free water and stored immediately at –80 °C. 

Human gDNA was extracted from 2 ml of fresh-frozen EDTA whole 

blood using a QIAamp DNA Blood Midi kit (Qiagen) according to the 

manufacturer’s instructions, and gDNA was eluted in 400 µl of EB (no 

EDTA) buffer. The DNA and RNA samples extracted from participants 

enrolled into the TRACERx study were quantified using a Qubit 3.0 

Fluorometer (Life Technologies) and TapeStation system (Agilent), 

respectively. The integrity of the DNA and RNA isolate was assessed 

using an Agilent TapeStation system.

DNA libraries were prepared using 200 ng to 3 µg of genomic (g)

DNA as input into an Agilent SureSelect XT library preparation kit, and 

whole-exome capture was performed using a custom Human All Exon 

V5 Plus capture library according to the manufacturer’s guidelines. 

Samples that did not have at least 200 ng of input gDNA available for 

the SureSelect XT library prep kit (Agilent) were instead prepared using 

a KAPA HyperPrep kit (Roche) with modifications, which included the 

https://clinicaltrials.gov/ct2/show/NCT01888601
http://www.smoking2.nes.scot.nhs.uk/module4/working-out-cigarette-equivalents.html
http://www.smoking2.nes.scot.nhs.uk/module4/working-out-cigarette-equivalents.html


incorporation of the SureSelect XT adapters and primers. Whole-exome 

capture was then performed using the SureSelect XT kit (Agilent) with 

the same custom Human All Exon V5 Plus capture library according to 

the manufacturer’s guidelines. Libraries were then multiplexed and 

sequenced using 100 bp paired-end reads on Illumina HiSeq 4000 or 

HiSeq 2500 platforms. In total, 2,266 tumour region and germline sam-

ples were subjected to WES at a median depth of 416× (IQR = 368–474). 

A total of 470 germline samples used for analysis were sequenced at a 

median depth of 423× (IQR = 373–479). Multiple sequencing runs were 

performed on germline DNA when tumour samples were taken during 

postoperative follow-up to aid copy number calling by controlling for 

differences in coverage across sequencing runs. After quality control 

(see the section ‘Removing samples of low purity’), 1,644 tumours 

regions were included in the analysis and sequenced at a median depth 

of 413× (IQR = 367–474).

Sample names and annotations

Sample name CRUK0000_SU_T1-R1 stands for the sample of patient 

identifier CRUK0000 that was taken from region 1 (R1) of tumour 1 

(T1), which was resected during primary surgery (SU). In this case, 

‘tumour’ refers to a spatially distinct mass identified during sur-

gery and sample collection rather than necessarily a genomically 

distinct tumour when considering intrapulmonary metastases and 

collusion tumours. The following samples had issues in labelling, 

which were identified during quality control of the sample names 

and annotations. CRUK0555_SU_LN1 was sampled from a spatially 

distant tumour from CRUK0555_SU_T1 that was not a lymph node 

but was incorrectly labelled as LN1. CRUK0620_SU_T1-R5 was sam-

pled from CRUK0620_SU_T2, but was incorrectly labelled as T1-R5. 

CRUK0301_SU_T1-R3 and T1-R4 were sampled from a spatially distant  

tumour from CRUK0301_SU_T1, but were incorrectly labelled as 

T1. CRUK0495_SU_T2-R1 and T2-R2 were sampled from an identical 

tumour to CRUK0495_SU_T1, but were incorrectly labelled as T2.  

CRUK0721_SU_T1-R2, R3 and R4 were sampled from a spatially dis-

tant tumour from CRUK0721_T1-R1, but were incorrectly labelled 

as T1. CRUK0579_SU_T2-R1, T2-R2 and T2-R3 were sampled from an 

identical tumour to CRUK0579_SU_T1, but were incorrectly labelled 

as T2. CRUK0704_SU_T1 and T2 and CRUK0881_SU_T1 and T2 were 

dumbbell-shaped and were histologically classified as single tumours. 

Multiregion sequencing data revealed, however, that they represented 

collision tumours with multiple genomically independent LUADs 

(CRUK0704, collision of three distinct tumours; CRUK0881, collision 

of two distinct LUADs).

RNA fusion and oncogenic isoform detection

RNA libraries were prepared using 250 ng of RNA by combining RNA 

from all regions from a patient with a RNA integrity number score of 

>2.0 in equimolar concentrations. A bespoke Archer Fusionplex library 

preparation kit was used according to the manufacturer’s guidelines 

(the panel consisted of ALK, BRAF, EGFR, ERBB2, FGFR1, FGFR2, FGFR3, 

MET, NRG1, NTRK1, NTRK2, NTKR3, RET and ROS1). Libraries were then 

multiplexed and sequenced on an Illumina Miseq (Truseq V2 chemistry) 

using 150 bp paired-end reads with a median number of 1.5 million 

reads per sample.

FASTQ files were analysed using the ARCHERDx analysis pipeline 

(v.6.2.3) with default settings. As RNA libraries were prepared by 

combining RNA from all regions from a patient, the presence of onco-

genic variants in each region was confirmed through manual review of 

region-specific WES BAM files by looking for discordant reads using IGV.

Alignment

Initial quality control of raw paired-end reads (100 bp) was performed 

using FastQC (v.0.11.8, https://www.bioinformatics.babraham.ac.uk/

projects/fastqc/) and FastQ Screen (v.0.13.0, https://www.bioinformat-

ics.babraham.ac.uk/projects/fastq_screen/, flags: --subset 100000; 

--aligner bowtie2). Subsequently, fastp (v.0.20.0, flags: --length_

required 36; --cut_window_size 4; --cut_mean_quality 10; --average_

qual 20 (ref. 41)) was used to remove adapter sequences and quality 

trim reads. Trimmed reads were aligned to the hg19 genome assem-

bly (including unknown contigs) using BWA-MEM (v.0.7.17)42. Align-

ments were performed separately for each lane of sequencing and then 

merged from the same patient region using Sambamba (v.0.7.0)43 and 

deduplicated using Picard Tools (v.2.21.9, http://broadinstitute.github.

io/picard/). Local realignment around insertions and deletions (indels) 

was performed using the Genome Analysis toolkit (GATK (v.3.8.1)44). 

Further quality control following alignment was performed using a 

combination of Somalier (0.2.7, https://github.com/brentp/somalier), 

Samtools (v.1.9)45, Picard Tools and Conpair (v.0.2)46 to identify sample 

swaps or contamination events.

Somatic mutation calling

The methods used for mutation calling in the TRACERx 421 cohort 

were broadly similar to the TRACERx 100 cohort3, with the exception 

of updated tool versions. SAMtools mpileup (v.1.10) was used to locate 

non-reference positions in tumour and germline samples. VarScan2 

somatic (v.2.4.4)47 utilized output from SAMtools mpileup to identify 

somatic variants between tumour and matched germline samples. For 

SAMtools, bases with a phred score of <20 or reads with a mapping 

quality of <20 were omitted. BAQ computation was disabled, and the 

coefficient for downgrading mapping quality was set to 50. Default 

parameters were used with VarScan2, with the exception of minimum 

coverage for the germline sample being set to 10, and the minimum 

variant frequency being set at 0.01 and the tumour purity to 0.5. The 

resulting single nucleotide variant (SNV) calls were filtered for false 

positives using the associated fpfilter.pl script from Varscan2 per the 

methods used for the TRACERx 100 cohort3, initially with default set-

tings then repeated again with min-var-frac = 0.02, after re-extracting 

tumour variant read counts across all samples in the same patient using 

bam-readcount (v.0.8.0, https://github.com/genome/bam-readcount). 

All indel calls in reads classed as ‘high confidence’ by VarScan2 pro-

cessSomatic were recorded for further downstream filtering. MuTect 

(v.1.1.7)48 was also used to detect SNVs utilizing annotation files con-

tained in GATK bundle 2.8. Following completion, variants called by 

MuTect were filtered according to the filter parameter ‘PASS’. Additional 

filtering was performed to minimize false-positive variant calls3.

A SNV was considered a true positive if the variant allele frequency 

(VAF) was greater than 2% and the mutation was called by both Var-

Scan2, with a somatic P ≤ 0.01, and MuTect. Alternatively, a frequency of 

5% was required if only called in VarScan2, again with a somatic P ≤ 0.01. 

Additionally, the sequencing depth in each region was required to be 

≥30, and ≥10 sequence reads had to support the variant call. In the 

germline data, the number of reads supporting the variant had to be 

<5 and the VAF ≤1%.

In addition to these patient-specific measures, we also utilized the 

entire cohort to reduce single nucleotide polymorphism (SNP) con-

tamination through two independent means. First, all variants desig-

nated as ‘germline’ by VarScan2, from all regions in all 421 patients, were 

combined to calculate an associated TRACERx population frequency 

for every germline variant detected in the cohort. SNVs were filtered 

if they were found to have >1% germline frequency in the cohort. To 

reduce the impact of direct sample-to-sample contamination, the SNVs 

from every patient were compared against the germline SNPs in every 

other patient independently. If >5% SNVs were identified as SNPs in 

another patient, the sample was flagged as contaminated, and any 

such variant that matched a SNP was removed from further analysis. 

Finally, a blacklist filter, relating to the genomic location of the vari-

ant, was applied. The blacklisted genomic regions were obtained from 

UCSC Genome Table Browser and include regions excluded from the 

Encode project (both DAC and Duke lists), simple repeats, segmental 

duplications and microsatellite regions.

