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Quantum dynamics in certain kinetically-constrained systems can display a strong sensitivity
to the initial condition, wherein some initial states give rise to persistent quantum revivals – a
type of weak ergodicity breaking known as ‘quantum many-body scarring’ (QMBS). Recent work
[Phys. Rev. B 105, 125123 (2022)] pointed out that QMBS gets destroyed by tuning the system
to a quantum critical point, echoing the disappearance of long-range order in the system’s ground
state at equilibrium. Here we show that this picture can be much richer in systems that display
QMBS dynamics from a continuous family of initial conditions: as the system is tuned across the
critical point while at the same time deforming the initial state, the dynamical signatures of QMBS
at intermediate times can undergo an apparently smooth evolution across the equilibrium phase
transition point. We demonstrate this using the PXP model – a paradigmatic model of QMBS that
has recently been realized in Rydberg atom arrays as well as ultracold bosonic atoms in a tilted
optical lattice. Using exact diagonalization and matrix product state methods, we map out the
dynamical phase diagram of the PXP model with the quenched chemical potential. We demonstrate
the existence of a continuous family of initial states that give rise to QMBS and formulate a ramping
protocol that can be used to prepare such states in experiment. Our results show the ubiquity of
scarring in the PXP model and highlight its intriguing interplay with quantum criticality.

I. INTRODUCTION

Quantum many-body scarring (QMBS) is a form of
weak ergodicity breaking in which a small number of
states retain memory of their initial wavefunction de-
spite the rest of the system thermalizing (see recent re-
views [1–4]). The set of models hosting QMBS states has
rapidly expanded in recent years [5–20], including exper-
imental realizations in several cold atom platforms [21–
25]. At the same time, the underlying origin of memory-
retaining initial states remains the subject of on-going
work. Some recently identified mechanisms giving rise
to such phenomena include proximity to an integrable
model [19, 26, 27], dynamical symmetry [5, 28–32] and
eigenstate embedding constructions [33].

Signatures of QMBSs were initially observed in ex-
periments on Rydberg atom arrays [21], where energy
cost due to van der Waals interactions strongly disfavors
two neighboring atoms occupying excited states – a form
of kinetic constraint called the Rydberg blockade [34].
When the Rydberg blockade is strong, the atoms are de-
scribed by an effective “PXP” model [35, 36]. This is a
one-dimensional (1D) chain of spin-1/2 degrees of free-
dom, where the spin-up state |1〉 corresponds to a Ryd-
berg atom occupying an excited state (and, similarly, for
the spin-down state, |0〉, which denotes an atom in the

ground state). Thus, the number of up spins translates
into the number of Rydberg excitations, and we will use
such nomenclature interchangeably. The PXP Hamilto-
nian for N atoms takes the form (in units ~ = 1)

HPXP(µ) = Ω

N−1∑
j=0

Pj−1XjPj+1 + µ

N−1∑
j=0

Qj , (1)

where X = |1〉 〈0|+|0〉 〈1| is the Pauli-X operator describ-
ing the Rabi flipping of each atom. Below we will set the
Rabi frequency to Ω = 1. The projector P = |0〉 〈0| im-
plements the constraint by preventing the Rabi flip from
generating any neighboring excitations. The complemen-
tary projector, Q = 1−P = |1〉 〈1|, counts the number of
excitations in the system and thus defines the chemical
potential term, µ. We will consider two types of bound-
ary conditions for the Hamiltonian in Eq. (1): for analyti-
cal considerations and exact diagonalization simulations,
we will use periodic boundary conditions (PBCs), which
are implicit in Eq. (1) after identifying site j + N ≡ j.
For matrix product state simulations in large systems,
we will instead use open boundary conditions (OBCs),
where the first and the last flip term are taken to be
X0P1 and PN−2XN−1, respectively.

In the absence of chemical potential (µ=0), the PXP
model displays non-thermalizing dynamics when initial-

ar
X

iv
:2

30
1.

03
63

1v
2 

 [
qu

an
t-

ph
] 

 1
6 

Ja
n 

20
23

https://orcid.org/0000-0002-3139-4562
https://orcid.org/0000-0003-2288-7661
https://orcid.org/0000-0002-3749-6375
https://orcid.org/0000-0002-2782-2675
https://orcid.org/0000-0001-7936-762X
https://orcid.org/0000-0002-0659-7990
https://orcid.org/0000-0002-8451-2235
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.105.125123


2

ized in the Néel state, |ψ(0)〉 = |Z2〉 ≡ |1010...10〉 [21].
Evolving this state with respect to the Hamiltonian in
Eq. (1), one observes that the return probability peri-
odically reaches values close to unity [6]. By contrast,
other initial states exhibit fast equilibration, as expected
in a chaotic system. Conversely, this atypical dynamics
is also reflected in ergodicity breaking amongst a subset
of eigenstates of the PXP model [27, 37, 38], even in the
presence of perturbations [39, 40] or in energy transport
at infinite temperature [41].

The chemical potential term plays a central role in this
paper. Recent study [24] has found that new QMBS
regimes can emerge for µ > 0. One prominent exam-
ple is the polarized state, |0〉 = |000....0〉. While in the
absence of chemical potential the |0〉 state is believed to
thermalize [21], at non-zero chemical potential, it starts
to revive, much like the Néel state. Moreover, periodic
modulation of µ was found to enhance the QMBS be-
havior [22, 42, 43]. Furthermore, as the chemical po-
tential is tuned to µc ≈ −1.31, the ground state of the
PXP model undergoes an Ising phase transition associ-
ated with a spontaneous breaking of Z2 symmetry [44–
47], whose signatures have also been observed in the
programmable Rydberg atom quantum simulators [48].
This equilibrium phase transition (referred to as ‘EPT’
throughout this paper) is in the same universality class
as the one induced by varying the quark mass in the
Schwinger model of quantum electrodynamics in (1+1)-
dimension [49]. The lattice formulation of the latter,
known as the U(1) quantum link model, exactly maps
to the PXP model in Eq. (1) for the case of spin-1/2
degrees of freedom [50].

The EPT has a profound effect on the low-energy
physics of the PXP model, but it is not immediately obvi-
ous that it should directly impact QMBS, which manifest
in the quench dynamics at infinite temperature. Never-
theless, Ref. 51 recently argued that there is a link be-
tween this EPT and QMBS. Namely, when tracing the
eigenstates responsible for the quantum revival of the
|Z2〉 state, Ref. 51 found that these states merge with
the thermal bulk of the energy spectrum as the EPT is
approached. On the contrary, upon moving away from
the EPT towards µ→ −∞, the degenerate ground states
acquire high overlap with the |Z2〉 state and its partner
translated by one site,

∣∣Z̄2

〉
≡ |0101 . . .〉. Thus, the |Z2〉

state can only thermalize as one approaches the EPT,
suggesting a connection between QMBS and criticality.
This was also demonstrated experimentally in the Bose-
Hubbard quantum simulator [52]. Moreover, by investi-
gating the quantum Ising model in transverse and longi-
tudinal fields, Ref. 53 argued that QMBS from the |Z2〉
state is smoothly connected to integrability by continu-
ously turning off the constraint, induced by the longitu-
dinal field.

In this work, we map out the dynamical phase dia-
gram of the PXP model corresponding to global quenches
of the chemical potential from some initial value, µi, to
an arbitrary final value, µf. This provides a means of

probing out-of-equilibrium dynamics from more complex
initial states beyond |Z2〉 or |0〉, which had been accessed
in previous experiments by taking the limits µi → ±∞.
We identify QMBS regimes in the dynamical phase dia-
gram based on signatures of ergodicity breaking, such as
the deviation of observable expectation values from the
canonical ensemble predictions and the presence of quan-
tum revivals. Our results show that the previously known
scarring regimes, associated with |Z2〉 and |0〉 states, in-
deed break down when approaching the EPT, either via
µi → µc or µf → µc, in agreement with Refs. 51 and
52. However, we also find a new QMBS regime corre-
sponding to the initial state being the ground state near
the EPT. Using the time-dependent variational principle
(TDVP) framework for QMBS, developed in Ref. 54, we
identify a semiclassical picture behind QMBS dynamics.
Across much of the phase diagram away from the EPT
point, the QMBS dynamics can be understood in terms
of a periodic trajectory that passes through the |0〉 state,
with the radius of the trajectory controlled by the chem-
ical potential. Allowing for a continuous family of initial
states – the ground states of HPXP(µi) – we find sur-
prisingly robust QMBS signatures at intermediate times
that smoothly bridge across the EPT. We work out a
ramping protocol for the preparation of such states, pro-
viding a recipe for probing the dynamical phase diagram
in experiment.

The remainder of this paper is organized as follows.
We start by presenting the results of numerical sim-
ulations of the dynamical phase diagram of the PXP
model for global quenches of the chemical potential in
Sec. II. In Secs. III-V we analyze in detail the vari-
ous regimes of this phase diagram. Sec. III contains a
brief introduction of the TDVP formalism that will be
useful for semiclassical interpretation of the results. In
Sec. IV we focus on QMBS regimes of the phase dia-
gram, while Sec. V discusses the special case when the
system is initialized in the ground state near the EPT.
In Sec. VI, we show how the dynamical phase diagram
can be probed in experiment by preparing the desired
ground states using a ramping protocol. Our conclusions
are presented in Sec. VII, while Appendices contain de-
tails of the TDVP formalism, finite-size scaling analysis,
and additional characterizations of the phase diagram.

