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Abstract
Ergothioneine is a naturally occurring amino acid and thiol antioxidant found in high amounts in mushrooms and fermented foods. Humans and
animals acquire ergothioneine from the diet through the pH-dependent activity of amembrane transporter, the large solute carrier 22Amember 4
(SLC22A4), expressed on the apical membrane of the small intestine. The SLC22A4 transporter also functions in the renal reabsorption of ergo-
thioneine in the kidney, with avid absorption and retention of ergothioneine from the diet observed in both animals and humans. Ergothioneine
is capable of scavenging a diverse range of reactive oxygen and nitrogen species, has metal chelation properties, and is predicted to directly
regulate nuclear factor erythroid 2-related factor 2 (Nrf2) activity. Although not lethal, the genetic knockout of the SLC22A4 gene in multiple
organisms increases susceptibility to oxidative stress, damage and inflammation; in agreement with a large body of preclinical data suggesting
the physiological function of ergothioneine is as a cellular antioxidant and cytoprotectant agent. In humans, blood levels of ergothioneine
decline after the age of 60 years, and lower levels of ergothioneine are associated with more rapid cognitive decline. Conversely, high plasma
ergothioneine levels have been associated with significantly reduced cardiovascular mortality and overall mortality risks. In this horizon’s
manuscript, we review evidence suggesting critical roles for dietary ergothioneine in healthy ageing and the prevention of cardiometabolic
disease. We comment on some of the outstanding research questions in the field and consider the question of whether or not ergothioneine
should be considered a conditionally essential micronutrient.
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Ergothioneine is a naturally occurring, betaine amino acid found
inmany foods. A derivative of histidine (2-mercapto-histidine tri-
methylbetaine)(1,2), ergothioneine, was first isolated in 1909 from
the ergot fungus Claviceps purpurea, from which its name was
derived(3). Structurally ergothioneine is a tautomer, with both thi-
one and thiol forms (Fig. 1). Unusual among the thiol antioxi-
dants, at physiological pH, ergothioneine exists primarily in its
thione form and has a very high redox potential(4). These unique
properties mean that ergothioneine is much more resistant to
autooxidation in comparison with other thiols such as gluta-
thione and is a very effective antioxidant and cytoprotectant,
with metal chelation properties as well(4–6). An increasing body
of evidence suggests ergothioneine may be an important dietary
nutrient for the prevention of a variety of inflammatory and car-
diometabolic diseases(6,7); and ergothioneine has alternately
been suggested as a vitamin(5), ‘longevity vitamin’(8) and
nutraceutical(6).

Although ergothioneine is present in plants and animals,
evidence for ergothioneine biosynthesis, to date, is limited to
bacteria and fungi(9,10). More recent genetic and structural

approaches have built on early work done in the 1950s(11–13)

and demonstrated that ergothioneine biosynthesis has independ-
ently emerged at least three times in the molecular evolution of
mycobacteria, anaerobic archaebacteria and cynaobacteria(10).
The typically low levels of ergothioneine found in plants have
been presumed to be acquired through their roots from soil fungi
or bacteria as part of mycorrhizal symbiosis. This has been dem-
onstrated interestingly in an achlorophyllous plant, Gastrodia
elata, whose lifecycle is dependent on the presence of symbiotic
fungi(14). However, as has long been opined, absence of evidence
is not evidence of absence(15). The systematic investigation of
ergothioneine biosynthesis in plants using genetic approaches
is ongoing(16), and new data may yet challenge the presumption
that plants do not synthesise ergothioneine.

Mushrooms are typically the richest source of ergothioneine
in the human diet, with amounts of ergothioneine varying wildly
depending on strain and growing conditions(17). Differences in
cultivation practices, including cultivation substrates(18), and soil
health and tillage methods(19), likely explain much of the large
variation observed in the ergothioneine contents of both
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mushrooms and other foods from different places of production
(Tables 1 and 2). Divergent sample preparation and analytical
methods likely also contribute to the variable ergothioneine con-
centrations reported to date. Fermented foods can also be signifi-
cant sources of ergothioneine (Table 1), with the concentration
of ergothioneine dependent on the different species of bacteria
used in fermentation(20). In addition, spirulina, the dried biomass
of cyanobacteria (Arthrospira platensis) sold commonly as a
dietary supplement, contains relatively high amounts of ergo-
thioneine(21). It is interesting to observe that ergothioneine is
found in high amounts in certain plants, mushrooms and spiru-
lina, that have been used and investigated for their medicinal
properties(14,22,23).