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.bioinformatics.babraham.ac.uk/projects/fastq_screen/
https://www.bioinformatics.babraham.ac.uk/projects/fastq_screen/
http://broadinstitute.github.io/picard/
http://broadinstitute.github.io/picard/
https://github.com/brentp/somalier
https://github.com/genome/bam-readcount
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The power of multiregion sequencing was leveraged to enable 

low-frequency variants to be called with increased confidence. Spe-

cifically, when a somatic variant was not called ubiquitously across 

tumour regions but was called in one or more regions, read information 

was extracted from the original alignment file using bam-readcount 

(v.0.8.0, https://github.com/genome/bam-readcount). The presence 

of a mutation passing all other filters in at least one region was then 

determined in all other regions using a VAF threshold of ≥1% and a 

requirement for at least three mutation supporting reads, which ena-

bled the positive identification of low-frequency variants that would 

otherwise have been missed.

Indels were filtered using the same parameters as described above, 

with the exception of the requirement of ≥10 reads supporting the 

variant call, a somatic P ≤ 0.001 and a sequencing depth of ≥50. Occa-

sionally, when attempting to identify indels across multiple tumour 

regions, discrepancies in the start position, end position or length of 

the indel were identified. In such cases, the longest predicted indel and 

the maximum sequence related values were reported.

Dinucleotide substitutions were identified in cases in which two 

adjacent SNVs were called. A proportion test was performed to provide 

an indication as to whether the frequency of the two SNVs was signifi-

cantly similar and thereby indicative of a single mutational event. In 

such cases, the start and stop position was corrected to represent a 

dinucleotide substitution, and sequence-related values (for example, 

coverage and variant count) were recalculated to represent the mean 

of the SNVs.

Variants were annotated using Annovar49 and COSMIC (v.75, https://

cancer.sanger.ac.uk/cosmic)50.

SCNA detection

Identification of genome-wide allele-specific copy number states was 

performed as previously described for multiregion WES19. In brief, 

heterozygous single SNPs were identified from germline samples 

for each patient using platypus (v.0.8.1)51, as per methods from our 

previous publication3. The logR data were calculated using VarScan2,  

and GC-corrected using a wave-pattern GC correction per a previ-

ously published method52, and processed using ASCAT (v.2.3)53. 

Sequenza(v.2.1.2)54 was also used to provide additional tumour 

purity and ploidy estimations for manual review. Manual review of 

the automatically selected models for ploidy, purity from either ASCAT 

or Sequenza were provided to ASCAT to provide SCNA profiles for 

each tumour region. Samples that had insufficient purity (<10%) 

were excluded. Only copy number segmentation from autosomes 

was included.

These ploidy, purity and copy number segmentation data were used 

as input to a multi-sample SCNA estimation approach19 to produce a 

minimum consistent segmentation and genome-wide estimates of 

the presence of loss of heterozygosity (LOH) as well as loss, neutral, 

gain and amplification copy number states relative to sample ploidy. 

The log ratio values present in each copy number segment with ≥5 log 

ratio values in all samples of a tumour were examined relative to three 

sample-ploidy-adjusted log ratio thresholds using one-tailed t-tests 

with a P < 0.01 threshold. These log ratio thresholds were equivalent 

to <log2(1.5/2) for losses, >log2(2.5/2) for gains in a diploid tumour and 

greater than twice the sample ploidy for amplifications. Any segment 

not classified as a loss, gain or amplification was classed as neutral. 

For each segment, these relative to ploidy definitions were combined 

with LOH detection across all samples from a single tumour. Allelic 

imbalance identified using the input SCNA profiles was used to phase 

heterozygous SNPs and to re-estimate allele-specific copy number. In 

addition, mirrored subclonal allelic imbalance3, which results from 

SCNAs that disrupt the same genomic region but affect different paren-

tal alleles within separate tumour subclones, was detected as previously 

described19. We then identified a subset of these mirrored subclonal 

allelic imbalance events as parallel SCNA events that we define as the 

same class of event (gain or amplification, or loss or LOH) in multi-

ple samples from an individual tumour but with major alleles from 

distinct haplotypes in the samples that demonstrate the event. The 

weighted genome instability index was calculated as the proportion 

of the genome with an aberrant copy number relative to the median 

ploidy (either a gain or loss as described above), which was weighted 

on a per chromosome basis55. The frequency of LOH was defined as the 

proportion of the genome subject to LOH.

Removing samples of low purity

As for the TRACERx 100 cohort3, tumour regions with <30% of the 

median number of mutations across all regions in the tumour were 

automatically removed from all analyses before manual review. If at 

manual review, samples from a single patient were considered to have 

been derived from multiple independent tumours (see the section 

‘Distinguishing multiple genomically independent tumours from a 

single patient, including samples collected during follow-up’), this 

process was repeated within each genomically related set of tumour 

samples. Orthogonal validation with copy number cellular estimates 

was also performed, with tumour regions with more than 1 standard 

deviation difference in VAF-estimated and copy-number-estimated 

cellularity manually reviewed. If there were no concordant results or 

the tumour was estimated to harbour <10% tumour purity, the tumour 

region was removed from further copy-number-dependent analyses, 

including estimates of clonality.

Mutational signature artefact quality control measures

Oxidation of guanin 8-oxoguanine is one of the most common arte-

facts introduced during library preparation and results in a specific 

mutational pattern of C>A mutations, which was recently described 

as the single base substitution (SBS) mutational signature SBS45 

(refs. 56,57). Most artefacts result in low-frequency mutations, which 

is why an additional filtering step of a minimum variant count of 10 was 

applied (described in the section ‘Somatic mutation calling’). To iden-

tify tumour regions with additional artefact mutations after filtering, 

mutational signatures were deconvolved using the R packagedecon-

structSigs (v.1.9.0)58, including signatures that were previously detected 

in lung cancer57 (SBS1, SBS2, SBS4, SBS5, SBS6, SBS10a, SBS10b, SBS13, 

SBS15, SBS17a and SBS17b) plus three potential artefact signatures 

(SBS45, SBS51 and SBS60) that were exhibited in our de novo muta-

tional signature analysis of the preliminary TRACERx 421 mutation 

data before additional filters were added. The signature deconvolution 

analysis was applied to several mutation sets for each tumour: all muta-

tions, mutations present in each tumour region, private mutations in 

each tumour region and all shared mutations across tumour regions. 

Tumours or tumour regions were flagged as potentially affected by 

artefacts if at least one of the three artefact signatures presented a 

minimum weight of 0.2, or more than 50 mutations were classified as 

artefactual in any of the runs mentioned above. Manual checks were 

subsequently applied to decide whether to include or exclude a flagged 

tumour region from analysis; fewer than 1% of tumour regions were 

excluded from the cohort in this manner (Extended Data Fig. 2).

Distinguishing multiple genomically independent tumours 

from a single patient, including samples collected during 

follow-up

To determine whether multiple samples were genomically related, we 

performed a clustering step on the mutations identified in each tumour 

region and regions from tumour sampling during follow-up. First, all 

ubiquitous mutations that had a VAF >1% in all regions were determined. 

If more than ten such mutations existed between all regions, the regions 

were deemed genomically related. Conversely, if ≤10 mutations were 

shared across all regions, a clustering step using the R function hclust 

was performed on the mutation VAFs across all regions. The resulting 

clustering tree was separated into two groups to determine the regions 
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associated with two distinct tumours. These steps were repeated on the 

samples from the two distinct tumours, respectively, to yield a maxi-

mum of four distinct tumours. In this manner, genomically unrelated 

tumours were found in 11 patients at the primary surgery stage and in 

14 patients between the primary tumours and the secondary lesions 

that developed during follow-up. Results were confirmed by manual 

quality control. Mutational clustering and phylogenetic tree building 

was then performed for each tumour independently in these cases. 

CRUK0039_SU_T1-R2 was initially suspected of contamination and 

therefore excluded from TRACERx 421 primary tumour cohort analy-

sis of clonal structure. However, further analysis, including samples 

from relapse disease, revealed that T1-R2 was actually a mixture of 

cells from a tumour with identical clonal origin with T1-R1 and R3 and 

another tumour with distinct clonal origin that had metastasized and 

was only sampled at relapse. CRUK0039_SU_T1 is therefore regarded 

as a genomically identified collision tumour of multiple independent 

tumours.