II. DYNAMICAL PHASE DIAGRAM OF THE
PXP MODEL

In this paper we are interested in the following out-
of-equilibrium probe of the PXP model in Eq. (1): start
from the ground state of HPXP(µi) and then evolve with
the same Hamiltonian but generally different chemical
potential value, HPXP(µf). We assume a closed system
evolving under unitary Schrödinger dynamics. Since the
energy level spacings in the PXP model are expected
to obey the Wigner-Dyson distribution for all values
of µ [6, 35], the nonequilibrium dynamics induced by
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Figure 1. Dynamical phase diagram for global quenches
starting in the ground state of HPXP(µi) and evolving with
HPXP(µf). (a) The difference between maximal and minimal
revival fidelity δF over time interval 1 ≤ t ≤ 20 following
the quench. Regions with strong fidelity revivals have been
enumerated (see the text for details). (b) Same as (a) but
the color bar showing the deviation of the excitation density
from the thermal value, Eq. (3). Data is obtained using MPS
simulations [55] for a chain of N = 51 atoms with OBCs,
maximum bond dimension χ = 128 and time step δt = 0.025.
Dashed lines mark the EPT at µc ≈ −1.31. In both plots,
the cross marks the point (µi = −0.76, µf = 1.60) that will be
analyzed in Sec. IV. The diamond marks the optimal reviving
point in the µi = µc plane, which will be discussed in Sec. V.

quenching µ should be described by random matrix the-
ory [56]. In particular, quenching the chemical potential
by a large amount ∼O(1) should initialize the system in
a generic high-temperature state, which is expected to
lead to rapid thermalization according to the Eigenstate
Thermalization Hypothesis (ETH) [57–59]. This means
that the expectation value of any local observable should
converge towards the value predicted by the canonical en-

semble within any symmetry-resolved sector of the many-
body Hilbert space. Deviation from this prediction, i.e.,
ergodicity breaking, can be detected through a number
of probes, two of which we utilize.

One probe of ergodicity breaking, convenient in the
context of QMBS, is quantum fidelity or return proba-
bility of the wavefunction to its initial value,

F(t) = | 〈ψ(0)|ψ(t)〉 |2. (2)

For a thermalizing initial state, F(t) rapidly drops to a
value close to zero and remains exponentially small in
system size at late times. Therefore, if the average fi-
delity over a time interval � Ω−1 is much larger than
∼ O(exp(−N)), we expect non-ergodic behavior. How-
ever, one should exclude trivial cases such as µi ≈ µf

when the ground state of HPXP(µi) is approximately an
eigenstate of HPXP(µf), as this would lead to the system
getting “stuck” in an eigenstate, with fidelity F(t) ≈ 1
and potentially never decaying. To avoid such cases, we
compute the difference δF between minimum fidelity and
maximum fidelity over a time window t ∈ [t0, t1], with
t0=1 and t1=20. This window is large enough to exceed
the initial relaxation on the scale & Ω−1 (thus excluding
the high fidelity near t = 0), yet small enough (t1 . N/Ω)
to be free of the boundary effects. The obtained δF in
the µi − µf plane is shown in Fig. 1(a). The fidelity has
been evaluated in a system of N = 51 atoms using ma-
trix product state (MPS) [60] simulations based on the
algorithm in Ref. 55, and we have checked that the re-
sults agree closely with exact diagonalization for systems
with N < 30 atoms.

Before we comment on the interesting regimes of the
phase diagram, we note that we have also computed the
deviation of an observable expectation value from the
thermal ensemble prediction, shown in Fig. 1(b). This
provides a complementary probe of ergodicity breaking
that is more amenable to experimental measurements.
For the observable, we chose the density of excitations

in the system, n = (1/N)
∑N
j=1Qj , which is readily

available in existing experimental setups [21, 24]. After
quenching the system, we compute the integrated mean-
square deviation of the excitation density from the ther-
mal value over the time window between t0 = 10 and
t1 = 20,

MSD(n) =
1

t1 − t0

∫ t1

t0

|〈ψ(t)|n|ψ(t)〉 − nth|2 dt. (3)

The thermal value is defined as

nth = Tr(ρthn), (4)

where the thermal density matrix is given by the usual
Boltzmann-Gibbs expression, ρth = exp(−βH)/Z, with
the partition function Z = Tr exp(−βH) and the inverse
temperature β determined from the condition

〈ψ(0)|HPXP(µf)|ψ(0)〉 = Tr(ρthHPXP). (5)
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The plot of MSD(n) is shown in Fig. 1(b), where the
bright non-ergodic regions match those of high fidelity
in Fig. 1(a). The color contrast is stronger in the fi-
delity plot due to the exponential sensitivity of that quan-
tity. A few distinct regimes where fidelity displays large-
amplitude oscillations have been marked by (1)-(7) in
Fig. 1(a). These regions will be analyzed in detail in the
subsequent sections. There, we will argue that regions
(1), (2) and (3) can be identified as QMBS regimes. Re-
gions (1) and (3) fall under the “universality class” of
|Z2〉 and |0〉 QMBS behavior, as we explain in Sec. III.
On the other hand, while the dynamics in region (2) has
some similarities with regions (1) and (3), in Sec. IV we
will highlight the distinctions of this QMBS regime. As
it turns out, regions (4), (5), (6) and (7) have a simple
origin, which will be explained briefly in Appendix A.

A few comments are in order. The QMBS fidelity ap-
pears to vary smoothly between regions (1) and (2) in
Fig. 1(a), while they are separated by the EPT (indi-
cated by the dashed line). In fact, we find the most
robust revivals correspond to the ground state precisely
at the EPT point (highlighted by the diamond in Fig. 1).
This intriguing case will be addressed in detail in Sec. V.
Here we note that we have confirmed the existence of
QMBS across the critical point in much larger systems
(N ≤ 400 spins) using MPS numerics. This is in contrast
to the µf = µc case, where we see no ergodicity breaking
in Fig. 1(a), as also expected from Refs. 51 and 52.

III. TIME-DEPENDENT VARIATIONAL
PRINCIPLE AND PERIODIC ORBITS FOR

MANY-BODY SCARRING

Without chemical potential, quantum dynamics from
the |Z2〉 state in the PXP model can be visualized as
a classical periodic orbit [54, 61, 62]. This is accom-
plished in the framework of the Time-Dependent Vari-
ational Principle (TDVP) [63–65], which we briefly re-
view in this section. TDVP establishes a parallel be-
tween many-body dynamics in the PXP model and the
analogous dynamical phenomena of a single particle in
a stadium billiard, in which the wavepackets are anoma-
lously long-lived when prepared along the periodic orbits
of the corresponding classical billiard [66, 67]. TDVP will
provide a natural semiclassical language for interpreting
the essential features of the dynamical phase diagram in
Fig. 1.

A. A brief overview of TDVP formalism

The starting point of TDVP is to specify a variational
manifold of states M, parameterized by some continu-
ous variable, and then project the Schrödinger dynamics
into that manifold in a way that manifestly conserves the
energy. The nature of states belonging toM determines
to what extent we can interpret the dynamics as “semi-

classical”. For example, it would be simplest to consider
a manifold spanned by tensor products of spin-coherent
states. This would yield a “mean-field” description for
the dynamics, where each atom precesses independently.
However, the Rydberg blockade intrinsically builds in lo-
cal correlations into the system, due to the fact that any
neighboring excitations, |. . . 11 . . .〉, are projected out of
the Hilbert space. Ordinary spin-coherent states clearly
violate this blockade condition.

Another way of defining a manifold, which naturally
accommodates the Rydberg blockade constraint, is to
take the span over MPS states with bond dimension χ
controlling the amount of correlations necessary to cap-
ture the projected dynamics [65]. To simplify matters as
much as possible, we will consider the dynamics to be
spatially periodic with a (infinitely repeated) unit cell of
size K (below we will be primarily interested in small
unit cells with K = 1, 2). For a 1D chain of size N , the
resulting MPS ansatz is given by

|ψMPS({x})〉=
∑
{σ}

Tr
(N/K−1∏
m=0

Aσ1+Km(x1)Aσ2+Km(x2)

AσK+Km(xK)
)
|σ1σ2σ3 · · ·σN 〉 . (6)

Here Aσ(xi) are (χ × χ)-dimensional matrices that de-
pend on variational parameters xi = (θi, φi), where the
angles θi, φi are akin to the Bloch sphere angles of each
spin in the unit cell. The physical degree of freedom
σi = 0, 1 labels the basis states of a single spin. Follow-
ing Refs. 54 and 68, in order to make things analytically
tractable, we will restrict to χ = 2 and chose

A1(θi, φi) =

(
0 e−iφi

0 0

)
, A0(θi, φi) =

(
cos θi 0
sin θi 0

)
. (7)

Due to A1A1 = 0, this ansatz ensures that configura-
tions with neighboring spin-up are forbidden, thus our
manifold M = span{|ψMPS(x)〉 |∀x} is consistent with
the Rydberg blockade.

With the choice of ansatz in Eqs. (6)-(7) and setting
K = 1, we are left with only two variational degrees
of freedom, (θ, φ). Choosing (0, 0) recovers the state
|0〉 ≡ |000 . . .〉, while (π/2, π/2) corresponds to the equal-
weight superposition of the two Néel states,∣∣Z+

〉
≡ 1√

2

(
|Z2〉+

∣∣Z̄2

〉)
. (8)

Note that with K = 1 unit cell periodicity, the states
|Z2〉,

∣∣Z̄2

〉
do not individually belong to the manifold. In-

stead, if we extend the ansatz to K = 2, then (θ1, θ2) =
(0, π/2) recovers the |Z2〉 state. Thus, our manifold with
bond dimension χ = 2 captures the initial product states
that we expect to play an important role for QMBS dy-
namics in the PXP model.

After defining the manifold, the next step is to mini-
mize the difference between exact Hamiltonian dynamics
and its projection to the manifold,

min
{x}

∥∥∥∥i~ ∂∂t |ψMPS({x})〉 −H |ψMPS({x})〉
∥∥∥∥ . (9)
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Figure 2. Sketch of the TDVP manifold M for the PXP model with chemical potential µ. Red regions represent areas of high
leakage where the TDVP approximation breaks down, as quantified by Eq. (10). The Néel state is denoted by |Z2〉 ≡ |1010 . . .〉
and its translated partner – the anti-Néel state is

∣∣Z̄2

〉
≡ |0101 . . .〉, while

∣∣Z+
〉

= (|Z2〉 +
∣∣Z̄2

〉
)/
√

2. The polarized state is
|0〉 ≡ |0000 . . .〉. (a) For a two-site unit cell K = 2 and µ = 0, the |Z2〉 state lies on a periodic trajectory identified in Ref. 54.
We also illustrate the trajectory of |0〉 state, which is predicted by TDVP to evolve to

∣∣Z+
〉
; however, this point lies within

a region of high leakage where the TDVP dynamics does not accurately describe the quantum evolution. This is consistent
with the |0〉 state thermalizing at µ = 0. (b) Taking K = 1 we focus on the evolution of the |0〉 state trajectory as µ is varied.
For µ = 0, the trajectory is periodic but passes through a region of high leakage. When µ 6= 0, the trajectory shrinks, whilst
gradually exiting the high leakage area, and QMBS dynamics starts to emerge in the full system. In this regime, the QMBS
dynamics can be seen as an oscillation between |0〉 and a new state, |0̄(µ)〉, defined in Eq. (11). Finally, in the extreme µ→ ±∞
limit, the orbit shrinks to a point.