Absorption, transport and tissue distribution

The seminal identification of a mammalian membrane trans-
porter for ergothioneine by Grundemann and colleagues in
2005(24) provided a mechanism by which ergothioneine is
acquired from the diet, and further evidence for an essential
role for ergothioneine in vivo. Genetic knockout of solute car-
rier 22A member 4 (SLC22A4), part of the large solute carrier
22A (SLC22A) family, in both mice(25) and zebrafish(26), resulted
in dramatic reduction of ergothioneine to undetectable concen-
trations in many tissues (e.g. liver ergothioneine was 121 ± 25
in wild-type mice v. <2·13 μg/g in SLC22A4 knockout mice)(25),
and increased susceptibility to oxidative stress and inflamma-
tion, although organisms remained viable. Nomenclature can
be challenging as the SLC22A family is comprised of organic
cation (OCT), organic anion (OAT) and ‘novel organic cation’
(i.e. cation and zwitterion; OCTN) transporters. SLC22A4 was
originally termed OCTN1(27) and is found referred to as both
OCTN1 and the ergothioneine transporter in the literature.
With the recent de-orphaning of SLC22A15 as a second ergo-
thioneine transporter expressed highly in the brain(28), and like-
lihood of further ergothioneine transporters yet to be
characterised (see Fig. 2 for overview and outstanding ques-
tions related to ergothioneine membrane transport), we will
use the HUGO Gene Nomenclature Committee (HGNC)-
approved human gene nomenclature here.

Differentially expressed between tissues, SLC22A4 is notably
highly expressed both on the apicalmembrane of the small intes-
tine where it functions in a pH-dependent fashion to take ergo-
thioneine up from the diet(29) and on the apical membrane of
proximal tubular cells in the kidney where it functions in renal
reabsorption(30). Although, like other SLC22 family members,

SLC22A4 is capable of transportingmultiple substrates, the trans-
port efficiencies for other confirmed substrates are orders of
magnitude lower than that of ergothioneine, and increasing evi-
dence from independent laboratories demonstrates SLC22A4 is
highly specific for ergothioneine(28,31,32). In humans, SLC22A4
is also very highly expressed in nucleated erythroid precursor
cells, bone marrow and fetal (but not adult) liver(24,27); and
experimental data are consistent with a role for ergothioneine
in erythroid proliferation and differentiation(33). In addition,
SLC22A4 is expressed highly in circulating neutrophils and
monocytes, suggestive of a requirement for ergothioneine’s anti-
oxidant function in these cells, which are predisposed to oxida-
tive stress(34).

Several lines of evidence suggest that there are other
ergothioneine transporters yet to be characterised(34). Perhaps
most notably, a basolateral transporter responsible for the efflux
of ergothioneine in polarised cells such as enterocytes and proxi-
mal tubules cells of the liver has yet to be identified. Secondly,
plasma concentrations of tritiated ergothioneine were reported
to increase in response to oral administration of ergothioneine
in SLC22A4 knockout mice, albeit not as highly as in wild-type
mice(35). Although transport by SLC22A15 cannot be ruled out
as an explanation, it is (at least in humans) expressed at very
low levels in the small intestine(28) and has a much lower trans-
port efficiency for ergothioneine in comparison with SLC22A4,
so unlikely to explain the kinetics reported by Sugiura and col-
leagues(35). The authors suggest the plasma increase was
because the knockout mice were lacking the efficient liver
uptake observed in the wild-type mice. However, it is not clear
how ergothioneine could have crossed the enterocyte in the
absence of SLC22A4 or another transporter. Lastly, the question
of whether or not there is a mitochondrial (or other subcellular
location)-specific transporter for ergothioneine is unresolved(36).
While early reports of mitochondrial localisation of SLC22A4 are
disputed(34,36), recent data from a rat model of pre-eclampsia
showed ergothioneine supplementation decreased mitochon-
dria-specific H2O2 in vivo(37), and the question of mitochondrial
targeting of ergothioneine remains plausible based on previous
in vitro data(5).

In both animals and humans, avid absorption and retention
of ergothioneine have been observed(38,39). Regulatory safety
approval for ergothioneine supplementation in humans has
only occurred quite recently (2016 in Europe(40) and 2018 in
the USA(41)), and to date only one study has examined ergothio-
neine supplementation in humans(39). In this pharmacokinetic
study, forty-five healthy humans received placebo, 5, or 25 mg
encapsulated ergothioneine/d for 7 d and were followed up for
an additional 4 weeks. The data show that ergothioneine was
rapidly absorbed and largely retained by the body, with large
increases in plasma ergothioneine levels and only minimal
increases (<4 %) in urinary excretion observed(39). In mice,
daily oral administration of a high dose of ergothioneine
(70 mg/kg/d) for 28 d showed that while ergothioneine pri-
marily accumulated in liver and whole blood, levels also
increased in multiple tissues including kidney and brain(38).
In both studies(38,39), the putative metabolites of ergothioneine
(Fig. 3; chemistry reviewed in detail by Servillo(42)), the oxidative
degradationproducts hercynine (desulfurated ergothioneine) and