Mutational signature de novo extraction and deconvolution

A hierarchical Dirichlet process (HDP) model59 implemented in the 

R package hdp (v.0.1.5) available on GitHub (https://github.com/

nicolaroberts/hdp) was applied to extract de novo signatures from 

the TRACERx 421 WES data. The trinucleotide profile per tumour was 

calculated and provided as input. An advantage of using a HDP model 

to infer mutational signatures was the ability to define hierarchies of 

relatedness between samples through the tree of parent Dirichlet pro-

cess (DP) nodes. This provided the opportunity to derive mutational 

signatures from the entire cohort without neglecting subtype-specific 

signatures. The HDP was structured to have one grandparent DP, three 

parent DPs representing the different subtypes (LUAD, LUSC and 

Other) and the number of tumours representing a certain subtype 

as child DPs (LUAD = 248, LUSC = 138 and Other = 46) per parent. If a 

tumour harboured fewer than 50 mutations, it was excluded from the 

corresponding parent for this analysis. Signatures that were previ-

ously identified to be commonly active in lung cancer were included 

as priors (SBS1, SBS2, SBS4, SBS5, SBS13 and SBS17b). This means for 

each of them, a cluster was initialized at the start of the algorithm and 

their trinucleotide pattern was provided as prior knowledge to force 

the algorithm to look for those signatures in the data. In addition, ten 

random clusters were initialized to detect de novo signatures that were 

not included in the list of priors. The model was initialized by applying 

the function hdp_init(). The trinucleotide profiles were assigned to 

the leaves by hdp_setdata(), and the nodes were activated by dp_acti-

vate(). By applying hdp_posterior() 15 times with different seeds, 15 

independent posterior sampling chains were constructed followed by 

10,000 burn-in iterations and the collection of 100 posterior samples 

off each chain with 200 iterations between each. The hdp_multi_chain() 

function was applied to combine the results of the 15 chains, from 

which the final components were extracted using hdp_extract_com-

ponents(). The components were normalized relative to the trinucleo-

tide counts in the exome relative to genome (using the same method as 

applied in deconstructSigs when the normalization parameter is set to  

exome2genome). These normalized components were compared with 

the signatures reported in COSMIC (v.3.2) in combination with previ-

ously reported signatures60. For this, the cosine similarities between 

the hdp-derived components and the signatures provided by the public 

datasets were calculated using the function cosine() of the R package lsa 

(v.0.73.2). If a component displayed a cosine similarity >0.9 with any of 

the known signatures, the corresponding signatures were assigned to 

that component. Some signatures often co-occurred in cancer, such as 

SBS1 and SBS5, which makes it hard to identify them separately during 

de novo signature extraction. In those cases, the expectation maxi-

mization (EM) algorithm was used to identify pairs of signatures that 

might explain the observed signature. The identified pair was then 

used to reconstruct the observed signature considering the weights 

provided by the EM algorithm. If the reconstructed signature presented 

a cosine similarity >0.9 with the observed signature, the signature was 

recognized as a combination of the identified pair. In that instance, 

the exposure of the observed signature was split on the basis of the 

weights provided by the EM algorithm for further analyses. To extract 

de novo signatures for truncal and subclonal mutations separately, 

the same analysis framework was applied. The trinucleotide profile 

for truncal and subclonal mutations per tumour were calculated and 

provided as input. Instead of using the three subtypes as parent DPs in 

the dependency tree, the parent DPs indicated the clonality of the muta-

tions (truncal and subclonal). This analysis revealed that SBS1, SBS2, 

SBS4, SBS5, SBS13, SBS44 and SBS92 were active in truncal mutations. 

SBS17b was identified in addition to all truncal signatures subclonally. 

SBS44 was only significantly active in samples from CRUK0418, which 

presented a very high mutation burden and was therefore classified as 

a potential microsatellite instable tumour.

After our de novo signature discovery analysis, functions from the 

R package deconstructSigs (v.1.9.0)58 with the normalization parameter 

exome2genome were applied to deconvolve SBS signatures from the 

TRACERx 421 WES data using COSMIC (v.3.2) signatures57 as reference. 

Only signatures that were identified using HDP to be active truncally 

or subclonally were included for deconvolution accordingly. SBS44 

was only included in the signature extraction in addition to the other 

signatures for CRUK0418.

Identifying mutation subclonal clusters and reconstructing 

tumour phylogenetic trees

To reconstruct tumour phylogenetic trees of each tumour from the 

identified somatic mutations, we developed a new computational 

method called CONIPHER11 (correcting noise in phylogenetic evaluation 

and reconstruction) to address three key challenges in phylogenetic 

reconstruction: (1) scaling to a high number of primary tumour and 

metastasis regions per patient; (2) correcting for complex evolutionary 

events, including mutation losses25; (3) removing biologically improb-

able clusters that are either driven by subclonal copy number or are not 

biologically compatible with the inferred evolutionary tree. CONIPHER 

includes three key steps, which we describe in brief below. We report 

the full details in a companion paper11.

We define the phylogenetic cancer cell fraction (PhyloCCF) of each 

mutation to be the fraction of cancer cells that either carry a SNV or 

which are estimated to have carried a SNV before a subclonal copy 

number loss of alleles carrying the SNV11,25. This statistic is estimated 

by transforming the VAF by the expected mutation copy number and 

the tumour purity to compute the standard cancer cell fraction (CCF) 

metric25,30,61, and correcting for subclonal copy number alterations, as 

previously described3.

The first step of our method corresponds to the identification of 

clusters of somatic mutations that have occurred in the same tumour 

subclone during tumour evolution. To do this, we extended the exist-

ing algorithm PyClone (v.0.13.1)62 by introducing a pre-clustering 

step that allows our algorithm to scale to large numbers of tumour 

regions sampled in each patient and to improve the accuracy in the 

identification of mutations that are either absent or present in certain 

tumour regions. In fact, previous studies63 have demonstrated that 

PyClone, as other existing algorithms, can erroneously assign unob-

served mutations to mutation clusters that are defined to be present 

in certain regions. As such, our pre-clustering method classifies each 

mutation as either present or absent in each tumour region sampled. 

Presence was defined by an observation of at least one mutant read. 

The pre-clustering step separates mutations on the basis of their pres-

ence or absence classification into different groups and subsequently 

applies PyClone to each mutation group independently. Any group of 

mutations defined according to the presence or absence consisting 

of fewer than five mutations were not clustered using PyClone. Addi-

tionally, an indel-region-specific VAF correction factor was applied 

https://github.com/nicolaroberts/hdp
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to ensure that no indel-driven clusters were estimated as previously 

described3. PyClone was run on each mutation group with 10,000 itera-

tions and a burn-in of 1,000, as well as only using the state in which 

the reference prior was set to normal and the variant prior was set to 

‘BB’. If ≥50 mutations were present in a mutation group, the maximum 

number of clusters parameter in PyClone was set to 10 for that group. 

If <50 mutations were present, the maximum number of PyClone clus-

ters for that group was set to the number of mutations in that group 

divided by 5 and rounded down to the nearest integer (for example, a 

mutation group with 23 mutations would have a maximum number of 

4 clusters) to avoid overclustering of small numbers of mutations. All 

other parameters were set to default values. This clustering step was 

performed simultaneously on all surgically excised samples with suf-

ficient tumour purity for genome-wide copy number determination 

for which at least two such samples were available for each tumour. 

After removal of small clusters and those potentially driven by errors 

in SCNA identification, a mean of 95.4% of mutations were successfully 

clustered and taken forward for phylogenetic reconstruction.

The second step corresponds to the reconstruction of a tumour 

phylogenetic tree using the identified mutation clusters. Our method 

aims to iteratively enumerate all the possible nestings of mutation 

clusters in the reconstructed tree based on the established pigeonhole 

principle and the crossing rule64. Often, a phylogenetic tree cannot be 

reconstructed owing to the presence of spurious clusters that are either 

due to artefactual mutations or errors in SCNA calling. Therefore, we 

introduced an approach to identify and remove these clusters to allow 

the reconstruction of a phylogenetic tree. Specifically, our method 

aims to first remove clusters for which the genomic location is indica-

tive of errors in SCNA calling (indicated by mutations co-localized in 

the genome). Second, clusters are removed to both obtain a phyloge-

netic tree that maintains the pigeonhole principle and crossing rule 

and such that the smallest number of mutations possible are removed 

from the tree (under a principle of parsimony). This step returns the 

‘default’ phylogenetic tree. During this second step of cluster removal, 

a mean of 2% of all mutations were removed (median = 0%) across 401 

TRACERx phylogenies.

The last step corresponds to the enumeration of multiple plausible 

phylogenetic trees. In fact, given a selected subset of non-spurious 

mutation clusters, multiple phylogenetic trees can be reconstructed. 

Our algorithm aims to recursively reconstruct all possible trees by 

enumerating all the possible nestings of non-spurious clusters. We 

use these ‘alternative trees’ in our supplementary analysis of recent 

subclonal expansions considering the minimum possible recent sub-

clonal expansion score across any tree (Extended Data Fig. 10h). In all 

other analyses, the default tree was used, for example, in depictions 

of individual trees (Extended Data Figs. 8e and 10b) or in analysis of 

parallel evolution (Extended Data Fig. 8d).

Classifying the clonality of somatic mutations

We used the reconstructed phylogenetic trees to classify mutation clus-

ters based on the inferred PhyloCCF of the mutations. In particular, we 

defined a mutation cluster as truncal if all other clusters could be nested 

within it; that is, if the mutation cluster has been assigned to the trunk 

node of the reconstructed phylogenetic tree. This corresponds to the 

most recent common ancestor (MRCA) cell of the tumour cells that we 

sequenced. Any other mutation cluster was classified as non-truncal.

We further classified every mutation cluster as clonal, subclonal or 

absent in each tumour region based on the PhyloCCF of the correspond-

ing mutations. First, we classified as clonal every cluster in a tumour 

region for which mutations have a PhyloCCF not significantly different 

than the PhyloCCF of the mutations in the truncal cluster within the 

same tumour regions (tested using one-sided Wilcoxon test, P = 0.05). 

Note that truncal mutations are defined as clonal mutations in every 

tumour region, but mutations that are clonal in a particular tumour 

region are not necessarily truncal. We also classified as clonal in each 

tumour region every cluster for which the 95% CI of the PhyloCCF of 

its mutations overlapped with the 95% CI of the PhyloCCF of the muta-

tions in the truncal cluster (a minimum threshold of 0.9 was used for 

the left side of the 95% CI on truncal mutations). Second, we defined 

as ‘subclonal every mutation cluster in a tumour region for which the 

mean PhyloCCF across the corresponding mutations in that region was 

greater than 0 and not clonal (that is, the mutation cluster did not pass 

the previous tests). Last, any remaining mutation cluster was defined 

as absent in a tumour region.