This results in the Euler-Lagrange equations of motion
for the classical variables x [65]. In the case of the PXP
model, this step can be performed analytically in the
limit ofN →∞ to obtain the equations of motions for the
θ and φ angles, see Appendix B for K = 1 and Refs. 54
and 68 for some K = 2 and K = 3 examples. Integrating
this system of differential equations yields the trajectory
inM taken by |ψMPS({θ,φ})〉 during the course of quan-
tum evolution. Fig. 2 shows a pictorial representation of
the manifold and the projection of exact dynamics into
it, for the cases of interest in the PXP model perturbed
by the chemical potential.

Importantly, beyond equations of motion, it is possible
to estimate “quantum leakage”: the difference between
exact quantum evolution and its projection into the man-
ifold [54]. Quantum leakage, γ, is defined as the instan-
taneous rate at which the exact wave function leavesM:

γ2 = lim
N→∞

1

N

∥∥∥∥iH |ψMPS(x)〉+
∑
j

ẋj∂xj |ψMPS(x)〉
∥∥∥∥2.
(10)

Red regions in Fig. 2 indicate areas of large γ2. In these
high-leakage regions, the instantaneous TDVP dynamics
is expected to poorly capture the exact dynamics. Con-
sequently, trajectories passing through such regions will
generally be of limited accuracy. On the other hand, as
first noted in Ref. 54, the special property of the PXP
phase space is that it has regions of remarkably low leak-
age, such as the region traversed by the semiclassical or-
bit associated with the |Z2〉 state. This is depicted in
Fig. 2(a) where the orbit is sketched, lying within a re-
gion of low leakage. Note that, in general, there can exist
multiple periodic orbits within the same manifold [61].

B. TDVP interpretation of the dynamical phase
diagram

Much of the PXP dynamical phase diagram in Fig. 1
can be understood by considering the trajectory of the
polarized state in the TDVP manifold introduced above.
Fig. 2(b) sketches this trajectory for three different values
of the chemical potential µ. Within TDVP, a periodic
orbit exists even for µ = 0. However, the orbit passes
through the superposition of the two Néel states, |Z+〉,
which is located in the high-leakage region. The TDVP
dynamics is therefore not a good approximation in this
case, which accounts for the absence of revivals observed
in the full quantum dynamics.

The addition of a finite chemical potential µ contracts
the trajectory and pushes it into a low-leakage region, as
shown in the middle panel of Fig. 2(b), effectively allow-
ing the revivals from the polarized state to emerge. As
we will explain in Sec. IV, in this intermediate range of µ,
the ground state of HPXP(µ) occupies an antipodal posi-
tion on the orbit, corresponding to a chemical-potential
dependent state we label |0̄(µ)〉, given by Eq. (7) for unit
cell size K = 1:

|0̄(µ)〉 = |ψMPS(θmax, φmax)〉 , (11)

with angles (θmax, φmax) denoting the antipodal point
in the TDVP orbit of the initial polarized state, see
Fig. 2(b). As µ has the effect of deforming the trajec-
tory, the antipodal angles also depend on µ, as will be
specified in Eq. (16) below. Note that the sign of µ has
no effect on the deformation of the particular orbit dis-
cussed here, as we explain in Appendix C. Finally, in the
extreme limit µ→ ±∞, the trajectory is restricted to the
vicinity of the initial state and the dynamics is effectively
frozen, as shown in the right panel of Fig. 2(b).
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IV. SCARRING IN GAPPED REGIMES OF
THE PHASE DIAGRAM

In this section we focus on regions (1), (2), and (3) of
the phase diagram in Fig. 1, in particular for the values of
the chemical potential away from the EPT. Based on the
discussion of TDVP in Sec. III and Fig. 2, the origin of
regions (1) and (3) can be understood by examining the
form of the PXP ground state in the presence of chemical
potential. When µi → −∞, excitations are favored and
the ground state is (for PBCs) a superposition of the two
Néel states, |Z+〉 in Eq. (8). By contrast, µi → ∞ pe-
nalizes excitations, therefore the ground state is the po-
larized state |0〉. The superposition state |Z+〉 is known
to display revivals when quenched to µf = 0 [37], while
the polarized state revives when quenched with µf 6= 0
as shown more recently in Refs. 24 and 43. By continu-
ity, these limiting cases explain the mechanism behind
revivals in regions (1) and (3) of Fig. 1. In the remainder
of this section, we focus on the more interesting region (2)
where the pre-quench initial state is an entangled state
with low overlap on both |0〉 and |Z2〉 states.

A. Scarring in region (2) of the phase diagram

We focus on region (2) of the phase diagram in Fig. 1
and pick (µ∗i , µ

∗
f ) = (−0.76, 1.60) as an illustrative point

in this region, marked by the cross in Figs. 1(a)-(b).
QMBS dynamics at this point was first noted in Ref. 24
and here we will characterize it in detail and explain its
origin. The evolution of fidelity and overlap with the po-
larized and Néel state are shown in Fig. 3(a), where per-
sistent fidelity revivals can be observed while the overlap
with |Z2〉 remains negligible throughout the evolution.
Curiously, while the initial state at µ∗i has low overlap
with |0〉, the evolved state does develop a relatively high
overlap with |0〉 state, approximately half way between
the main revival peaks – see the green line in Fig. 3(a).
This is reminiscent of the |Z2〉 state, which in the pure
PXP model undergoes state transfer to

∣∣Z̄2

〉
at half the

revival period [54], implying that the ground state of
HPXP(µ∗i ) is related to the polarized state.

Another tell-tale signature of QMBS is a slower growth
of entanglement entropy, SE(t), for special initial states.
The entanglement entropy is defined as the von Neu-
mann entropy of the reduced density matrix, ρA =
TrB |ψ(t)〉〈ψ(t)|, obtained by tracing out degrees of free-
dom belonging to one half of the chain (denoted B). We
plot the dynamics of SE(t) in Fig. 3(b). Compared to
both |Z+〉 and a random product state, |σRandom〉, the
entropy growth from the ground state of HPXP(µ∗i ) is
strongly suppressed. Moreover, for the latter state, we
observe clear oscillations in the time series of SE(t), rem-
iniscent of entropy dynamics in the PXP model in the
absence of chemical potential [6].

We emphasize that the special point (µ∗i , µ
∗
f ) is repre-

sentative of the entire region (2) in the phase diagram,

0.0

0.5

1.0
| (t)| 2 |

| (t)|0 |

| (t)| (0) |
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t
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S
(t
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| random(t)

| +

| (t)

Figure 3. Dynamics of quantum fidelity and entanglement
entropy, following a global quench of the chemical potential,
µ∗
i = −0.76 → µ∗

f = 1.6, corresponding to the point marked
by the cross in Fig. 1(a). Quantum fidelity for the initial state
|ψ(0)〉 defined as the ground state of the PXP model with µ∗

i .
Also shown is the projection of the time-evolved state on the
|Z2〉 and |0〉 states. While the overlap with the |Z2〉 state
is low throughout the evolution, the overlap with |0〉 reaches
relatively high values between the main revival peaks. (b)
Growth of entanglement entropy, SE(t), for the same initial
state |ψ(0)〉 as in (a), as well as for a random state |σRandom〉
and

∣∣Z+
〉

state. The initial state |ψ(0)〉 has strongly sup-
pressed entanglement growth compared to the other cases.
Data is for system size N = 28 obtained using exact diago-
nalization with PBCs.

where similar QMBS phenomenology is numerically ob-
served. In the remainder of this section, we use TDVP
to garner a further understanding of this QMBS regime
from a semiclassical point of view.

B. TDVP analysis of scarring in region (2)

Before we apply TDVP to extract the semiclassical de-
scription of the dynamics in Fig. 3, we need to make sure
that the PXP ground state in the presence of chemical
potential is represented within the manifold spanned by
states in Eq. (6). In a recent work [69], a method of “op-
timal steering” has been devised to smoothly prepare a
class of PXP ground states based on the minimization of
quantum leakage along the trajectory. To show that the
detuned PXP ground states are captured in the TDVP
manifold, here we follow a simpler approach of optimiz-
ing the overlap |〈ψMPS({x})|ψ(µi)〉|2, where |ψ(µi)〉 is
the ground state of the PXP model in Eq. (1). For a
unit cell size K = 1, we performed exhaustive numerical
sampling at system size N = 20 and found that most
states belonging to the TDVP manifold (> 90% of them)
can be approximated with better than 98% accuracy by a
ground state of Eq. (1). As a side note, we mention that
in order to prepare the states in the TDVP manifold with
unit cell K ≥ 2, we need to make two modifications to
the preparation procedure: (i) we need to allow chemical
potential to be different for different atoms within the
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Figure 4. (a) Phase space portrait of quantum dynamics within the K = 1 TDVP manifold for the PXP model with µf=1.6.
Grey shading indicates quantum leakage (darker regions represent larger leakage). The trajectory of the |0〉 state for the given
value of µf is highlighted in red, while colored symbols indicate the location of the PXP ground states corresponding to various
µi indicated on the color bar. The ground states with µi≈−0.76 can be seen to lie close to the point which is antipodal to the
|0〉 state in its trajectory. With changing µf, this trajectory either expands or compresses, meaning all ground states will lie on
this antipodal point for some µf. (b) In region (2) of the phase diagram, for a given µf , |0̄(µf)〉 state is well-approximated by
a detuned PXP ground state with some µi. Color bar shows the highest overlap between the |0̄(µf)〉 state, given by Eq. (16)
for a range of fixed µf ∈ [−5, 5], and the family of ground states of HPXP(µi). Dashed lines denote the EPT. For negative
chemical potentials, especially relevant for region (1) of the phase diagram, the mapping requires an additional phase pulse, as
described in Appendix D. (c) Matching the detuned PXP ground state with a |0̄〉 state becomes progressively more difficult at
the critical point (dashed line) as system size N is increased. In contrast to panel (b), here we fix the PXP ground state at µi

and vary µf to find the optimal |0̄(µf)〉 state with the highest overlap. All plots are obtained using exact diagonalization with
PBCs and system size N = 20 in panels (a)-(b).

unit cell; (ii) we need to include a unit-cell modulated
pulse in the z-direction. As explained in Appendix D,
after these generalizations, one can also successfully pre-
pare TDVP states with K ≥ 2. While we do not have
a general proof, this provides a numerical confirmation
of the representability of the ground states of the PXP
model with a suitably-defined generalization of the chem-
ical potential within the TDVP manifold.