Fig. 1. Chemical structure of ergothioneine. A histidine-derived amino acid,
ergothioneine, exists as a tautomer with both thione and thiol forms. As indicated
by the length of the reaction arrows, at physiological pH, the thione structure
predominates.
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Table 1. Ergothioneine content in fermented foods and mushrooms

Food group Food name Place of production Method of measurement Content (mg/kg) Reference

Fermented foods Beer Germany LC-MS 0·02wwt (102)

Tempeh Singapore LC-MS 201·13dwt (17)

Fermented rice, bran Japan LC-MS 176·00wwt (103)

Fermented rice, white Japan LC-MS 59·80wwt (103)

Fermented rice, brown Japan LC-MS 85·50wwt (103)

Fermented shiitake with Lactobacillus acidophilus Korea HPLC 1668·40wwt (20)

Fermented shiitake with Lactobacillus fermentum Korea HPLC 1389·00wwt (20)

Fermented shiitake with Lactobacillus plantarum Korea HPLC 1278·60wwt (20)

Fermented shiitake with Pediococcus pentosaceus Korea HPLC 1775·20wwt (20)

Mushrooms Abalone Singapore LC-MS 324·70dwt (17)

Black fungus Singapore LC-MS 94·20dwt (17)

Button, crimini USA LC-MS 680·00dwt (104)

Button, crimini USA HPLC 550·00dwt (105)

Button, crimini USA HPLC 400·00dwt (106)

Button, crimini Singapore LC-MS 104·10dwt (17)

Button, crimini Japan HPLC 24·17wwt (107)

Button, portabella USA LC-MS 680·00dwt (104)

Button, portabella USA HPLC 450·00dwt (106)

Button, portabella Singapore LC-MS 190·90dwt (17)

Button, portabella Germany LC-MS 0·93wwt (102)

Button, white Greece UV-Vis 7100·00dwt (18)

Button, white Greece LC-MS 521·20dwt (18)

Button, white USA LC-MS 410·00dwt (104)

Button, white USA HPLC 210·00dwt (104)

Button, white Singapore LC-MS 154·40dwt (17)

Button, white Japan HPLC 78·98wwt (107)

Button, white Germany LC-MS 0·46wwt (102)

Chanterelle Germany LC-MS 0·06wwt (102)

Chestnut Japan HPLC 1290·00dwt (108)

Enoki Singapore LC-MS 346·40dwt (17)

Enoki Japan HPLC 151·17wwt (107)

King trumpet (Pleurotus eringii) Japan HPLC 77·07wwt (107)

Gargal Japan HPLC 2040·00dwt (108)

Giant leucopax Japan HPLC 1700·00dwt (108)

Grey knight (Tricholoma sp.) Japan HPLC 910·00dwt (108)

Hyspatys marrcus Japan HPLC 14·97wwt (107)

Jelly ear Japan HPLC 32·29wwt (107)

Maitake USA HPLC 1130·00dwt (106)

Maitake Japan HPLC 670·00dwt (108)

Mushrooms Maitake Singapore LC-MS 20·20dwt (17)

Maitake, black Japan HPLC 20·19wwt (107)

Maitake, white Japan HPLC 103·92wwt (107)

Nameko (butterscotch) Japan HPLC 460·00dwt (108)

Nameko (butterscotch) Japan HPLC 12·69wwt (107)

Oyster Greece UV-Vis 9200·00dwt (18)

Oyster USA HPLC 2590·00dwt (106)

Oyster USA LC-MS 2010·00dwt (104)

Oyster Japan HPLC 1980·00dwt (108)

Oyster Greece LC-MS 607·30dwt (18)

Oyster Germany LC-MS 118·91wwt (102)

Oyster, golden Japan LC-MS 10 000·00wwt (46)

Oyster, golden Greece UV-Vis 8300·00dwt (18)

Oyster, golden Greece LC-MS 822·10dwt (18)

Oyster, golden, cultivated in grape marc Greece UV-Vis 11 800·00dwt (18)

Oyster, golden, cultivated in wheat straw Greece UV-Vis 8300·00dwt (18)

Oyster, golden, cultivated in grape marc Greece LC-MS 637·20dwt (18)

Oyster, golden, cultivated in olive by-products Greece LC-MS 884·50dwt (18)

Oyster, golden, cultivated in wheat straw Greece LC-MS 822·10dwt (18)

Oyster, king USA LC-MS 1720·00dwt (104)

Oyster, king Japan HPLC 1410·00dwt (108)

Oyster, king Singapore LC-MS 541·70dwt (17)

Oyster, king Japan HPLC 234·85wwt (107)

Polypore USA LC-MS 1840·00dwt (104)

Porcini Germany LC-MS 528·14wwt (102)

Porcini Singapore LC-MS 1812·40dwt (17)

Price Japan HPLC 19·85wwt (107)

Shiitake USA LC-MS 2090·00dwt (104)

Shiitake USA HPLC 1980·00dwt (106)
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ergothioneine sulfonate, as well as its methylated form, S-methyl-
ergothioneine, were measured. In humans, hercynine and S-
methyl-ergothioneine levels correlated with ergothioneine levels
in blood, but ergothioneine sulfonate levels were at the lower lim-
its of detection(39).