On the basis of these definitions of clonality for individual clusters in 

each tumour region, the clonality of individual clusters could be defined 

across all samples in the primary tumour or across all metastatic sam-

ples, as described in our companion article9. Clusters that were clonal 

in all regions of interest (that is, all primary regions or all metastatic 

samples) were defined as clonal (within the primary or metastases, 

respectively). Clusters that were subclonal or absent from at least one 

region of interest were defined as subclonal, whereas clusters that 

were absent from all regions of interest were defined as absent at the 

tumour level. In the main text of the article, we refer to mutation clusters 

where tumour cells containing no additional subclonal mutations are 

estimated to be present at surgery as ‘subclones’.

A realistic simulation framework for tumour evolution

To evaluate our methods for tumour evolutionary reconstruction, 

we developed a simulation framework to generate tumour phylog-

enies and related bulk sequencing data. Two key features distinguish 

this framework from previous simulation approaches25,65,66. First, 

in addition to modelling the evolution of somatic SNVs, our frame-

work models the evolution of different types of genetic alterations 

that frequently occur in NSCLC (as well as most other cancer types), 

including truncal and subclonal SCNAs (including gains, losses, 

copy-neutral LOHs, among others) as well as truncal and subclonal 

WGDs19. Notably, our simulation framework specifically models the 

effect of these genetic alterations on SNVs, which can result in SNVs 

with different mutation multiplicities (that is, the number of copies 

of a SNV within cancer cells harbouring the SNV) or mutation losses 

(that is, SNVs that are deleted as a result of deletions affecting the 

mutant allele). Second, our framework aims to generate realistic simu-

lations by leveraging detailed distributions of different statistics (for 

example, mutation burden, number of sequenced tumour samples, 

locus-specific sequencing coverage, frequency of SCNAs and related 

genomic characteristics) that can be measured from the sequenc-

ing data of the large TRACERx 421 cohort. To create simulations to 

evaluate the new tumour evolution reconstruction methods, we set 

a number of minimum threshold values from which to sample the 

TRACERx 421 sequencing data. Simulations were created with the 

following constraints: tumour purity >20%; number of somatic SNVs 

>150; and proportion of truncal mutations <90%. This framework can 

also be used to generate realistic simulations based on other large 

sequencing datasets of other cancer types; therefore, we have made 

this computational method publicly available (https://github.com/

zaccaria-lab/TRACERx_simulation_tool).

Our simulation framework is composed of four steps: (1) simulating 

the topology of a tumour phylogenetic tree; (2) simulating the evolution 

of SNVs, SCNAs and WGDs in different tumour clones; (3) simulating 

bulk tumour sampling from a heterogeneous tumour; and (4) simulating 

DNA sequencing data for each mutation in every bulk tumour sample. In 

the remainder of this section, we describe each of these steps in detail. 

This framework was then used to benchmark our phylogenetic recon-

struction approach (CONIPHER; Supplementary Note and Extended  

Data Fig. 4).

Simulating tumour phylogenetic tree topology. We aimed to simu-

late the topology of the phylogenetic tree of tumour T = (V,E) given a 

number n = |V | of tumour clones, which is selected uniformly at random, 
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depending on the sample group, among the range {8, …, 30} (specifi-

cally (8, …, 16}, {12, … 24} and {22, …, 30} for the low (2–3 samples), 

medium (4–7 samples) and high (>7 samples) sample size groups,  

respectively) of clones observed in the TRACERx 421 cohort as well as 

in previous studies (Extended Data Fig. 4a). Specifically, we simulated 

a random tree topology by first generating T as a full rooted binary tree 

with n leaves and then we iteratively removed random leaves until T  

only contained n nodes, corresponding to n ancestral and extant  

tumour clones. The remaining edges in T comprised the set of final 

edges E. We adopted this approach because every tree with n nodes can 

be equivalently expanded and refined into a full binary tree65. The root 

of T represents the MRCA of the tumour, and the last full clonal sweep 

within the tumour. Finally, an additional node was added as the new 

root of T to represent the normal diploid germline ancestor. As such, 

the edge going from the germline diploid root to the MRCA represents 

the trunk of the tumour phylogeny T.

Simulating the evolution of somatic mutations and genetic altera-

tions. We aimed to simulate the evolution of somatic alterations that 

label the edges of the generated tree T (Extended Data Fig. 4b). The 

number of mutations in the MRCA and all nodes of the phylogenetic 

tree were sampled from the empirical distributions of the TRACERx 

421 cohort (or other datasets). As such, we randomly assigned SNVs to 

the edges of T by preserving the proportion of truncal compared with 

subclonal mutations observed in the given empirical distributions. 

Moreover, copy number gains and deletions were also assigned to the 

edges of T according to the empirical distributions of SCNAs and were 

randomly assigned to one allele of the affected genomic loci. Based on 

existing evolutionary models of both SNVs and CNAs25, we represented 

the genotype of every genomic locus p in a tumour clone i as a triplet 

(xi,p, yi,p and zi,p) such that x y N, ∈i p i p, ,
 represent the allele-specific copy 

numbers of the genomic locus p in tumour clone i and z N∈i p,  repre-

sents the mutation multiplicity or the number of copies of the locus 

harbouring a SNV. Moreover, our simulation framework allows the 

assignment of SNVs, SCNAs and WGDs to the edges of T by respecting 

two of the most common evolutionary assumptions in existing meth-

ods: (1) the infinite site assumption, in which every SNV occurs only 

once in tumour evolution; and (2) the constant mutation multiplicity 

assumption, in which every SNV has the same mutation multiplicity 

across different tumour clones. In this study, simulations were gener-

ated using these same assumptions to reflect the requirements of cor-

responding methods.

Based on previous models of SCNA evolution25, we modelled SCNAs 

such that each copy number gain increase by one or more copies of 

an allele of the corresponding locus, whereas copy number deletions 

decrease the copies by one and, when reaching zero copies, they result 

in an irreversible state of LOH. Moreover, we modelled each WGD as an 

event that doubles the copy number of every allele present at one or 

more copies. Based on this model, the resulting copy number states 

that were simulated included the most common copy number states 

observed in previous pan-cancer sequencing studies30 (for example, 

allele-specific copy numbers {2,1}, {3,1}, {4,1}, {3,2} and {4,2} for gains 

and {1,0} and {2,0} for deletions). Each copy number event can affect 

the multiplicity of SNVs when the event is assigned to the same allele 

harbouring the SNV. As the definition of alleles is relative and independ-

ent across loci, we assumed without loss of generality that a SNV always 

occurs in the allele with xi,p copies.

Last, the events assigned to each edge of the tree T were used to 

determine the genotypes of every tumour clone. As the root of T 

represents the normal diploid ancestor of MRCA before harbour-

ing any of the considered SNVs, the genotype of every locus p of the 

root i = 0 is defined such that (x0,p, y0,p and z0,p) = (1,1,0). A recursive 

top-down approach was therefore used to determine the genotypes 

of each node by applying all the events assigned to an edge to the 

genotype of the corresponding parent. Because events include SNVs, 

SCNAs and WGDs, all the events were applied in random order so that 

SNVs occurring both before and after SCNAs and/or WGDs could be  

simulated.

Simulating heterogeneous bulk tumour samples. We aimed to 

simulate multiple bulk tumour samples obtained from the same tumour 

containing different subsets of tumour clones generated in the tumour 

phylogenetic tree T (Extended Data Fig. 4c). Specifically, we assumed 

that every bulk tumour sample was composed of cells belonging to the 

normal diploid clone as well as cells belonging to n̂ distinct tumour 

clones in T, such that n̂ was chosen uniformly at random from the range 

{3, … 8} of tumour clones typically observed within the same tumour 

sample in previous pan-cancer studies30. We defined the tumour purity  

µ∈ [0,1] of a bulk tumour sample as the fraction of tumour cells with-

in the sample, and we represented the clone proportion u ∈ [0,1]i  of 

every clone i as the fraction of cancer cells that belong to tumour clone 

i from T. As such, we simulated a bulk tumour sample that was com-

posed of 1 – µ normal diploid cells and µ tumour cells obtained from n̂ 

tumour clones chosen uniformly at random such that Σ u = 1i n i∈{1,…, }̂ . 

Based on previous tumour evolutionary studies, we modelled the clone 
proportions u u,…, n1  ̂as a Dirichlet distribution with uniform concen-

tration parameters, that is, u u,…, ~Dirichlet( 1
→
)n1 ˆ . The number k of 

tumour samples as well as the tumour purity µ of each sample were 

sampled from the provided empirical distributions.

Simulating DNA sequencing data from bulk tumour samples.  