Having established that our pre-quench ground state
at arbitrary µi can be approximately mapped to an MPS
state in the K = 1 TDVP manifold for some variational
parameters (θ, φ), we now proceed to describe the dy-
namics from this initial state using the classical dynam-
ical system defined by (θ(t), φ(t)). From Eq. (9), one
can derive the TDVP equations of motion for K = 1
and arbitrary chemical potential µ (see Appendix B for
details):

θ̇ = − cos θ cosφ
(
1 + sin2 θ

)
, (12)

φ̇ = µ+
sinφ

sin θ

(
1− 4 sin2 θ − sin4 θ

)
. (13)

Unlike the special case µ = 0, where φ variables can be
set to zero in the flow-invariant subspace [54], for general
values of µ one must consider both θ and φ variables
simultaneously [61].

Integrating Eqs. (12)-(13), we plot the phase space
θ, φ portrait for the chemical potential value µf = 1.6 in
Fig. 4(a). The greyscale background indicates the quan-
tum leakage at any given point in the manifold,

γ2 =
sin6θ

1 + sin2θ
, (14)

which only depends on θ variable (see Appendix B). By
integrating the equations of motion for µf = 1.6, start-
ing from the polarized state |ψMPS(0, 0)〉, we obtain the
trajectory plotted in red color in Fig. 4(a). Generally,
for any |µf| 6= 0, the polarized state has a periodic or-
bit within TDVP. When µf is large, the orbit is pinned
around θ = 0. Decreasing |µf| stretches out the orbit un-
til the maximal point in the trajectory eventually tends
towards the |Z+〉 superposition state, (θ, φ) ≡ (π/2, π/2).
Due to the presence of a quantum leakage gradient, the
|Z+〉 point is not reached for any finite time, consis-
tent with the lack of revivals from the polarized state
in full quantum dynamics for sufficiently small values of
µf. Thus, we conclude that the orbit corresponding to
the cross in Fig. 1(a) is a compromise between two com-
peting effects: the orbit is sufficiently stretched so that it
has nontrivial dynamics, while at the same time, by be-
ing not stretched too much, it can avoid the large leakage
in the vicinity of |Z+〉 state.

To verify this picture across the entire region (2), we
study the projection of the PXP ground state at µi,
|GS(µi)〉, to the TDVP manifold. We numerically max-

imize the overlap |〈ψMPS(θ, φ)|GS(µi)〉|2, with the MPS
state given in Eq. (6). We plot the resulting (θ, φ) phase
space coordinates for a variety of µi in Fig. 4(a), where
the colored dots correspond to the ground states from
our phase diagram in Fig. 1(a). As expected, some of
the ground states are “distant” from |Z+〉 or |0〉 but
tend towards either in their respective limits. All suc-
cessfully optimized ground states lie on the same φ plane
in Fig. 1(a), such that the deformation of the trajectory
means they will correspond to some maximum point µf
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on the polarized state trajectory, denoted by the state
|0̄〉. By analogy with the Néel state, whose translation
partner – the anti-Néel state – displays identical scarring
behavior [19], here we have a similar relation between |0〉
and |0̄(µf)〉 states. The main difference with the anti-Néel
state is that |0̄〉 state depends on the value of µf.

To substantiate this further, we analytically derive the
phase-space coordinates corresponding to |0̄(µf)〉. Using
Eq. (12), we see that the turning point in the gradient of
θ along the trajectory is governed by cosφ. A sign flip
therefore must occur when φ = ±π/2. Because energy is
exactly conserved along a TDVP trajectory, |0̄(µf)〉 must
have the same energy as the polarized state. For states
belonging to K = 1 TDVP manifold, the energy density
is given by

E(θ, φ)/N =
sin θ

1 + sin2 θ

(
µf sin θ + 2 cos2 θ sinφ

)
. (15)

For the polarized state, E(0, 0) = 0 and, setting φmax =
π/2, allows us to determine the θmax coordinate of the
|0̄(µf)〉 turning point:

sin θmax =

(
|µf| −

√
µ2
f + 16

)
/4. (16)

In Fig. 4(b) we test the overlap of the state |0̄(µf)〉, with
the MPS angles given by Eq. (16), against the family of
ground states of HPXP(µi). We scan through a set of
values µf ∈ [−5, 5] and, for each µf , plot the maximum
overlap obtained by maximizing over µi. Although µf < 0
is not particularly relevant for region (2), we note that
the optimization fails there. This, however, can be fixed
by including an additional phase pulse, as explained in
Appendix D. Comparing Fig. 4(b) to Fig. 1(a), we see a
striking correspondence between the successful optimiza-
tion and region (2) in the phase diagram, which confirms
that the QMBS phenomena in region (2) are indeed as-
sociated with |0̄(µf)〉 state.

Finally, in Fig. 4(c) we study the system size scal-
ing of the mapping between the PXP ground state with
chemical potential and states in the TDVP manifold.
We scan for the maximal overlap of the ground state
at some µi with the set of all |0̄(µf)〉 states in the in-
terval µf ∈ [−20, 20]. Remarkably, for the vast majority
of region (2) when µi > 0, we see a near perfect over-
lap between the ground state and |0̄(µf)〉, independent of
system size – suggesting that the TDVP state captures
well the PXP ground state in region (2). Nevertheless, in
Fig. 4(c) we also observe a breakdown of the mapping at
the EPT point µi = µc. This is expected since the ground
state at the critical point develops a diverging entangle-
ment entropy and the χ = 2 MPS approximation must
deteriorate as system size is increased, since an area-law
state cannot capture the critical ground state in the ther-
modynamic limit. This naturally leads to the question:
is the observed scarring in the critical ground state an
artefact of finite size and what is its origin?

V. INTERPLAY BETWEEN SCARRING AND
CRITICALITY

We now focus on the nature of QMBS regime when
quenching from the critical ground state at µi = µc. De-
spite the complexity of this state, we find robust signa-
tures of ergodicity breaking in the area between regions
(1) and (2) in Fig. 1(a). For example, by fixing µi = µc

and scanning µf to determine the largest δF , we find the
most robust revivals occur at µf = 0.633 – a point that
was marked by the diamond in Fig. 1. This turns out
to be one of the best reviving points in all of regions
(1), (2) and (3), including the |Z2〉 and |0〉 initial states.
As discussed above, the TDVP semiclassical formalism
is not well-suited for describing this case as it cannot
capture the diverging entanglement entropy of the initial
state. This immediately raises the question if the ob-
served QMBS behavior is a finite size effect and whether
one should rather expect a sharp boundary between re-
gions (1) and (2) in Fig. 1 in the thermodynamic limit.

To probe the robustness of QMBS revivals in the ther-
modynamic limit we simulated the quench dynamics µi =
−1.31 → µf = 0.6 in large systems up to N = 401 using
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Figure 5. Fidelity and entanglement entropy dynamics for
the quench from the critical ground state with µi = −1.31
to µf = 0.6. (a) Fidelity revivals persist up to the largest
system size N = 401. While the fidelity decays with N , the
fidelity density of the first revival peak, − log(F1)/N , plotted
against inverse system size, 1/N , extrapolates to a value close
to 0 (inset), indicating non-ergodic behavior in the thermo-
dynamic limit at a finite time. (b) Dynamics of the half-chain
entanglement entropy SE(t) for the same quench. We scale
the entropy by the critical value given by the Cardy-Calabrese
formula with central charge c = 1/2 [70], which collapses the
data to 1 at t = 0 (inset shows the unscaled entropy). The
growth of entropy is seen to be linear, with pronounced os-
cillations. Data is obtained by MPS simulations with OBCs,
bond dimension χ = 300, and time step δt = 0.025.
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the MPS method [55] in Fig. 5. The fidelity, plotted in
Fig. 5(a), demonstrates that revivals exist in all accessi-
ble system sizes. The fidelity is not an intensive quantity,
therefore it is generically expected to decay in the N →
∞ limit, as indeed can be observed in Fig. 5(a). Thus,
to compare different system sizes, we take the fidelity at
the first revival peak F1 and plot its density, − log(F1)/N
against 1/N , in inset of Fig. 5(a). This serves as an in-
dicator of ergodicity breaking at a finite time that can
be properly scaled to the thermodynamic limit. For a
random state in the constrained Hilbert space of the
PXP model, we expect − log(F1)/N to asymptotically

approach log
(
(1 +

√
5)/2

)
≈ 0.48. Contrary to this ex-

pectation, the fidelity density in Fig. 5(a) continues to
decrease as N →∞, signaling non-ergodicity in the ther-
modynamic limit at a finite time t ∼ 5/Ω, well beyond
the initial relaxation.