Interestingly, while SLC22A4 is highly expressed in rat(43)

and mouse liver(44), in humans, although highly expressed in
fetal liver(27), it is typically barely detectable in adult liver(7,45).
In the human pharmacokinetic study from Cheah and col-
leagues(39), while plasma levels of ergothioneine decreased
when supplementation was withdrawn, levels in whole blood
continued to increase in a dose–response fashion reachingmaxi-
mal levels 3 weeks after withdrawal of supplement, which were
sustained at 4 weeks follow-up. Whether or not bone marrow,
where both SLC22A4 and SLC22A15 are highly expressed(28),
or another extra-hepatic tissue is the site of ergothioneine reten-
tion in humans remains an open question. Likewise in mice,
questions also remain about what cell type in liver SLC22A4
are expressed in and where ergothioneine accumulates.
SLC22A4 has been reported to be expressed in non-parenchymal
cells(35), and to be upregulated in activated hepatic stellate
cells(46). However, these cell types are far fewer in number in
the liver than hepatocytes, which represent 70–80 % of liver
and are responsible for first-pass metabolism; a fact difficult to
reconcile with the efficient hepatic uptake reported in mice
administered intravenous ergothioneine(35,47).

Biological roles

Extensive in vitro data (reviewed in detail by Cheah and
Halliwell(4) and Borodina and colleagues(6)) strongly suggests
ergothioneine functions as an antioxidant and acts intracellularly
as a cytoprotective agent. Ergothioneine reacts almost instanta-
neously with hydroxyl radicals in vitro(48) and also scavenges a
diverse range of additional reactive oxygen and nitrogen
species(4,6). Ergothioneine deactivates singlet-oxygen species
at higher rates than other thiols(49), and it has been hypothesised
that the primary function of ergothioneinemaybe toprevent dam-
age at intracellular sites of high singlet-oxygen generation(26).
Redox repair of the oxidised forms (ergothioneine disulfide
and 5-oxo-ergothioneine) of ergothioneine can be rapidly pro-
vided by ascorbate(48) or can be achieved enzymatically by either

glutathione reductase in presence of glutathione, or the selenoen-
zyme thioredoxin reductase(50).

While the historical study of dietary antioxidants bears cau-
tionary lessons(51), in support of a critical antioxidant role for
ergothioneine in vivo, the genetic knockout of SLC22A4 in
Caenorhabditis elegans increased oxidative damage and
reduced lifespan(52). In addition, knockout of SLC22A4 in zebra-
fish(26) and mice(25) also resulted in increased susceptibility to
oxidative stress and inflammation for both organisms. Notably,
under basal conditions, high expression of SLC22A4 is typically
observed in cells with routinely high amounts of oxidative stress
such as granulocytes, bone marrow cells, intestinal and ocular
tissues(7). However, accumulation of ergothioneine and
increased expression of SLC22A4 in other (injured) tissues have
been observed in animal models of liver fibrosis(46), fatty liver
disease(53) and chronic kidney disease disease(54); as well as in
humans with Crohn’s disease(45). Prompting the hypothesis that
the accumulation of ergothioneine is an adaptive mechanism to
minimise oxidative damage(55).

Initial reports that a gain-of-function polymorphism (L503F
variant, rs1050152) in SLC22A4 that increased transport effi-
ciency of ergothioneine was associated with increased risk of
Crohn’s disease(56) were subsequently shown to have been con-
founded by the SLC22A4 gene being in linkage disequilibrium
with the interferon regulatory factor 1 (IRF1) gene, which was
the locus conferring Crohn’s disease susceptibility(57).
Similarly, an initial report that an intronic SNP (rs2268277) in
SLC22A4was associatedwith rheumatoid arthritis(58) did not rep-
licate in independent populations(59). In this case, the rs2268277
SNP is located at a runt-related transcription factor 1 (RUNX1)
binding site located in intron 6 of the SLC22A4 gene(58).
Reporter gene assay data suggests RUNX1 has a stronger sup-
pressive effect on the minor rs2268277 allele(58).