We aimed to simulate the DNA sequencing data obtained for every 

genomic locus p from every bulk tumour sample s as the observed 

total number of reads t N∈p s,  and the observed number of variant 

reads v N∈p s,  (Extended Data Fig. 4d). First, similar to previous cancer 

sequencing studies, we modelled tp,s as a Poisson distribution based 

on the expected total number of reads for genomic locus p. Let f
p s,

 be 

the fractional copy number of locus p in sample s, corresponding to 

the average total copy number of p across all cells present in s, that is, 

f u x y=∑ ( + )
p s i n i i p i p, ∈{1,…, }̂ , ,

 for the allele-specific copy numbers xi,p and 

yi,p. Moreover, we defined the tumour sample ploidy ρ
s
 of sample s as 

the average fractional copy number across all cells in the bulk tumour 
sample, that is,  ρ f= ∑

s m p m p s

1

∈{1,…, } ,
. As such, the expected total num-

ber of reads for genomic locus p is equal to γ
f

ρ s

p s

s

,
 when γ

s
 is the expect-

ed average sequencing coverage in sample s due to the linear propor-

tionality between the number of sequencing reads and fractional copy 

numbers13. By sampling γ
s
 from the given empirical distributions,  

we therefore simulated tp,s as drawn from a Poisson distribution  
with the mean equal to the expected total number of reads, that is, 

t γPoissonp s

f

ρ s,

p s

s

,
 







 .

Second, we used a binomial model for the observed number of 
variant reads vp,s based on previous studies3,13,67. To do this, we defined 
the underlying fraction ψ

p s,
 of alleles harbouring a SNV in genomic 

locus p of sample s as 
( )

ψ =
p s

u z

u x y,

∑

∑ +

i n i s i p

i n i s i p i p

∈{1,…,ˆ} , ,

∈{1,…,ˆ} , , ,

, which represents the 

expected value of the observed variant allele frequency, that is, 
v

t

p s

p s

,

,

. 

Therefore, we simulated vp,s as a drawn from a binomial distribution 

with the number of trials equal to tp,s and with probability of success 

equal to ψ
p s,

, that is, v t ψBinomial( , )p s p s p s, , ,
. Additionally, we simu-

lated the presence of noisy and artefactual mutations as SNVs with ψ
p s,

 

computed using randomly chosen values of clone proportions u u,…, n1  ̂

in each simulated tumour sample.

WGD detection

The WGD status of tumours was estimated in two steps.

First, we estimated the number of WGD events that the majority 

of cells in each region had undergone using the genome-wide copy 

number of the major allele. As in previous publications23,68, if the major 

allele had a copy number of ≥2 across at least 50% of the genome, this 

was assumed to reflect a single WGD event. If the major allele had a copy 
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number of ≥3 across at least 50% of the genome, this was assumed to 

reflect two WGD events68 (Extended Data Fig. 6a,b).

Second, we leveraged additional information from the estimated 

copy number of mutations using a new tool, ParallelGDDetect, avail-

able as a R package (https://github.com/amf71/ParallelGDDetect). A 

WGD event will also double the mutant copy number of any mutation 

already accumulated before the WGD event, including subclonal 

mutations in the case of a subclonal WGD event. When a subclonal 

mutation cluster has been doubled in one or more regions but is 

absent from other regions, this can indicate the presence of multiple 

independent subclonal WGD events in the same tumour. However, 

subclonal copy number amplification events will also cause dou-

bling of subclonal mutations. Although a WGD event will double the 

estimated mutation copy number of all mutations in a given cell, 

copy number losses after the WGD event or the accrual of additional 

mutations after the WGD event will cause a subset of mutations within 

a subclonal WGD-associated mutation cluster to be observed at a 

single copy.

An example of a probable subclonal genome doubling event 

revealed by doubled subclonal mutations is shown in Extended Data 

Fig. 6c. To assess appropriate thresholds for the determination of 

subclonal mutation clusters for which some mutations occurred 

before a subclonal WGD event (herein referred to as ‘genome doubled 

clusters’), we first assessed the fraction of doubled (mutation copy 

number > 1.5) mutations in the truncal cluster of regions with 0, 1 

or 2 genome-doubling events determined (Extended Data Fig. 6d). 

These provide positive and negative controls for mutation clusters 

that have (truncal mutations in the context of 1 or 2 WGDs) or have 

not (truncal mutations in the context of 0 WGDs) at least partially 

occurred before genome doubling, including noise introduced 

by post-WGD mutations and mutations affected by copy number 

amplifications or deletions. Although the fraction of doubled muta-

tions was clearly separated between these categories, we found we 

could further decrease noise by removing mutations that may have 

been doubled during detected chromosomal or intrachromosomal 

amplification events. Such amplification events introduce doubled 

mutations not associated with a WGD event, which could therefore 

the limit specificity of our method. Hence, we limited the analysis 

to regions of the genome at which the major copy number did not 

exceed the expected major copy number given the determined num-

ber of WGDs in an otherwise copy number-stable genome for each 

region (major copy number = 1 with 0 WGD events, major copy num-

ber = 2 after 1 WGD event and major copy number = 4 after 2 WGDs 

events or generally described at expected major copy number =  

2(number of WGD events); Extended Data Fig.  6e). To maximize the 

signal-to-noise ratio and to limit false positives, we chose a thresh-

old of 0.25 for the fraction of doubled mutations to define a 

genome-doubled cluster based on these analyses. Once a WGD clus-

ter had been called in one region, a lower threshold was then used 

in other regions (0.1) to limit heterogeneity introduced by differ-

ences in power of WGD cluster detection between regions that could 

be caused by differing percentages of the genome with major copy  

number = 2(number of WGD events).

A single WGD event may double several subclonal mutation clus-

ters at once if these clusters were in overlapping cell populations 

and present in the same cell in which a subclonal WGD occurred and 

subsequently expanded to form a detectable subclone. Therefore, 

we could not assume a 1:1 relationship between the number of dou-

bled subclonal clusters and the number of subclonal WGD events. To 

determine how many distinct WGD events had occurred, we collapsed 

subclonal clusters with a doubled copy number by merging those with 

a doubled copy number in the same regions, which may therefore have 

been doubled by the same WGD event. The presence of subclonal clus-

ters that were doubled in different, even if overlapping, regions must 

indicate several distinct WGD events that had occurred in different 

regions. ParallelGDDetect ensures that no tumour region is called 

with more WGD events than specified in the input data, in our case 

determined as described above using the fraction of the genome with 

major copy number ≥2 or ≥3. If no WGD clusters were identified, then 

WGD events determined by the major copy number across the genome 

were assigned to regions using maximum parsimony, as in previous 

publications3, whereby regions harbouring WGDs were presumed to 

be part of a shared event where possible.

To validate this methodology, we leveraged the simulation frame-

work described in the section ‘A realistic simulation framework for 

tumour evolution’. In this framework, simulated tumours had sub-

clonal WGD events introduced in random clones within a simulated 

tumour phylogeny, whereby a random percentage of mutations in the 

genome-doubled cluster occurred before and after the WGD event. 

Amplification and loss events were also introduced across the phylog-

eny. Variant and reference allele counts, and the resulting major and 

minor copy number states per simulated mutation, were outputted as 

well as the true underlying clonal structure of each simulated tumour. 

Mutation copy numbers are difficult to estimate when a mutation 

is subclonal within a region; therefore, ParallelGDDetect does not 

attempt to capture WGD events that are only present in a subset of 

cells in a given tumour sample. WGD events with a CCF of >0.75 in a 

given region or in a region where the sum of the parallel WGD event 

CCFs were >0.75 were considered detectable WGD events in the simu-

lations. The number of WGDs per region was estimated using previ-

ously published methods23,68 and used as input to ParallelGDDetect, 

which determines phylogenetic relationships across regions between 

these WGDs. Therefore, to validate ParallelGDDetect, the number of 

ground-truth-detectable WGDs in each region was inputted along with 

the mutation cluster identities, the mutation copy number and the 

major copy number states per mutation. To our knowledge, no tool has 

been previously published that aims to detect parallel genome dou-

bling events in the same tumour; however, we previously published a 

method3 that detected subclonal WGD events when some but not all 

regions of a tumour had a detected WGD (termed ‘NEJM method’). We 

also modified this method to account for second genome doublings 

that were not considered in our previously published method (‘NEJM 

2nd WGD method’), in which it was therefore possible to detect two 

subclonal WGD events if a tumour had regions harbouring 0, 1 and 2 

WGD states. Across 500 simulated tumours, we found the latter two 

methods had good specificity for detection of multiple subclonal WGD 

events (100% in all cases); however, ParallelGDDetect could detect 

multiple subclonal WGD events with greater sensitivity (66% compared 

with 9% for the NEJM 2nd WGD method; Extended Data Fig. 6f). We 

noted that ParallelGDDetect misestimated the number of subclonal 

WGD events in 50% of cases (2 out of 4) where 3 subclonal WGDs were 

estimated, and we therefore limited the determination of the number 

of subclonal WGDs in this manuscript to no more than 2.

For all tumours in which more than one subclonal WGD was esti-

mated using the above methods, we carried out an additional manual 

inspection of the major, minor and mutant copy number statuses 

across the genome and altered the manually selected ploidy solution 

to reduce the number of subclonal WGDs while adequately explaining 

the observed data.

Germline driver variants

To identify germline-encoded variants that might act as drivers of 

cancer development, we analysed a published list of germline predis-

position genes12. These were subdivided into those that act through 

gain-of-function or loss-of-function mutations. Within genes acting 

through gain-of-function mutations, variants classified as ‘pathogenic’ 

or ‘likely pathogenic’ by ClinVar (20190305 version) were designated 

as drivers. Within genes acting through loss-of-function mutations, 

protein-truncating (stop-gain, frameshift or splice-site) variants 

(excluding those designated as benign by ClinVar), as well as ClinVar 

https://github.com/amf71/ParallelGDDetect


pathogenic or likely pathogenic variants, were designated as drivers. 