In Fig. 5(b) we observe a slow growth of entangle-
ment entropy following the same quench. In contrast
to previous QMBS cases in the literature, where the sys-
tem was initialized in a product state with zero entropy,
such as |Z2〉, here we start from a critical ground state
whose entropy is expected to diverge logarithmically with
system size according to the Cardy-Calabrese formula,
Scrit = (c/6) log(N/π) [70]. The universal prefactor is
determined by the central charge c of the conformal field
theory, which is c = 1/2 for our critical point in the Ising
universality class. Scaling the data by Scrit indeed yields
a good collapse at time t = 0. At later times, the en-
tropy grows linearly with time. On top of linear growth,
we observe prominent oscillations that are typically found
in QMBS systems, e.g., the |Z2〉 initial state in the PXP
model [6]. The amplitude of these oscillations is roughly
independent of system size, as can be seen in the inset
of Fig. 5(b). At much later times, which are inaccessible
to MPS methods, we expect the entropy to saturate to a
value proportional to the volume of the subsystem.

Apart from the diverging entropy of the initial state,
the overall picture from Fig. 5 is broadly similar to pre-
vious studies of QMBS dynamics [1]. What remains to
be explained is why the critical ground state is poised to-
wards QMBS-like dynamics. To identify the microscopic
origin of this robust ergodicity breaking in the vicinity
of µf = 0.633, we plot the overlap of the initial criti-
cal ground state with the eigenstates of the post-quench
Hamiltonian in Fig. 6. The overlap exhibits clear tow-
ers of eigenstates which are emblematic of QMBS. While
these features are present throughout the spectrum, the
dominant contributions to the initial state come from
low-energy eigenstates. In order to approximate their
characteristics, we can treat them as magnons with a
given momentum k on top of the ground state. For
µf = 0, this has been shown to give a good approximation
of scarred states even at relatively high energies when us-
ing magnons with momentum k = π [71]. Similarly, we
find this to be true in our case near µf = 0.6, where much
of the low-energy spectrum can be approximately recon-
structed from pairs of non-interacting magnons with mo-

Figure 6. Overlap between the ground state at the critical
point µi = µc = −1.31 and the eigenstates of the PXP model
with µf = 0.633. The color indicates the density of data-
points. The red dashed lines indicate multiples of the energy
of a k = π excitation on top of the ground state. This matches
well with the scarred towers in the relevant part of the spec-
trum. The inset shows the first set of excited states, with
the grey dashed lines indicating the expected energy for non-
interacting pairs of excitations with momenta k and −k. Due
to the flatness of the band near k = π and k = 0, the lines are
denser near the scarred states, leading to sharper towers and
better revivals (see further analysis of the magnon dispersion
in Fig. 7 below). Data is obtained by exact diagonalization
for system size N = 28 with PBCs.

menta k and −k, see the dashed lines in Fig. 6 and in-
set. Note that the PXP model is gapped for µf = 0.633,
hence the ground state and the first tower in Fig. 6 are
separated by a finite energy that is independent of N in
sufficiently large systems.

A detailed analysis of the magnon dispersion as a func-
tion of chemical potential is presented in Fig. 7. The
dispersion relation for several values of µf is shown in
Fig. 7(a). For µf < 0.6, the single-magnon band merges
with the two-magnon continuum, causing the downward
slope near k = 0. Near µf = 0.6, the band becomes
remarkably flat for small k, coinciding with the one-
magnon and two-magnon bands barely touching. At that
point, the energies of the first excited states at k = 0 are
well approximated by twice the energies of the single-
magnon states, indicating that they correspond to a pair
of two non-interacting magnons with momenta k and −k.
This is illustrated in Fig. 7(b) and the inset of panel
(a). This simple picture of non-interacting excitations al-
lows us to predict the energies of the low-energy excited
states based solely on the dispersion relation of the single-
magnon states. In particular, the flatness of the band
near k = 0 and k = π means that the eigenstates near
the scarred ones have approximately the same energy.
This implies that the towers of states will be sharper,
and that the effective energy spacing, which determines
the dynamics at intermediate times, is the spacing be-
tween the towers. In turn, the fact that the magnons are
very weakly interacting means that the spacing between
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Figure 7. (a) Dispersion relation of the low-lying excitations
of the PXP model for several values of the chemical potential
µf, shown in different colors. When µf ≈ 0.6, the dispersion
becomes visibly flat near both k = 0 and k = π momenta.
Inset shows the difference between the actual energies of the
first excited states in the spectrum and their approximation
by a pair of two non-interacting excitations. For all momenta
k, the best agreement between the approximation and exact
energy is attained at µf ≈ 0.6. (b) Low energy spectrum of the
PXP model with µf = 0.6 – the value with the best revivals
when quenching from the critical ground state. The ground
state and first excited states are indicated, along with energies
corresponding to a non-interacting pair of excitations with
momenta k and −k. In this instance, we see the approximate
excitations and exact energy levels lie close to each other.
Data is obtained by exact diagonalization for system size N =
24 with PBCs.

these towers will be approximately equal.
In summary, we showed that QMBS in the critical ini-

tial state can persist due to (i) the post-quench Hamil-
tonian HPXP(µf) having a gapped spectrum with a suffi-
ciently flat band of the low-lying magnon excitations; (ii)
the magnons are weakly interacting and their multiplets
give rise to regularly spaced QMBS-like towers in the
spectrum. While this scenario is reminiscent of Ref. 72,
where quantum revivals in some non-integrable models
were related to the low-lying quasiparticle states, in our
case the chemical potential needs to be finely tuned to
a value µf ≈ 0.6 to meet the conditions (i)-(ii). Indeed,
as seen in Fig. 1, varying µf around this value leads to a
sharp decay of QMBS revivals. In contrast to the PXP
model with µi = 0 and the |Z2〉 initial state, the QMBS
eigenstates in the µi = µc case are clearly skewed towards
the low-energy part of the spectrum, however this allows

the QMBS revivals to persist in large systems, despite
the highly entangled initial state.

VI. EXPERIMENTAL PROTOCOL

Finally, in this section we address the experimental ob-
servation of the phase diagram in Fig. 1. The key step is
the preparation of the PXP ground state in Eq. (1). The
protocol below is directly applicable to Rydberg atom
arrays [22], however it can also be adapted to ultracold
bosons in a tilted optical lattice, where the chemical po-
tential µ maps to the energy mismatch between the Hub-
bard interaction and electric field which induces a tilt
potential [24].

Ground state preparation is accomplished via a “ramp-
ing” procedure utilized in related experiments [21, 46, 48,
73, 74]. This assumes fine control of the chemical poten-
tial that is varied in time, µ = µ(t). Taking the chemical
potential very large, µ → ±∞, one can prepare |0〉 and
|Z2〉 states. Starting in one of these states, one can then
ramp to a desired ground state in the interior of our phase
diagram in Fig. 1 by evolving with a time-dependent
PXP Hamiltonian, HPXP(µ(t)), where µ(t) is appropri-
ately parameterized for an adiabatic evolution, as spec-
ified below. The adiabaticity implies that the ramping
will not be able to prepare the critical ground state af-
ter a finite time in the thermodynamic limit. Therefore,
with finite resources, we can only hope to approach the
critical point from different gapped regions of the phase
diagram. We start the ramp either in |Z2〉 or |0〉, depend-
ing on whether we are in a ordered (µ < µc) or disordered
(µ > µc) phase, respectively.

Specifically, we make use of the following ramp

µ(t) =
A

(t−B)2
− A

(t− C)2
+ µc, (17)

where A, B, and C are tunable parameters. One par-
ticularly successful choice was found to be A = ∓40,
when ramping from |0〉 or |Z2〉, respectively, B = 30,
and C = −0.1. An example of this ramping curve is
plotted in the inset of Fig. 8(b). We include µc due to
the need for a much slower ramp as the gap between the
ground state and first excited state closes in the vicinity
of the EPT point. After specifying the ramp and the
initial state, we evolve by the PXP Hamiltonian in the
presence of chemical potential, Eq. (17), until some time
t. The evolution time is determined by numerically min-
imizing 1 − |〈ψ(t)|GS(µtarget)〉|2, where |GS(µtarget)〉 is
the state we are trying to prepare.

Fig. 8(a) illustrates the success of the ramping proce-
dure. For system sizes ranging from N = 6 to N = 14, we
have ramped to prepare the ground states from µ = ±6,
in increments δµ = 0.5, towards the critical point, µc =
−1.31. Fig. 8(b) shows the time that the ramp took for
each ground state. We see the ramp time is insensitive to
system size in gapped regions of the phase diagram, while
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Figure 8. (a) The success of preparing the PXP ground state
at chemical potential µ by ramping the chemical potential ac-
cording to Eq. (17). The total ramp time is varied for each
point to maximize the overlap, which is plotted on the y-axis.
For µ > µc, the initial state is |0〉 (square symbols), while
for µ < µc we start the ramp in the |Z2〉 state (triangles).
Separate optimizations were performed for different system
sizes N , shown in the same plot. Black dashed line (in all
the panels) denotes the critical point µc. Inset: using the
optimal parameters and average ramping time determined
in smaller sizes in the main panel, we prepare the ground
states for the same values of µ in much larger system sizes
N = 51, 75, 101. The preparation in this case was done using
the MPS method with time step δt = 0.025 and maximum
bond dimension χ = 128. While in the gapped phases the
preparation remains successful, there is a visible drop near
the critical point. (b) Total ramp time tramp returned by the
optimizations in the main panel (a). Inset shows the ramping
curve µ(t) in Eq. (17). We observe an increase of the ramp
time and strong finite-size fluctuations at the critical point.
The data in the main panels (a) and (b) was computed using
exact diagonalization in k=0 momentum and p=+1 inversion
symmetry sector with PBCs.

it sharply increases near µc and exhibits strong fluctua-
tions with N . For fixed ramp parameters, we expect it
will take an infinite amount of time to prepare the critical
ground state in the N →∞ limit.

Finally, to verify our preparation scheme in large sys-
tems, we repeated the preparation of the detuned PXP
ground states for system sizes ofN = 51, 75 and 101 using
MPS simulations with bond dimension χ = 128 and the
the ramping protocol in Eq. (17), with the same A, B, C
parameters. The inset of Fig. 8(a) demonstrates that the
ramping continues to successfully reproduce the desired
ground state with high fidelity, with the exception of the
critical point where we see a clear drop in overlap with
the target state. This suggests the ramping procedure is
a viable method for generating desired ground states even
in large systems. With this in hand, along with the al-
ready existing capabilities to quench with a detuned PXP
Hamiltonian and conduct measurements of local observ-
ables [21, 22], all the tools are, in principle, available to
reconstruct the dynamical phase diagram in Fig. 1. In
particular, local fidelity measurements [24] can be used

to approximate the numerically computed global fidelity
in Fig. 1(a). This would allow to experimentally verify
the persistence of QMBS across the phase diagram and
its robustness near the critical point.