In addition, multiple other SNP have been found in the
SLC22A4 gene, with functional characterisation of eight non-
synonymous SNP in Chinese and Indian populations of
Singapore finding four of the variants had reduced transporter
activity(60). A large difference in basal concentrations of ergothio-
neine in whole blood was observed in a pharmacokinetic study
by Cheah and colleagues(61), who also noted that participants
with the highest basal levels of ergothioneine also appeared
to take up more of the supplemented ergothioneine. However,
whether or not polymorphisms in SLC22A4 affect ergothioneine

Table 1. (Continued )

Food group Food name Place of production Method of measurement Content (mg/kg) Reference

Shiitake Korea HPLC 1260·40wwt (20)

Shiitake Japan HPLC 400·00dwt (108)

Shiitake Singapore LC-MS 353·50dwt (17)

Shiitake Japan HPLC 123·01wwt (107)

Shimeji Japan HPLC 55·52wwt (107)

Shimeji, buna Singapore LC-MS 432·60dwt (17)

Shimeji, buna Japan HPLC 84·06wwt (107)

Shimeji, white Singapore LC-MS 197·50dwt (17)

White fungus Singapore LC-MS 5·80dwt (17)

Willow Singapore LC-MS 296·80dwt (17)

Wood ear Singapore LC-MS 6·40dwt (17)

Wood ear Singapore LC-MS 6·40dwt (17)

wwt, wet weight; dwt, dry weight; UV-Vis, ultraviolet–visible spectrometry.
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tissue concentrations and/or are linked to disease risk in some
individuals remains an open question that should be examined
in much larger genetic cohorts (e.g. the Biobank cohort with n
500 000(62)).

Along with RUNX1, transcription of the SLC22A4 gene has
also been shown to be regulated by the NF-κB transcription fac-
tor, and the inflammatory cytokines IL-1 β and TNF-α(63), data
suggestive of ergothioneine accumulation being part of an

Table 2. Ergothioneine content in foods

Food group Food name Place of production Method of measurement Content (mg/kg) Reference

Vegetables and fruits Asparagus Mexico LC-MS 163·25dwt (17)

Asparagus Thailand LC-MS 10·24dwt (17)

Asparagus Malaysia LC-MS 0·57dwt (17)

Asparagus, white Singapore LC-MS 18·20dwt (17)

Basil leaf Singapore LC-MS 4·92dwt (17)

Black turtle bean Germany LC-MS 13·49wwt (102)

Broccoli Singapore LC-MS 0·38dwt (17)

Broccoli Germany LC-MS 0·24wwt (102)

Celery Germany LC-MS 0·08wwt (102)

Cumin Singapore LC-MS 2·60dwt (17)

Durian Singapore LC-MS 1·09dwt (17)

Garlic Singapore LC-MS 34·60dwt (17)

Garlic Germany LC-MS 3·11wwt (102)

Ginger Singapore LC-MS 0·17dwt (17)

Ginseng root Singapore LC-MS 0·69dwt (17)

Japanese seaweed Singapore LC-MS 2·34dwt (17)

Kale Singapore LC-MS 0·22dwt (17)

Kidney beans Singapore LC-MS 2·09dwt (17)

Kiwi fruit Singapore LC-MS 1·99dwt (17)

Onion Singapore LC-MS 1·13dwt (17)

Onion Germany LC-MS 0·23wwt (102)

Parsnip Singapore LC-MS 2·23dwt (17)

Passion fruit Singapore LC-MS 1·22dwt (17)

Pepper Singapore LC-MS 2·57dwt (17)

Persimmon Singapore LC-MS 1·52dwt (17)

Pomegranate Singapore LC-MS 1·30dwt (17)

Red kidney bean Germany LC-MS 4·52wwt (102)

Spinach Germany LC-MS 0·11wwt (102)

Sweet bean Singapore LC-MS 1·33dwt (17)

Tomato Singapore LC-MS 0·20dwt (17)

Grains, nuts and seeds Almond Singapore LC-MS 1·87dwt (17)

Brazilian nut Singapore LC-MS 4·45dwt (17)

Brown rice Germany LC-MS 0·04wwt (102)

Gingko nut Singapore LC-MS 3·98dwt (17)

Macadamia nut Singapore LC-MS 1·65dwt (17)

Oat Singapore LC-MS 1·84dwt (17)

Oat bran Germany LC-MS 4·41wwt (102)

Pistachio nut Singapore LC-MS 1·90dwt (17)

Grains, nuts and seeds Pumpkin seed Germany LC-MS 1·49wwt (102)

Spelt Germany LC-MS 0·61wwt (102)

Wheat bran Germany LC-MS 0·84wwt (102)

Wheat germ Germany LC-MS 0·63wwt (102)

Meats Beef loin steak Germany LC-MS 1·33wwt (102)

Chicken breast Germany LC-MS 1·15wwt (102)

Chicken liver Germany LC-MS 10·78wwt (102)

Lamb loin fillet Germany LC-MS 1·20wwt (102)

Pork kidney Germany LC-MS 7·66wwt (102)