Second hit events were identified in cases with either a somatic muta-

tion affecting the same gene as that containing a germline driver or with 

a somatic copy number loss affecting the wild-type allele.

Classification of driver alterations

We collated a driver gene list using genes identified in the COSMIC 

cancer gene census (v.75)69, supplemented with those identified in 

large-scale pan-cancer analyses (using q < 0.05 as cut-off)70 and previ-

ous large-scale NSCLC sequencing studies71–73. Any non-synonymous 

variant located within one of these genes underwent further catego-

rization based on the following criteria. If the mutation was found to 

be deleterious (either a stop-gain or predicted deleterious in two out 

of the three computational approaches applied: Sift74, Polyphen75 

and MutationTaster76) and the gene was annotated as being reces-

sive by COSMIC (tumour suppressor), the variant was classified as a 

driver mutation. Also, if the gene was annotated as being dominant 

(oncogene) by COSMIC and we could identify ≥3 exact matches of 

the specific variant in COSMIC, we classified the mutation as a driver 

mutation. To further distinguish lung-specific driver mutations, we 

used a lung-specific driver list composed of genes reported as LUAD 

or LUSC drivers as previously reported in refs. 3,18,29,77. A list of 67 

copy-number-driver genes was curated by combining all genes in 

the COSMIC database, which were associated with mutation types 

‘A’ (amplification) or ‘D’ (deletion) with genes annotated in regions 

of significant amplification or deletion defined in a publication that 

applied GISTIC to over 1,000 lung cancer TCGA tumours73. These genes 

were used to determine the numbers of amplifications and deletions 

in oncogenes and tumour suppressor genes, respectively, split by 

clonal and subclonal events in LUAD and LUSC per tumour as shown 

in Extended Data Fig. 8c.

Determinants of the smoking signature

Thresholds to determine low-confidence or high-confidence detec-

tion of the smoking-related mutational signature SBS4 were informed 

by the distribution of SBS4-assigned mutations in never-smokers 

(Extended Data Fig. 7c). Tumours with an estimated truncal SBS4 

weight less than 0.1 and fewer than 50 truncal SBS4-assigned muta-

tions were defined as SBS4 undetected. By contrast, tumours with 

an estimated truncal SBS4 weight greater than 0.3 and more than 

20 truncal SBS4-assigned mutations were considered as having 

high-confidence SBS4 detection. Tumours that did not meet either 

of these criteria were considered to have low-confidence SBS4 detec-

tion. All SBS4-undetected tumours also had a subclonal estimated 

SBS4 weight less than 0.1 and fewer than 50 SBS4-assigned subclonal 

mutations. Additional checks were applied, including manual quality 

control of the trinucleotide profiles of truncal, subclonal and total 

mutations as well as the number of C deletions, which have been 

reported to be smoking related. Recent studies have reported that 

SBS92 is induced by tobacco smoke, especially in bladder cancer14. 

No significant correlation between SBS92-associated mutations and 

pack-years was detectable for the TRACERx LUAD tumours, and no 

clear evidence for SBS92-associated mutations was identified in the 

SBS4-undetected LUAD tumours. In addition, a de novo signature 

analysis was applied to ensure that the SBS4-undetected tumours do 

not present any signal of smoking-induced mutagenesis.

Multivariable model for smoking-related mutation 

accumulation

To assess how variation in SBS4 mutational burden might be explained 

by clinical features collected as part of the TRACERx study, we used 

a generalized linear model with negative binomial error structure 

to account for overdispersion (MASS (7.3-54) R package). Specifi-

cally, we constructed a model with truncal SBS4 mutation counts 

as the response variable and seven explanatory variables: age; sex 

(male versus female); tumour site (right versus left lung); lobe of the 

tumour (upper or middle versus lower); number of cigarettes smoked 

per day; duration of smoking (years); and history of lung cancer in 

first-degree relatives (absent or present). Patients who never smoked 

were excluded from the analysis.

Gene-level and pathway-level estimates of selection using dN/dS

The dN/dS point mutation estimate was calculated by combining the 

dN/dS estimates of missense, nonsense and splice-site substitutions 

calculated using the dndscv and geneci functions in the R package 

dNdScv. A dN/dS clonality OR of each gene was computed as the dN/

dS estimate within the clonal mutations divided by the dN/dS estimate 

for the subclonal mutations. If the OR was >2, the gene was classified as 

truncal favoured, if the OR was <0.5 the gene was classified as subclonal 

favoured, otherwise, the gene was classified as truncal and subclonal 

favoured. The results were plotted for all genes with global q values of 

<0.1 in either truncal or subclonal mutations. For pathway-level analy-

sis, genes in our pan-cancer driver list (see the section ‘Classification 

of driver alterations’) were categorized into pathways as previously 

described78. The ‘genesetdnds function was then used to measure dN/

dS ratios for mutations presenting in these different gene groups, and 

pathways were classified using a dN/dS OR as described for genes. The 

results were plotted for all genes and pathways with global q values 

of <0.1 in either truncal or subclonal mutations. These analyses were 

performed separately for LUAD and LUSC tumours.

Defining mutually exclusive and co-occurring relationships

To determine significantly mutually exclusive and co-occurring rela-

tionships between important events in the evolutionary history of 

NSCLC, we used DISCOVER79. DISCOVER accounts for the overall dis-

tribution of events when calling mutually exclusive and co-occurring 

relationships. We used all SCNA, mutation, WGD and mutational 

signature detection events together to determine an appropriate 

background for truncal and subclonal events separately. A signature 

was considered to be present truncally or subclonally if at least 10 

truncal or subclonal mutations and 5% of truncal or subclonal muta-

tions were attributed to that signature. We then ran DISCOVER on 

truncal and subclonal events separately, limiting the analysis to those 

events that occurred in at least 10% of tumours in each instance and 

performed false discovery rate (FDR) correction. To leverage the 

statistical power of the full cohort but avoid identifying mutually 

exclusive and co-occurring relationships driven by differences in 

the rate of events in LUAD versus LUSC, we reported relationships 

that obtained q < 0.1 in the full cohort but also had q < 0.1 alone in 

either LUAD or LUSC when only considering those relationships 

significant in the full cohort for FDR correction in each histological 

subtype (reduced hypothesis testing). Any significant co-occurring 

relationships between amplifications or losses in genes on the same 

chromosome were discarded.

Defining ordering relationships

To determine ordering relationships among SCNA, mutation, WGD 

and mutational signature detection events (for which the presence of 

a truncal event alters the likelihood of a subsequent clonal event), we 

compared the rate of each subclonal event, which occurred subclonally 

in at least 10% of tumours, with or without the presence of each truncal 

event, which occurred truncally in at least 10% of tumours. We used a 

Fisher’s exact test to determine whether the rate of a subclonal event 

was significantly different with or without a given truncal event and per-

formed FDR correction, considering results with q < 0.1 as significant.

Cohort-level estimates of selection in lung-driver genes using 

dN/dS

The dndscv function in R from the dNdScv package18 was run on 

various mutation subsets to estimate selection for a curated set of 
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lung-cancer-specific genes using the genelist argument and the global 

dN/dS function output. To investigate differential selection in subclonal 

clusters of different sizes, we split subclonal clusters by whether they 

would exhibit the illusion of clonality in single region biopsy sampling 

(that is, whether they are considered clonal in any region; see the sec-

tion ‘Classifying the clonality of somatic mutations’).

Depiction of clonal structure in tumour samples using clone 

maps

In Extended Data Fig. 9b,d,e, we depict the CCFs of subclones estimated 

using our WES pipeline accounting for the nesting structure deter-

mined by phylogenetic tree building. These depictions were generated 

using the R packagecloneMap80 available at GitHub (https://github.

com/amf71/cloneMap).

GISTIC2.0 peak identification and SCNA frequency

The copy number profiles from all regions from the same patient 

were uniformly segmented (see the section ‘SCNA detection’). For 

each segment, the maximum and the minimum log2 copy number 

values from all regions were selected. GISTIC2.0 was run twice at 

the patient level, once with the maximum values across all samples 

in a tumour (to examine amplifications) and once with the minimum 

values across all samples in a tumour (to examine losses). We also 

obtained GISTIC2.0 peaks from TCGA81. Within each patient, each 

significant peak (q < 0.1) was intersected with copy number data from 

each region and was classified as truncal (all regions altered), sub-

clonal (some regions) or not altered (none). Alterations were defined 

as ploidy-normalized copy number > log2(2.5/2) for amplification 

peaks and ploidy-normalized copy number < log2(1.5/2) for loss. The 

frequency of amplifications and deletions in each peak is depicted 

in Extended Data Fig. 8b, in which peaks that had double the rate 

of clonal compared with subclonal events were classified as clonal 

favoured and peaks with double the rate of subclonal compared to 

clonal events were classified as subclonal favoured.

Parallel evolution

For each gene, parallel events were identified by considering the 

PyClone clusters that each variant was assigned to. A variant could 

be a driver SNV or indel or a copy number alteration. SNVs and indels 

were assigned to PyClone clusters (see the section ‘Identifying muta-

tion subclonal clusters and reconstructing tumour phylogenetic 

trees’). Copy number alterations per gene were assigned to a best-fit  

cluster. This was done by identifying the PyClone cluster with the highest  

PhyloCCF in the tumour regions that harboured the given copy number 

alteration. If there was a tie, the cluster that was closest to the tree trunk 

was selected. Then for each variant (SNV or indel, or SCNA), the paths 

through the phylogenetic tree from trunk to cluster were considered. 