VII. CONCLUSIONS AND DISCUSSION

We have mapped out the dynamical phase diagram of
the PXP model, based on ergodicity breaking in its dy-
namics following the global quench of the chemical po-
tential. We have demonstrated the existence of extended
regions which harbor QMBS phenomena, either associ-
ated with the previously studied initial conditions, such
as |Z2〉 and |0〉, or with new entangled states such as
|0̄(µ)〉. The mechanisms giving rise to these QMBS phe-
nomena, in particular the underlying periodic trajecto-
ries, were identified within the TDVP framework. We
have analyzed in detail the robustness of QMBS when
the system is tuned to the EPT point, arguing that this
does not provide an obstacle for QMBS, provided that
the post-quench Hamiltonian is tuned in such a way that
the low-lying quasiparticle excitations are weakly inter-
acting and possess a flat energy-momentum dispersion.
This enables different QMBS regions in the dynamical
phase diagram to connect smoothly, bridging across the
EPT. Finally, we have also outlined an adiabatic prepa-
ration scheme that allows to map out the same phase
diagram in experiments on Rydberg atoms and ultracold
bosons in tilted optical lattices, both of which have re-
cently realized the PXP model in the presence of a tun-
able chemical potential. In light of these experiments,
our discussion of the phase diagram above was restricted
to finite times, however in Appendix F we discuss the
corresponding phase diagram for time t → ∞. We note
that the existence of a continuous family of QMBS states,
tunable by the chemical potential, is of independent in-
terest in quantum-enhanced metrology, for which QMBS
states were shown to be advantageous [75–77].

One motivation behind this work is the open prob-
lem of identifying all initial conditions associated with
QMBS for a given model. For the pure PXP model it
had originally appeared that only the |Z2〉 and |Z3〉 =
|100100...100〉 states are special in this regard [21], how-
ever, more recent explorations of the chemical poten-
tial [24] have revealed that the latter can also stabilize
QMBS from a different initial state, |0〉. In this paper,
we have shown that these two product states share the
semiclassical description and belong to a larger family,
which also includes some other weakly-entangled states
such as |0̄(µ)〉 state. While we have numerically related
these initial states and their quench dynamics, it is not
obvious how to relate them at the level of a spectrum-
generating su(2) algebra, which has provided an elegant
description of revivals from the |Z2〉 state in the pure
PXP model [29]. Moreover, our present investigation fo-
cused on the dynamics with periodicity K = 1 and it
would be interesting to extend it to K ≥ 2. For ex-
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ample, it is known that |Z3〉 = |100100100 . . . 100〉 state
also exhibits revivals in the pure PXP model model [37].
However, this state necessitates a TDVP description with
K = 3 unit cell, which already gives rise to an intricate
phase space at the semiclassical level [61]. It would be
interesting to understand the dynamical phase diagram
associated with such states that have larger unit cells,
either in the PXP model or analogous models for larger
Rydberg blockade radii.

Finally, our results for the initial state at the critical
point suggest that QMBS dynamics is not necessarily as-
sociated with preparing the system in a product state or
even an area-law entangled state, but in principle allows
for highly-entangled initial states. In this case, QMBS
dynamics is more strongly temperature-dependent, as the
initial state has dominant support on the relatively low-
lying energy eigenstates of the post-quench Hamiltonian.
The key ingredient for making this work was to suppress
the interaction between quasiparticles and flatten their
energy dispersion. It would be interesting to understand
how to engineer such conditions in other models and
thereby realize similar dynamics from highly-entangled
initial states.
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Appendix A: Other regions of the phase diagram

Several regions of the phase diagram in Fig. 1 exhibit
fidelity revivals that have a simple origin that can be
understood without invoking QMBS. Here we explain in
more detail these regions labeled (4), (5), (6) and (7).
It is useful to consider the Inverse Participation Ratio

Figure 9. Logarithm (base 10) of the IPR of the ground
state of HPXP(µi) with respect to the eigenstates of HPXP(µf).
All the labels have the same meaning as in Fig. 1. Data is
obtained using exact diagonalization in the sector with k = 0
momentum and p = +1 inversion symmetry for size N = 26
with PBCs.

(IPR), one of the traditional measures of ergodicity of
the eigenfunctions introduced in the context of Anderson
localization [78]. The IPR is defined as

IPR =
1∑

E

| 〈E|ψ〉 |4 , (A1)

and it intuitively tells us about how many basis states |E〉
the state |ψ〉 has support on. For example, if |ψ〉 is a basis
state, its IPR will be 1, while if |ψ〉 is homogeneously
spread over the entire Hilbert space, the IPR will be equal
to the Hilbert space dimension. Note that IPR is a basis-
dependent quantity and, in our case, we have a natural
choice of eigenstates |E〉 of HPXP(µf) as the basis states.

The log of IPR for µi ground states with respect to µf

eigenstates is plotted in Fig. 9. This allows us to fur-
ther distinguish between different regions. For conven-
tional |Z2〉 scarring we expect the IPR to be on the order
of system size N , since the |Z2〉 state has high overlap
with a band of N + 1 scarred eigenstates of HPXP(0) but
low overlap with the rest. This is evidenced in region
(1) of Fig. 9. On the other hand, the band of scarred
eigenstates associated with |0〉 state in the detuned PXP
model is “tilted” to one edge of the spectrum, so we ex-
pect the IPR to be smaller. In general, the regions with
high IPR are expected to be ergodic, while the least inter-
esting regimes are characterized by very low IPR, such
as around the µi = µf diagonal and in regions (5) and
(6). The IPR is not as low in parts of regions (4) and (7)
visible in this figure, but it decreases with increasing |µi|
and |µf| as the ground state of HPXP(µi) approaches an
eigenstate of HPXP(µf).

Large |µf| leads to fragmentation of the Hilbert space,
which can effectively trap the initial state in a simple
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oscillating superposition. For example, region (4) [i.e.,
µi > 0, −µf � 1] roughly corresponds to the polarized
state in the strongly detuned regime, since the initial
ground state has significant overlap with |0〉 for µi > 0.
In the µi → ∞ limit, it is expected to become the exact
mirror image of region (3), given that the polarized state
has the same dynamics for ±µf (see Appendix C). Simi-
larly, region (7) [µi < 0, µf � 1] has a simple explanation
in terms of |Z+〉 state in the strongly detuned regime.

The origin of revivals in region (5) [µf < µi < −1.3] is
perhaps not immediately obvious, since the initial state
in that case does not have high overlap with one of the
previously studied states such as |0〉 or |Z+〉. We now
briefly investigate this region. The fidelity and the aver-
age number of excitations after quenching from µi = −2.5
to µf = −6 can be seen in Figs. 10(a) and (b). The
quenched state maintains high overlap with the |Z+〉
state, with peaks in the middle between the fidelity re-
vivals, see Fig. 10(a). This situation is reminiscent of the
|0̄〉 state in region (2), which periodically evolves to |0〉
and back. Although it oscillates, the overlap with |Z+〉
never drops to zero. In contrast, the overlap with |0〉 is
constantly zero. In Fig. 10(b) we also see that the av-
erage occupation is remarkably stable, fluctuating only
slightly around ≈ 0.47. As explained above for regions
(4) and (7), such behavior arises due to the fact that in
the large-µ limit the Hilbert space becomes fragmented
and the initial state has support on a small number of
eigenstates that are disconnected from the rest. This can
be seen in Fig. 10(c), which shows the overlap of the ini-
tial state and the eigenstates. The fragmentation and
high overlap with the ground state are apparent. Fur-
ther evidence comes from the inverse participation ratio
(IPR), which we find to be very low in this region, indi-
cating overlap with only a small number of eigenstates, as
will be shown below. Finally, region (6) [µi < µf < −1.3]
has a similar phenomenology to its mirroring region (5).

In summary, we have argued that regions (4), (7) and
part of (5) correspond to regimes where µf has a large
absolute value, leading to a simple oscillatory dynamics
due to Hilbert space fragmentation, while in regions (5)
and (6), µf ≈ µi causes the initial state to be close to an
eigenstate of the post-quench Hamiltonian.

Appendix B: Derivation of TDVP equations of
motion and quantum leakage

In this section we first derive the TDVP equations of
motion and then compute the instantaneous leakage rate.
These derivations follow Appendices A and C of Ref. 61.

1. Equations of motion

The TDVP equations of motion can be derived as the
saddle point equations for the following Lagrangian [63,

Figure 10. Dynamics and eigenstate properties of the PXP
model quenched from µi = −2.5 to µf = −6, corresponding
to region (5) of the phase diagram in Fig. 1. (a) Fidelity of
the initial state |ψ(0)〉, i.e., the ground state of HPXP(−2.5),
as well as the overlap with both the polarized state |0〉, and
superposition state

∣∣Z+
〉
. (b) The average number of excita-

tions remains nearly constant in time. (c) The overlap of the
initial state with eigenstates of HPXP(−6) reveals fragmenta-
tion and large projection on the ground state. Data obtained
by exact diagonalization for N = 28 with PBCs.

65]:

L =
i

2

(
〈ψMPS|ψ̇MPS〉 − 〈ψ̇MPS|ψMPS〉

)
− 〈ψMPS |H|ψMPS〉,

(B1)

where it will be convenient to split our Hamiltonian into
two terms, H = HPXP+Hµ. Unlike Ref. 61, we restrict to
K = 1 which greatly simplifies the calculation. Through-
out this section we will consider mixed MPS transfer ma-
trices, denoted by

TBC =
∑
σ

B̄σ ⊗ Cσ, (B2)

where B and C are arbitrary MPS tensors. The MPS
transfer matrix for the PXP ansatz chosen in the main
text takes the form

TAA = T =


cos2 θ 0 0 1

cos θ sin θ 0 0 0
cos θ sin θ 0 0 0

sin2 θ 0 0 0

 . (B3)

The dominant left and right eigenvalues of the transfer
matrix are equal to 1, and the corresponding eigenvectors
are

|R) =


1

cos θ sin θ
cos θ sin θ

sin2 θ

 , (L| =
(

1 0 0 1
)
, (B4)
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which obey (L|R) = 1 + sin2 θ. We also introduce the
following shorthand for a 3-site local Hamiltonian term
contracted with MPS tensors on every site:

H = HA,A,AA,A,A =
∑
σi

Āσ1Āσ2Āσ3hσ1,σ2,σ3
σ4,σ5,σ6

Aσ4Aσ5Aσ6 .