Pork liver Germany LC-MS 8·71wwt (102)

Pork loin fillet Germany LC-MS 1·68wwt (102)

Eggs and milk Egg yolk Germany LC-MS 0·68wwt (102)

Egg white Germany LC-MS 0·38wwt (102)

Fresh milk Singapore LC-MS 0·25dwt (17)

Seafood Trout Germany LC-MS 0·07wwt (102)

Processed foods Aspic (pork) Germany LC-MS 0·46wwt (102)

Blood sausage (pork) Germany LC-MS 1·08wwt (102)

Ham Germany LC-MS 1·12wwt (102)

Liver sausage (pork) Germany LC-MS 1·03wwt (102)

Salami (pork) Germany LC-MS 0·51wwt (102)

Soya bean curd Singapore LC-MS 3·71dwt (17)

Soya milk Singapore LC-MS 2·3dwt (17)

Whole grain brown bread Germany LC-MS 0·47wwt (102)

Whole grain wheat bread Germany LC-MS 0·53wwt (102)

dwt, dry weight; wwt, wet weight.
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orchestrated cellular immune defence. Moreover, multiple in
vitro(64,65) and in vivo(66,67) studies suggest that ergothioneine
activates the transcription factor nuclear factor erythroid 2-
related factor 2 (Nrf2), which triggers the cellular antioxidant
defence system. Recent molecular docking and dynamic simula-
tion data predict ergothioneine binds Nrf2 directly, preventing
Nrf2 degradation(67). These data underscore the pleiotropic cyto-
protective effects of ergothioneine beyond its redox activity.

Healthy ageing and the prevention of cardiometabolic
disease

In addition to the discussed antioxidant activities, ergothio-
neine has been demonstrated to chelate divalent cations(68)

and protect against gamma(69) and UV(70) radiation with
dermato-protective effects observed in human dermal fibro-
blasts and keratinocytes(64,70,71), prompting the use of ergothio-
neine in some skincare formulas. Beyond cosmetic concerns, the
potential anti-ageing effects of ergothioneine in the brain have
also been of significant research interest, with in vivo data from
animal models showing that ergothioneine protects neurons
from damage by cisplatin(72), β-amyloid(73), and age-related

Fig. 2. Physiological transport of ergothioneine in vivo. (a) Ergothioneine is transported across cell membranes by the solute carrier family 22 member’s 4 and 15
(SLC22A4 and SLC22A15) in a Na-dependent manner. Intracellularly, ergothioneine inhibits oxidative and DNA damage through multiple pathways. Whether
ergothioneine is transported into the mitochondria is unknown. How ergothioneine is exported from cells is also unknown. (b) Uptake of ergothioneine from
the diet into enterocytes is mediated by SLC22A4 expression on the apical membrane. The basolateral transporter is unknown. (c) Ergothioneine is rapidly cleared
from plasma. SLC22A4 is highly expressed in granulocytes, monocytes and nucleated erythroid precursors, but not mature erythrocytes. (d) Although ergothio-
neine accumulates in mouse liver, SLC22A4 is not expressed on hepatocytes. In humans, while SLC22A4 is highly expressed in fetal liver, it is only detected in
very low amounts in adult liver. (e) Some data suggest that SLC22A4 is expressed in liver non-parenchymal cells(35) and is upregulated in activated hepatic stellate
cells in mice(46). (f) Ergothioneine is avidly retained through renal reabsorption mediated by SLC22A4 expression at the apical membrane of proximal tubular cells
in the kidney. The basolateral transporter is unknown.

Fig. 3. The putative metabolites of ergothioneine. (a) Hercynine. (b)
Ergothioneine sulphonate. C. S-methyl-ergothioneine.
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learning and memory deficits(74). In humans, blood levels of
ergothioneine start declining linearly with the age after
60 years(75). A number of small human case–control studies
have found lower ergothioneine levels in older adults with
mild cognitive impairment(75), dementia(76) and Parkinson’s
disease(77), in comparison with age-matched healthy individ-
uals. In support of these data, in a prospective elderly cohort
in Singapore (n 470, mean age 73), lower baseline ergothio-
neine levels were associated with poorer baseline cognitive
performance and faster rates of decline in function in multiple
cognitive domains over 5 years of follow-up(78). Whether or
not ergothioneine supplementation (25 mg given three times
a week for 52 weeks) may be beneficial in delaying or revers-
ing cognitive decline is the subject of an ongoing clinical trial
in elderly individuals with mild cognitive impairment(79).