If the paths for different mutations in the same gene did not overlap, 

the variants were considered to be parallel.

Prognosis analyses

The median follow-up time of the cohort was calculated using the 

reverse Kaplan–Meier method. Prognostic analyses were performed 

on the maximum possible fraction of the TRACERx 421 cohort for which 

the metrics in question were calculable on the basis of the availability 

of SCNA data in at least two regions and the availability of a phyloge-

netic tree. Regions with lower purity were sometimes included for 

mutational but not SCNA analysis. If only one region was of sufficient 

purity for SCNA analysis, phylogenetic trees were not built. For the 

patients who harboured synchronous multiple primary lung cancers, 

when associating genomic data from the tumours with patient-level 

survival information, we used only data from the tumour of the highest 

pathological TNM stage. One patient (CRUK0682) with synchronous 

primary lung cancers (LUAD and LUSC) and for whom the tumour with 

the highest stage (LUAD) was not sequenced was excluded from the 

survival analysis. For the patients with collision tumours, the maximum 

SCNA ITH, maximum number of subclonal WGD and maximum score 

of recent subclonal expansion were calculated across all genomically 

identified tumours to represent a measure for the patient. With these 

considerations, a total of 392 patients were eligible for survival analy-

ses. DFS was defined as the period from the date of registration to the 

time of radiological confirmation of the recurrence of the primary 

tumour registered for TRACERx or the time of death by any cause. 

During follow-up, four patients (CRUK0512, CRUK0373, CRUK0428 

and CRUK0511) developed a new primary cancer and subsequently 

developed a recurrence from either the first primary lung cancer or 

the new primary cancer diagnosed during the follow-up. These cases 

were censored at the time of the diagnosis of new primary cancer for 

DFS analysis owing to the uncertainty of the origin of the third tumour.

Mutational and SCNA ITH were calculated as previously published3 

from the clustered mutation calls and SCNA estimates as follows.  

(1) Mutational ITH was calculated by dividing the number of mutations 

estimated to be subclonal by the total number of mutations classified 

as either truncal or subclonal after phylogenetic tree building in each 

tumour. (2) SCNA ITH was calculated by dividing the percentage of the 

genome harbouring heterogeneous SCNA events, that is, those events 

that were not present in every region, by the percentage of the genome 

involved in any SCNA event in each tumour.

However, it should be noted that methodologies for SCNA estima-

tion, SCNA event calling, subclonal deconvolution of mutations and 

alignment of FASTQ files have been updated since our previous publi-

cation3, as described above.

A recent subclonal expansion score per tumour, reflecting the size 

of the largest recent subclonal expansion within each tumour region, 

was calculated as follows. First, for each tumour phylogenetic tree, 

the terminal nodes on the tree (that is, leaf nodes) were identified. 

Then for each tumour region, the maximum PhyloCCF of any of these 

leaf nodes was identified. Last, as a tumour level metric, the subclonal 

expansion score was calculated by taking the maximum across the 

regional scores, therefore describing the maximal size of the most 

recent subclone expansion in each tumour. To perform the progno-

sis analysis in Fig. 4f, the default tree was used. To take into account 

uncertainty in the tumour phylogeny, for tumour cases with multiple 

possible reconstructed phylogenetic trees, we also calculated the sub-

clonal expansion score for each alternative tree, and took the minimum 

subclonal expansion score across all alternative trees (thereby being 

conservative in the extent of any subclone expansion; Extended Data 

Fig. 10h).

Univariate and multivariable Cox proportional hazards models were 

constructed in R using the coxph function from the package survival. 

The HR of the recent subclonal expansion score was also calculated 

using the score as a continuous, rather than a thresholded categorical, 

variable where it was reported per 0.3 (= 1 standard deviation) increase 

in the score (which varied between 0 and 1).

To analyse the time-varying impact of genomic ITH on survival, the 

hazard function was estimated using a kernel-based method using 

the muhaz function of R package muhaz (v.1.2.6.4) with the default 

settings. Restricted mean time lost (RMTL) is defined as the area above 

the Kaplan–Meier curve and represents the survival time lost up to a 

specific time point (truncation time)82,83. The ratio of RMTLs between 

groups is reported to approximate the HR without requiring the pro-

portional hazards assumption84. The RMTL ratio was calculated and 

adjusted for the covariates (age, stage, pack-years, histology and the 

adjuvant treatment status) using the R package survRM2 (v.1.0-3). To 

analyse the impact of genomic ITH on time to recurrence and site of 

first recurrence (extrathoracic or only intrathoracic), multivariable 

linear regression and logistic regression were applied, respectively, 

specifically in the patients who relapsed. Intrathoracic relapse was 

defined as any relapse found within the thoracic cavity and mediasti-

num, including parietal pleura but not ribs. Extrathoracic relapse was 
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defined as any relapse found outside the thoracic cavity, including ribs 

and axillary, cervical and supraclavicular lymph nodes.

Statistical information

All statistical tests were performed in R. No statistical methods were 

used to predetermine sample sizes of this specific cohort (432 tumours 

from 421 patients); however, the size of the complete TRACERx cohort 

at study completion (842 patients) was chosen to provide statistical 

power for detection of a 0.77 HR effect on outcome by an ITH variable 

when split by the median. Tests involving comparisons of distributions 

were done using a two-tailed Wilcoxon test (wilcox.test) unless other-

wise specified, using paired or unpaired options where appropriate 

unless otherwise specified. Tests involving comparison of groups were 

done using two-tailed Fisher’s exact test (fisher.test). HRs and P values 

for survival analyses were calculated using the package survival. For 

all statistical tests, the number of data points included are plotted or 

annotated in the corresponding figure legend.

Reporting summary

Further information on research design is available in the Nature Port-

folio Reporting Summary linked to this article.

Data availability

The WES data (from the TRACERx study) used during this study has 

been deposited at the European Genome–phenome Archive, which is 

hosted by The European Bioinformatics Institute and the Centre for 

Genomic Regulation under the accession code EGAS00001006494. 

Access is controlled by the TRACERx data access committee. Details 

on how to apply for access are available on the linked page.

Code availability

The code used to run the clustering and tree-building methods is avail-

able at https://doi.org/10.5281/zenodo.6497179. The code used for the 

simulation framework is available at https://github.com/zaccaria-lab/

TRACERx_simulation_tool. The code used to determine genome dou-

bling is available at https://github.com/amf71/ParallelGDDetect. The 

code used to extract de novo signatures is available at https://github.

com/McGranahanLab/HDP_sigExtraction. The code to reproduce fig-

ures is available at https://doi.org/10.5281/zenodo.7018497. 
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Extended Data Fig. 1 | A demographic and clinical overview of the TRACERx 

421 cohort. The sex, histology, stage and smoking status are depicted for  

421 patients from the TRACERx cohort. For lung cancer cases with multiple 

primary tumours, the most advanced tumour and its stage are indicated.  

In cases where synchronous primary lung tumours were identified in a patient, 

the tumour with the most advanced stage is represented.



Extended Data Fig. 2 | CONSORT diagram and histology of the TRACERx  

421 cohort. a. CONSORT diagram for the assembly of the TRACERx 421 cohort. 

567 patients were recruited to the TRACERx study, 109 of whom were excluded 

due to subsequent changes to their clinical status, most commonly due to 

reclassification of histology at surgery. A further 37 patients were excluded due 

to sample quality control after whole exome sequencing, either due to sample 

purity or artefact signature contamination. b. A summary of samples removed 

during quality control. c. Summary of major histologies across 432 genomically 

analysed tumours.
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Extended Data Fig. 3 | Reclassification of shared origins using genomics to 

inform clinical decision making. a. A flow diagram indicating histological and 

genomic classifications of shared ancestry of multiple lesions sampled at 

surgery. Grey boxes indicate genomically confirmed synchronous multiple 

primary lung cancers. Blue boxes indicates clinically histologically diagnosed 

synchronous multiple primary lung cancers for which fresh tumour sampling 

of one of the tumours was undertaken. Orange boxes indicate genomically 

identified collision tumours that were diagnosed as single tumours 

histologically. b. A flow diagram indicating histological and genomic 

classifications of shared ancestry between tumours sampled at surgery and 

during follow-up. Pink boxes indicate recurrence of the primary tumour. Green 

boxes indicate a second primary lung cancer. Yellow boxes indicate a second 

primary cancer of non-lung origin. Origins of 183 tumours identified during 

follow up are described.



Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | Benchmarking the new phylogenetic reconstruction 

method and comparison with existing approaches. a. Simulation of tree 

topology. b. Simulation of genetic events occurring on each edge of the 

phylogenetic tree. c. Simulating multiple heterogeneous tumour samples from 

the genetic events in the tree phylogeny. d. Simulating the resulting DNA 

sequencing data from the heterogeneous tumour samples. e. Every row 

represents a different evaluation metric measuring the performance of the new 

computational method for tumour phylogenetic reconstruction (blue) and 

four existing approaches (Pyclone in orange, LICHeE in green, CITUP in red, 

and PhyloWGS in purple) when applied to 150 simulated datasets separated 

into three groups according to the number of tumour samples: 2-3 samples in 

the low category (left), 4-7 samples in the medium category (middle), and >7 

samples in the high category (right). The first row demonstrates the number of 

datasets for which each method was able to successfully reconstruct a tumour 

phylogenetic tree (solid colour indicates successful completion, hatched 

colour indicates that a method was unable to reconstruct a phylogenetic tree 

and striped colour represents that the method failed to complete within a time 

limit of 8 h). The second row represents the Adjusted Rand index (ARI) of 

mutation clustering which measures the identification of mutations belonging 

to the same tumour clone. The third row represents the mutation presence 

precision which evaluates the proportion of mutations identified as present in 

a sample that are truly present. The last row represents the ancestral 

relationship accuracy which measures the proportion of mutation pairs for 

which the correct phylogenetic relationship has been retrieved. Every dot 

refers to a different simulated dataset. Box plots show the median and the 

interquartile range (IQR), and the whiskers denote the lowest and highest 

values within 1.5 times the IQR from the first and third quartiles, respectively.