(B5)
Using the mixed transfer matrix expression, it is straight-
forward to compute

f = −iN

(
L
∣∣∣T ∂φAA

∣∣∣R)
(L|R)

= N
2 sin2 θ

cos 2θ − 3
, (B6)

with T ∂φAA =

 0 0 0 −i
0 0 0 0
0 0 0 0
0 0 0 0

 . (B7)

Next we compute the expectation value of the Hamilto-
nian. We find the two terms are:

〈ψ |HPXP|ψ〉 = N
(L |HPXP|R)

(L|R)
= N

2 cos2 θ sin θ sinφ

1 + sin2 θ
,

(B8)

and

〈ψ |Hµ|ψ〉 = N
(L |Hµ|R)

(L|R)
= Nµ

sin2 θ

1 + sin2 θ
. (B9)

The total expectation value is given by 〈ψ|H|ψ〉 =
〈ψ |HPXP|ψ〉 + 〈ψ |Hµ|ψ〉, which yields the energy den-
sity, Eq. (15) in the main text.

To get the equations of motion for θ and φ, we need to
compute

η = ∂θf = −4N
sin 2θ

(cos2 θ − 3)
2 (B10)

From there the equations of motion are given by

θ̇ =
1

η
∂φ〈ψ|H|ψ〉, φ̇ = −1

η
∂θ〈ψ|H|ψ〉, (B11)

which lead to Eqs. (12)-(13) in the main text.

2. Instantaneous leakage

The instantaneous leakage is given by

Λ2(θ) = ‖|ψ̇〉 − iH|ψ〉‖2

=
〈
ψ
∣∣H2

∣∣ψ〉
c
− 2θ̇ Im (〈∂θψ | Hψ〉c)

+ (θ̇)2 Re (〈∂θψ | ∂θψ〉c)− 2φ̇ Im
(
〈∂φψ | Hψ〉c

)
+ (φ̇)2 Re

(
〈∂φψ | ∂φψ〉c

)
+ 2φ̇θ̇Re

(
〈∂φψ | ∂θψ〉c

)
(B12)

Due to the gauge choice, the leakage depends on con-
nected correlators defined as

〈∂θψ|∂θψ〉c = 〈∂θψ|∂θψ〉 − 〈∂θψ|ψ〉〈ψ|∂θψ〉.

In order to evaluate these connected correlators, we in-
troduce the projector on the dominant subspace, P =
|R)(L|/(L|R), and its complement Q = 1 − P. We also
introduce T , which is obtained by re-summing the con-
tribution of the non-dominant subspace of T in

∑∞
q=0 T

q

and is defined from T −1 = Q(1−QTQ)−1Q.
Let us now evaluate the various terms involved in the

instantaneous leakage. Taking each term one by one, we
find that:

〈∂θψ | ∂θψ〉c =

=
N

(L | R)

(
L | T ∂θA∂θA

+ TA∂θAT −1T
∂θA
A

+ T ∂θAA T −1TA∂θA − TA∂θAPT
∂θA
A | R

)
, (B13)

which after a straightforward calculation evaluates to

〈∂θψ|∂θψ〉c =
N

1 + sin2 θ
. (B14)

Turning our attention to the term 〈∂θψ|H|ψ〉c, we find
that this evaluates to

N

(L | R)

(
L
∣∣H∂θA +HT −1TA∂θA + TA∂θAT −1H− 3HPTA∂θA

∣∣R)
(B15)

This yields

〈∂θψ|H|ψ〉c = −iN cos θ cosφ+N
cos θ sin θ(
1 + sin2 θ

)2 φ̇.
(B16)

As we are only interested in the imaginary part, we can
discard the second term and are left with

Im (〈∂θψ|H|ψ〉c) = −N cos θ cosφ =
N

1 + sin2 θ
θ̇. (B17)

The expressions containing the derivatives with re-
spect to φ can be calculated similarly. Starting with
〈∂φψ|∂φψ〉c which we compute as

N

(L | R)

(
L
∣∣T ∂φA∂φA

+ TA∂φAT −1T
∂φA
A

+ T
∂φA
A T −1TA∂φA − TA∂φAPT

∂φA
A

∣∣R) (B18)

Evaluating this term, we find

〈∂φψ|∂φψ〉c = N
cos2 θ sin2 θ(
1 + sin2 θ

)3 . (B19)

The next term to compute is the cross-term

〈∂φψ|∂θψ〉c =
N

(L | R)

(
L
∣∣T ∂φA∂θA

+ TA∂θAT −1T
∂φA
A

+ T ∂φAT −1T∂θA − T∂θAPT ∂φA
∣∣R). (B20)
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The result after evaluating Eq. (B20) is

〈∂φψ|∂θψ〉c = −iN cos θ sin θ(
1 + sin2 θ

)2 , (B21)

however, because its real part is identically zero, we
get no contribution from this term. We now compute
〈∂φψ|H|ψ〉c as

〈∂φψ|H|ψ〉c =
N

(L | R)

(
L
∣∣H∂φA +HT −1TAA∂φA

+ TA∂φAT −1H− 3HPT∂φA
∣∣R). (B22)

We find this can be expressed as:

〈∂φψ|H|ψ〉c = N cos θ cosφ+ iN
cos2 θ sin2 θ(
1 + sin2 θ

)3 φ̇ (B23)

We now move onto the terms involving the square of the
Hamiltonian, H2. The connected correlator in this case
is

〈
ψ
∣∣H2

∣∣ψ〉
c

= N

(
L
∣∣H(2) + 2HT −1H− 5HPH

∣∣R)
(L | R)

.

(B24)
where H(2) is H evaluated for a two-local Hamiltonian
terms that overlap on one, two or three sites. Evaluating
this expression, we obtain

〈
ψ
∣∣H2

∣∣ψ〉
c

=
N sin6 θ

1 + sin2 θ
+
N cos2 θ sin2 θ(φ̇)2(

1 + sin2 θ
)3

+
N(θ̇)2

1 + sin2 θ
. (B25)

Substituting each of these into the equation for the leak-
age, we finally arrive at:

Λ2 = N
sin6 θ

1 + sin2 θ

Rescaling this by the system size yields the intensive ex-
pression for the leakage γ2, Eq. (14), quoted in the main
text.

Appendix C: Relation between µ and −µ

It is interesting to note that for µ and −µ the eigen-
states are simply related by the application of the opera-

tor Π =
∏N
j=1 Zj , with Z = Q−P . The energies are also

taken from E to −E. This can be easily seen by consid-
ering an eigenstate |E〉 of HPXP(µ) with energy E. First
let us consider the commutation relation between HPXP

and Π. As Z commutes with P and Q but anticommutes
with X, it means that

ΠHPXP(µ) = −HPXP(−µ)Π. (C1)

Figure 11. Preparing the states along a particular K = 2
TDVP trajectory (defined in the text) using the ansatz in
Eqs. (D1)-(D2). A set of states on the trajectory up to time
t = 6 are variationally approximated in system sizes N =
6− 18, finding the optimal parameters w, γ. The optimized
parameters are then extrapolated to size N = 22 and the
resulting overlap with the TDVP states is plotted, illustrating
the success of the optimization (overlap is > 97% along the
entire trajectory). Inset shows the scaling of the overlap for
the most poorly approximated point on the trajectory as a
function of system size N . The overlap decays slowly and its
extrapolation yields high overlap for this point even in large
systems (e.g., overlap ∼ 90% at size N ∼ 50).

As a consequence:

HPXP(−µ) (Π |E〉) = −ΠHPXP(µ) |E〉= − E (Π |E〉) ,
(C2)

showing that Π |E〉 is an eigenstate of HPXP(−µ) with
energy −E. This means that the spectral properties are
the same for ±µ and that the ceiling state of HPXP(µ)
becomes symmetry-breaking for µ > 1.31.

Similarly, it is important to further note the relation
between µ and −µ with respect to the TDVP equations
of motion, Eq. (12) and Eq. (13). In general, flipping the
sign of µ may not result in identical dynamics, however
this is not the case when considering the dynamics of the
polarized state. As |0〉 has TDVP angles (0, 0), at this

point φ̇ = µ. On the other hand, θ̇ has no µ dependence
and so is unaffected by the a sign flip and the only de-
pendence on φ comes from the cos(φ) term which has the
property cos(φ) = cos(−φ). Because of this, a sign flip
of µ does not affect the dynamics of θ and simply flips
Eq. (13). This means that the dynamics of |0〉 are sym-
metric under the sign flip and the shrinking of the orbit
in Fig. 2 occurs for both ±µ.

Appendix D: Preparation of states in the TDVP
manifold

Here we demonstrate that states belonging to the
TDVP manifold with K = 1, 2 unit cell can be rep-
resented as ground states of the PXP model with a
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suitably generalized chemical potential term. To show
this correspondence, we numerically optimize the over-
lap |〈ψMPS({x})|Ψ(w)〉|2, where |Ψ(w)〉 is the ground
state of the PXP model with a K-site periodic density
modulation,

H(w) =

N−1∑
j=0

Pj−1XjPj+1 +

N−1∑
j=0

wjQj , (D1)

where w = (w1, w2, . . . , wK) is a generalization of the
chemical potential term that is periodic (with period K)
but takes different values for different atoms within the
unit cell. The Hamiltonian H(w) reduces to the PXP
Hamiltonian with uniform chemical potential in Eq. (1)
for K = 1.