Separately, in a larger, longer-term prospective Swedish
cohort (n 3236 participants with median follow-up of
21·4 years), higher plasma levels of ergothioneine were asso-
ciated with significantly lower risk of coronary disease,
cardiovascular mortality and overall mortality (hazard ratios
per 1 SD increment of ergothioneine were 0·85, 0·79 and
0·86, respectively)(80). These data re-enforce preclinical stud-
ies that suggest the antioxidant and anti-inflammatory activ-
ities of ergothioneine interfere with atherogenesis and
protect vascular and microvascular endothelial cells from
oxidative stress and hyperglycaemia(81). Interestingly, in a
meta-analysis of prospective cohort studies (n 601 893 partic-
ipants) mushroom consumption was associated with lower
risk of all-cause mortality (pooled risk ratio: 0·94; 95% CI:
0·91, 0·98)(82).

Increased reactive oxygen species are a hallmark feature of
the pathogenesis of multiple cardiometabolic diseases, including
atherosclerosis, diabetes, fatty liver and CVD. Early work in per-
fused rat heart preparations suggested that ergothioneine pro-
tected against ischemia-induced (oxidative) myocardial
damage(83), which was supported by later studies showing ergo-
thioneine protects against reperfusion injury in rat liver(84) and
intestinal(85) ischemic reperfusion models. Although an older
study of perfused rabbit hearts showed no reduction in the dam-
age caused by reperfusion following ischaemic insult(86), more
recent work in diabetic rats showed that 6 weeks of ergothio-
neine supplementation resulted in decreased biomarkers of car-
diac injury, lipid peroxidation and inflammation(87).

Ergothioneine is taken up by endothelial cells via
SLC22A4(88), where it has been demonstrated to limit reactive
oxygen species production and damage from a variety of insults,
including hyperglycaemia, through multiple mechanisms(88,89).
Decreased expression of adhesion molecules, such as endo-
thelial-leucocyte adhesion molecule-1 (E-selectin), intercellular
adhesion molecule-1 and vascular cell adhesion molecule-1,
has been observed in human aortic endothelial cells cultured
with ergothioneine(90). Moreover, reduced adhesion of mono-
cytes, a key initiation step in atherosclerosis, to the human aortic
endothelial cells was observed(90). The cytoprotective (reduced
reactive oxygen species and reduced cell senescence) effects of
ergothioneine on endothelial cells exposed to hyperglycaemic
conditions have been shown to be dependent on sirtuin 1 and

sirtuin 6 activities and their cellular targets(89), which notably
include NF-κB, the aforementioned transcriptional regulator of
SLC22A4(63).

Beyond vascular endothelial cells, supplementing the drink-
ing water of diabetic rats with ergothioneine for 7 weeks
improved multiple markers of liver injury(91). Specifically,
marked reductions in liver weights and TAG contents were
observed, alongside reductions in liver biomarkers of lipid
peroxidation (malondialdehyde content) and inflammation
(TNF-α and transforming growth factor beta, TGF-β1). In addi-
tion, the ergothioneine-supplemented rats had much lower
serum concentrations of the liver enzymes alanine aminotrans-
ferase, aspartate aminotransferase and alkaline phosphatase.
Ergothioneine supplementation attenuated diabetes-related
alterations in sirtuin-1 and NF-κB mRNA expression in the liver,
as well as the sterol regulatory element-binding transcription fac-
tor 1 and fatty acid synthase, the rate-limiting enzyme in fatty acid
synthesis(91). Separate work from the same investigators showed
benefit from ergothioneine taken alone or in combination with
metformin for improving markers of kidney injury (hypertrophy,
serum creatinine, blood urea nitrogen and urine albumin and
protein)(67). Notably, the reduction of lipid peroxidation with
ergothioneine supplementation has been reported in multiple
injury models(67,84,85,91) and is of relevance to non-alcoholic fatty
liver disease (NAFLD) pathogenesis.

Closely associatedwith cardiometabolic disease, NAFLD is an
independent risk factor CVD(92), and a prevalent co-morbidity of
type 2 diabetes(93), with recent estimates suggesting 47–64 % of
individuals with type 2 diabetes have NAFLD globally(94).
While ergothioneine has been demonstrated to be protective
in a number of other in vivo models of liver injury(46,66,95,96),
including the aforementioned model of diabetic liver dam-
age(91); to date, only one study has examined SLC22A4 and
ergothioneine in a preclinical model of NAFLD(53). In this
study, guinea pigs fed diets with either moderate or high levels
of fat and cholesterol diets, increased liver expression of
SLC22A4 mRNA, and had increased liver ergothioneine con-
tents after 2 and 6 months of diet. This was hypothesised by
the authors to be protective, as oxidative biomarkers (liver
F2-isoprostane and protein carbonyl contents) were not differ-
ent between dietary groups(53).