Extended Data Fig. 5 | Overview of number of regions sampled, stage, 

treatment and ITH metrics including mutational ITH, SCNA ITH and whole 

genome doubling status for 432 tumours from 421 patients in TRACERx. 

Each tumour is arranged vertically ordered first by pathological stage then by 

fraction of subclonal subclonal mutations. LCNEC = Large cell neuroendocrine 

carcinoma, CN = copy number.
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Extended Data Fig. 6 | See next page for caption.



Extended Data Fig. 6 | Benchmarking of ParallelGDDetect for detection  

of parallel subclonal whole genome doubling (WGD). a. A scatter diagram 

displaying for each tumour region between the fraction of the genome with 

major copy number of at least 2; the mean allelic difference; the ploidy; purity; 

and subclonal WGD status (determined using heterogeneity of ploidies).  

b. An identical scatter diagram depicting the fraction of the genome with at 

least a major copy number of 3. c. An example of a subclonal mutation cluster 

present in two whole genome doubled regions which contains mutations at copy 

number ~2 in areas of the genome without gains, indicating that these mutations 

occurred before the whole genome doubling event (pre-WGD) in these regions, 

but is absent in other whole genome doubled regions. d. A stacked histogram 

indicating the number of regions with truncal clusters harbouring different 

fractions of mutations with estimated mutation copy number >1.5, split by 

regions estimated to harbour 0, 1 or 2 WGD events. e. A stacked histogram 

indicating the number of regions with truncal clusters harbouring different 

fractions of mutations with estimated mutation copy number >1.5, restricting 

to genomic regions where the major copy number was equal to 2^(number of 

WGD events in that region), split by regions estimated to harbour 0, 1 or 2 WGD 

events. f. Benchmarking of ParallelGDDetect in 500 simulated tumours where 

460/460 tumours lacking multiple subclonal WGDs were correctly classified 

(100% specificity & sensitivity) and 27/40 tumours which harboured multiple 

subclonal WGDs were correctly classified (68% specificity). g. An association 

between SCNA ITH and the number of subclonal WGD events. h. An association 

between mutational ITH and the number of subclonal WGD events. i. An 

association between the fraction of subclonal mutations attributable to 

APOBEC mutagenesis (SBS2/SBS13) and the number of subclonal WGD events.



Article

Extended Data Fig. 7 | Smoking mutagenesis in LUAD and LUSC. The 

association between clinical features and truncal SBS4 counts for 233 LUADs  

in 217 ever-smoker patients (a) and 135 LUSCs in 135 ever-smoker patients (b). 

These are the results of two generalised linear models with negative binomial 

error structure using the truncal SBS4 count as the response variable and a set 

of clinical features as explanatory variables. Rate ratios are presented with 95% 

confidence intervals on a logarithmic scale. Red bars indicate the positive 

association with truncal SBS4 mutations and blue bars indicate the negative 

association. Asterisks indicate P value ranges * P < 0.05, ** P < 0.01, *** P < 0.001. 

c. Scatter plot of SBS4 weights versus counts for 432 tumours split by those in 

either ever-smokers or never-smokers highlighting the thresholds used to 

identify tumours with no significant smoking mutagenesis detected. Tumours 

with a truncal estimated SBS4 weight less than 0.1 and fewer than 50 truncal 

SBS4-assigned mutations were defined as SBS4 undetected, whereas tumours 

with an estimated truncal SBS4 weight greater than 0.3 and more than 20 

truncal SBS4-assigned mutations were considered as having a high confidence 

SBS4 detection. Tumours that didn’t meet either of these criteria were 

considered to have low confidence SBS4 detection. d. The fraction of LUAD 

tumours harbouring different whole genome doubling statuses as determined 

by ParallelGDDetect in patients who never smoked, and in patients who have 

smoked split by SBS4 detection status. Data from 229 LUADs where WGD 

statuses could be resolved are shown.



Extended Data Fig. 8 | See next page for caption.
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Extended Data Fig. 8 | Extended analysis of selection, parallel subclonal 

events within tumour phylogenies and frequency of SCNA drivers.  

a. Pathway level dN/dS analysis in LUAD and lung LUSC from 358 tumours 

(Methods). b. Frequency of amplification and deletion events in significantly 

amplified or deleted loci identified by GISTIC2.0 in 358 tumours (Methods).  

c. Overall frequency of amplifications and deletions in significantly amplified 

or deleted loci identified by GISTIC2.0 and containing known drivers in LUAD 

and LUSC per tumour across 358 tumours shown using box and whisker plots 

(Methods). Wilcoxon-test P values are shown. d. Barplots indicate for each 

oncogene (top) and tumour suppressor gene (bottom) the number of tumours 

where a parallel evolution event was observed. Pale red and blue bars indicate 

where a somatic copy number alteration (SCNA) (gain or loss) was observed 

multiple times in the same gene and in parallel in the same tumour. Dark red and 

blue bars indicate where an SCNA (gain/loss) was observed in parallel with a 

single nucleotide variant (SNV) in the same gene and in the same tumour. Black 

bars indicate where SNVs in the same gene were observed multiple times in  

the same tumour and in parallel. e. Examples of parallel events in SMARCA4.  

In CRUK0361 and CRUK0368 we noted multiple independent mutations in 

SMARCA4. These are indicated with yellow stars. In each case, the mutations 

can be mapped to branches of the tumour’s phylogenetic tree that do not 

overlap, indicating that these mutations had arisen in parallel. In the case of 

CRUK0368, a copy number loss was also observed. This is indicated by a red 

star. A more complete description of tree schematics is available in the 

Methods section. R = Region; CN = Copy number.



Extended Data Fig. 9 | A summary of regional diversity and the recent 

subclonal expansion score. a. The variation in regional diversity across all 

tumour regions in the TRACERx 421 cohort in lung adenocarcinoma (LUAD) 

compared to lung squamous cell carcinoma (LUSC). b. Examples of subclonal 

expansions with illusion of clonality which contain subclonal driver mutations 

in three tumours. c. Differences in clonal diversity between regions which have 

large (> median) or small (<= median) recently expanded subclones (subclones 

on a terminal node of the phylogenetic tree). d. An infographic describing how 

the recent subclonal expansion score is calculated. For each tumour region,  

the maximum terminal node phylogenetic cancer cell fraction (PhyloCCF, 

Methods) is computed. The tumour recent subclonal expansion score is 

subsequently taken as the maximum regional subclonal expansion score.  

e. Examples of recent subclonal expansion score in three tumours: CRUK0422, 

CRUK0527 and CRUK0023. f. Density plot of the PhyloCCF of the largest 

subclonal expansion in any region of a tumour, for ancestral subclones and 

recent (terminal) subclones.
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Extended Data Fig. 10 | See next page for caption.



Extended Data Fig. 10 | Additional analyses of ITH and the relapse risk. 

 a. Hazard function plot against time for SCNA ITH. Cross-over of hazard function 

is observed between 1 to 2 years during follow-up. b. A restricted mean survival 

time-lost (RMTL) analysis of disease-free survival (DFS) to estimate the impact 

of SCNA ITH on DFS over different time periods in the TRACERx 100 cohort 

(left, 92 patients included), post-TRACERx 100 cohort (middle, 300 patients 

included), and the whole TRACERx 421 cohort (right, 392 patients included). 

RMTL ratios are adjusted for age, pack-years, stage, histology, and adjuvant 

treatment status. c. Proportions of the timing of relapse (<1 year, 1-2 years,  

2-3 years, ≥3years) in patients who developed recurrence during the follow-up 

for 146 relapse patients. d. The difference in DFS between tumours with any 

whole genome doubling (WGD) (truncal and/or subclonal WGD) versus no  

WGD for 392 patients. e. The difference in DFS among tumours with different 

WGD statuses stratified by the number of truncal and subclonal WGDs for 392 

patients. f. A multivariable Cox proportional hazards model to predict disease 

free survival (DFS) including subclonal WGD and SCNA ITH for 392 patients.  

g. The difference in DFS among tumours stratified by the recent subclonal 

expansion score using tertiles (left) and quartiles (right) for 392 patients.  

h. A multivariable Cox proportional hazards model including subclonal WGD, 

SCNA ITH, minimum recent clonal expansion score of all possible reconstructed 

phylogenetic trees, and other clinical variables which are known to impact on 

patient outcome for 392 patients. i. A multivariable linear regression model 

including subclonal WGD, SCNA ITH, recent clonal expansion score and other 

clinical variables to predict the time to relapse within patients who relapsed for 

133 patients. j. A multivariable logistic regression model including subclonal 

WGD, SCNA ITH, recent clonal expansion score and other clinical variables to 

predict the relapse site (extra-thoracic vs only intra-thoracic) for patients with 

known relapse sites for 132 patients.
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