In short, sufficient preclinical and epidemiological data
exist to hypothesise that ergothioneine may play an important
role in the prevention of cardiometabolic disease (CVD, type
2 diabetes and NAFLD) and promotion of healthy ageing.
Recent regulatory safety approval for ergothioneine supplemen-
tation in humans has facilitated the requisite human intervention
trials required to test such hypotheses. In addition to the afore-
mentioned trial investigating the effects of ergothioneine supple-
mentation on cognitive decline(79), we have recently published
our ErgMS study protocol(97), which aims to investigate the
effects of ergothioneine supplementation in middle-aged adults
with metabolic syndrome. Designed as a three-arm randomised,
double-blind, placebo-controlled intervention trial, the ErgMS
study will supplement participants with placebo, 5 or 30 mg/d
ergothioneine for 12 weeks, taking measurements of metabolic
syndrome risk factors, serum markers of oxidative stress (lipid
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peroxidation), inflammation, blood platelet function and liver
function at baseline, and after 6 weeks and 12 weeks of
supplementation(97).

Future horizons

With many questions about ergothioneine function in humans
outstanding, it is a fascinating time to be considering the hori-
zons for ergothioneine-related research. As highlighted, given
differences between humans and experimental models, there
remain multiple unresolved questions about the molecular
biology of ergothioneine transport. Membrane transporters,
including the solute carrier superfamily, are notoriously diffi-
cult to study experimentally, and it seems probable that we
have more to learn about how hydrophilic ergothioneine
traverses polarised cells, as well as subcellular organelles.
Related to transporter biology, whether the liver acts as the
site of ergothioneine retention in humans, as in mice, is uncer-
tain since SLC22A4 mRNA is barely detectable in adult human
liver. Indeed, knowledge of rate and patterns of induction of
SLC22A4 expression in human tissues under different (e.g.
ageing and disease) circumstances is limited. Whether or
not polymorphisms in SLC22A4 adversely affect an individ-
ual’s ergothioneine status and/or are linked to disease risk
is also unknown. In addition, experimental confirmation that
ergothioneine directly interacts with Nrf2 in a variety of tissues
would further underscore the centrality of ergothioneine in
cellular antioxidant defence.

Ergothioneine has alternately been suggested as a vitamin(5),
‘longevity vitamin’(8) and a nutraceutical(6). In weighing up the
relative semantics of these terms, it is worth revisiting seminal
discussions of essential v. Conditionally essential nutrients.
Classic feeding studies established nutrients as essential if,
when removed from a purified diet, growth failure, failure
to maintain nitrogen balance or illness occurred. Deficient
nutrients were then fed back incrementally to establish mini-
mum requirements. By the early 1980s, on the basis of such
studies, thirteen vitamins, twelve minerals, nine amino acids,
one fatty acid and three electrolytes were considered essential
for healthy humans(98). In parallel, conditionally essential
nutrients were defined as those that may be synthesised in
adequate amounts endogenously but could become rate-lim-
iting under clinical conditions of stress – whether from ana-
bolic processes (e.g. growth, pregnancy and lactation),
infection or trauma(99). Critically, conditionally essential
nutrients, when supplied exogenously, correct a clinically rel-
evant outcome measure(99,100)

In the context of clinical nutrition, Grimble in 1993 proposed
five criteria to define conditionally essential nutrients in
humans, whereby their deficiency results in either: failure to
maintain growth or nitrogen balance, organ dysfunction,
delayed recovery, metabolic or clinical abnormalities(99).
Metabolic and clinical abnormalities encompass obesity and
cardiometabolic disease, and it is interesting to note that in
CVD therapy, positive data are accumulating for therapeutic
benefit from a number of potential conditionally essential
nutrients, including amino acids (e.g. arginine, carnitine and

coenzyme Q10, among others)(101). In contrast, currently,
there are no data in relation to ergothioneine intervention
in humans. Such data will be critical for determining whether
ergothioneine might be a conditionally essential micronu-
trient required for healthy ageing.

Conclusions

Ergothioneine is a dietary antioxidant acquired from food and
retained with tissue specificity in the body through the activity
of the SLC22A4 membrane transporter. Genetic knockout of
SLC22A4 in multiple organisms has been shown to increase
organism susceptibility to oxidative stress, damage and inflam-
mation. High plasma ergothioneine levels have been associated
with significantly reduced cardiovascular mortality, and overall
mortality, risks in humans. Conversely, low levels of ergothio-
neine have been associated with poorer cognitive performance
and faster rates of cognitive decline in elderly individuals.
Although a confluence of data suggests that ergothioneine acts
as a powerful, pleiotropic cytoprotectant agent, and supplemen-
tal ergothioneine is already marketed direct to consumers for its
anti-ageing and anti-inflammatory effects, controlled human
intervention trials are just beginning to directly investigate the
effects of ergothioneine supplementation in humans. Such data
are required to assess whether ergothioneine is a dietary micro-
nutrient required for healthy ageing and the prevention of cardi-
ometabolic disease in humans.
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