Furthermore, in order to prepare the states in larger
TDVP manifolds with unit cells K ≥ 2, we found it nec-
essary to act on the ground state of Eq. (D1) with a
unit-cell modulated phase pulse:

Θ(γ) =

N/K−1∏
j=0

e−iγKZKj+(K−1) · · · e−iγ2ZKj+1e−iγ1ZKj ,

(D2)
where Zi denotes the usual Pauli-Z matrix on site i and
γ1, . . . , γK are variational parameters in addition to w.

Our extensive numerical sampling in system sizes N ≤
18 confirms that the ansatz in Eqs. (D1)-(D2) allows for
an accurate approximation of states in the TDVP mani-
fold after optimizing for (w,γ). As this is performed at
relatively small system sizes, here we verify that these
results can be extended to larger systems. As a test case,
we choose a particularly interesting TDVP trajectory
which starts at (θ1, θ2, φ1, φ2)=(1.25π,2.985,0.166,0.188).
This trajectory was derived in Ref. [61] within a K = 2
TDVP ansatz and it belongs to a regular region of the
manifold, giving rise to fidelity oscillations in the full
quantum dynamics. We choose this trajectory to show
that the ansatz can capture trajectories of interest in
larger manifolds. We optimize for 30 states evenly spaced
along this TDVP trajectory between time t = 0 and t = 6
in system sizes ranging from N = 6 to N = 18. The op-
timization yields an overlap close to 1 for all the points
on the trajectory and yields a set of optimal (w1, w2) and
(γ1, γ2) for different N . Over the range of N , we found
γ changes little so we do not re-optimize this in larger
N but simply take the average from smaller sizes. On
the other hand, we find w for different values of N fits
well the empirical formula wj = aebN+c + d, where a, b,
c and d are fitting parameters depending on w1 and w2.
With this information, we can calculate (w1, w2), (γ1, γ2)
for larger system sizes via extrapolation. The resulting
overlap in system size N = 22 is shown in Fig. 11. We
see that the ansatz successfully captures the entire tra-
jectory (up to 97% overlap in this system size). In the
inset of Fig. 11 the minimum overlap found along the
trajectory is plotted as a function of system size, show-
ing that it decays very slowly and allows to prepare the
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Figure 12. Low-energy spectrum of the PXP model for three
values of µ. The red crosses correspond to the energies of a
non-interacting pair of excitations with momenta k and −k.
For µ = 0.1, the first band merges with the two-magnon con-
tinuum. For µ = 1.2, the first excited state with k = 0 has an
energy that differs from that of two non-interacting magnons.
Data is for system size N = 24 with PBCs.

TDVP states on the trajectory with accuracy of 90% or
better in large systems N ∼ 50.

Appendix E: Single mode approximation

In Sec. V we have discussed the revivals from the criti-
cal ground state based on the structure of the low energy
spectrum at µf = 0.633. In this section we provide more
details of this analysis, in particular on the range of µ
that it can be applied to. Ref. 71 showed that for µf = 0,
the scarred states throughout the spectrum could be well
approximated as a collection of magnons with momen-
tum π. Here, we show that this analysis also holds for
µf ≈ 0.6, especially in the low-energy part of the spec-
trum. In turn, the ground state at µi = µc = −1.31 can
be understood as mainly being a superposition of these
multi-magnon states.

In Fig. 12 one can see the low-energy spectrum resolved
by momentum for three different values of µf. The data
for the overlap of the same eigenstates with the ground
state at µf = µc = −1.31 is also plotted in Fig. 13. Note
that, as this ground state has k = 0, only the eigen-
states with the same momentum value will have a non-
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Figure 13. Overlap between the ground sate at µi = µc =
−1.31 and the low-energy eigenstates of the PXP model with
various values of µ for N = 24 and PBCs. The states are
the same as in Fig. 12 with k = 0, and panels correspond to
µf = 0.1, 0.6 and 1.2 respectively (from left to right). The
red lines correspond to the expected energy of two and four
magnons with momentum π on top of the ground state. The
grey line correspond to the expected energy of two magnons
with momentum k and −k on top of the ground state. Due
to the flatness of the band and the weak interactions between
magnons, the towers of states are sharper around µ = 0.633.

zero overlap. For too small values of µ, the one-magnon
states merge into the two-magnon continuum near k = 0,
causing the band to bend downwards. As a consequence,
the non-interacting magnon pairs approximation is less
accurate for k 6= π, and the critical ground state has
increased overlap with them. On top of this, the band
being far from flat at the edges means that the towers of
states are not sharp, i.e., states near the top of the towers
have a non-negligible energy difference. As their energy
separation from the ground state is roughly twice that of
a single-magnon with momentum k, the flatter the band
the more similar in energy the states will be.

For µf ≈ 0.6, the single-magnon band barely touches
the two-magnon continuum. The magnon-pair approxi-
mation now holds well for all values of k. Consequently,
one can see that the overlap of the critical ground state
with two-magnon states built out of magnons with mo-
mentum k 6= π is very low. Among these, the states with
the highest overlap are the ones made from magnons with
momentum close to 0 or π. As the band is flat near these
points, they have approximately the same energy as the
scarred states and so do not lead to dephasing until late
times.

Finally, when µf becomes too large, the nature of the
excitations changes and the π magnons no longer describe
the elementary excitations in the system. Indeed, for
µf � 1, the ground state is simply the polarized state and
the excitations are just a single flip 1 on top of the back-
ground of 0. So the first excited state with k = 0 is simply
a symmetric superposition of the the state |100 · · · 0〉 and
its translations. As any kind of excitation with k = π
will need at least one 1 site, adding two of them that
are non-interacting will never lead to the correct excited
state at k = 0. This can already be seen for µf = 1.2 in
the bottom panel of Fig. 12, as the lowest red cross – cor-

Figure 14. The norm of the scaled difference of the num-
ber of excitations between the diagonal and canonical ensem-
bles when quenching the initial ground state of HPXP(µi) to
HPXP(µf). All the labels are the same as in Fig. 1. Data is
obtained using exact diagonalization in the momentum k = 0
and p = +1 inversion symmetry sector for system size N = 28
with PBCs.

responding to the expected energy of two non-interacting
magnons – is far above the actual first excited state with
k = 0. This again impacts the sharpness of the tow-
ers of states, especially the spacing between the first and
second excited state, which grows with µf.

Appendix F: Dynamical phase diagram in the
infinite-time limit

In the main text, we explored the dynamical phase
diagram using two probes based on the dynamics at in-
termediate time scales: fidelity revivals and the deviation
of average density of excitations from its thermal value.
Here we directly address the long-time behavior of the
system using the latter quantity. We study the average
density of excitations evaluated in the diagonal ensemble:

n̄ = lim
T→∞

1

T

∫ T

0

〈ψ(t) |n|ψ(t)〉 dt =
∑
j

|cj |2 nj,j , (F1)

where cj = 〈Ej |ψ(0)〉 and nj,k = 〈Ej |n |Ek〉. The ini-
tial state |ψ(0)〉 is the PXP ground state at some µi,
while Ej , |Ej〉 are the eigenvalues and eigenstates of the
quench Hamiltonian HPXP(µf). In the second equality
of Eq. (F1), we have assumed that the off-diagonal ele-
ments average out to zero in the infinite-T limit. This is
true in the absence of spectral degeneracies, as integrat-
ing off-diagonal contributions over time corresponds to
integrating e−irt with r 6= 0 being essentially a random
number. Thus, each contribution will give a finite num-
ber that will go to zero as it is multiplied by 1/T and
the limit T → ∞ is taken. The quench Hamiltonian is
generally non-degenerate after resolving the momentum
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Figure 15. Scaled difference of the expectation values between
the diagonal and canonical ensembles. (a) For µi = µc =
−1.31, there is a large difference around µf = 0.5 that does
not vary much with system size. Notably, we also see that
to the left of that point the difference between the ensembles
increases with system size. (b) Cross cuts through the phase
diagram with a fixed value of µi indicated on the color bar.
The middle peak corresponds to region (1), while the two
negative peaks on the bottom right correspond to regions (2)
and (3), from left to right respectively. Data is obtained by
exact diagonalization for system size N = 26 with PBCs.

and inversion symmetries (our calculations are mostly
performed in the sector with k = 0 and p = +1). An
exception to this occurs at µf = 0 where the spectrum
contains an extensive number of “zero modes” [37, 79].
In that case, the off-diagonal contributions between all
eigenstates with E = 0 must also be counted.

After evaluating n̄, we compute the difference between
the diagonal and canonical ensembles, δn = n̄ − nth,

where nth was defined in Eq. (4). This allows to quan-
tify ergodicity breaking via the deviation from the ther-
mal value in the infinite-time limit, as shown in Fig. 14.
Comparing this with the original phase diagram in Fig.1,
we see that the main regions (1),(2),(3) associated with
QMBS still show visible signatures. In other regions,
such as region (5), the diagonal and canonical ensemble
averages happen to be equal but this does not imply ther-
malization – rather, the difference between ensembles is
small because the dynamics is reduced to a superposition
of only a few eigenstates. Similarly, we notice that region
(2) and region (3) are intersected by a flat line where
|δn| � n̄, which is completely insensitive to the initial
state (i.e., independent of µi). This line passes through
the vicinity of the diamond point, discussed in Sec. V,
where we emphasized that the relevant dynamics occurs
at lower effective temperatures than the other parts of
region (1) and (2). Consequently, we expect |δn|/n̄ to
be suppressed. Indeed, as we discuss in Fig. 15 below,
this apparent discontinuity between regions (1) and (2)
is related to the fact that δn takes opposite signs in the
two regions, thus it crosses zero at their interface.

Fig. 15(a) shows that at the critical point there is still
a sizable difference between the two ensembles in vari-
ous system sizes. The maximum difference is closer to
µf = 0.5 than to the fidelity maximum of 0.633. The
latter is a compromise between the flatness of the band
and the level of interactions of the magnons. As the
long time behavior should not depend on the spacings
of the towers, it is not surprising that the optimal µf

is much closer to 0.5, where the level of interactions of
the magnons seems the lowest. Fig. 15(b) shows a cut
through the phase diagram at fixed µi values shown on
the color bar. The change of sign between region (1)
versus regions (2) and (3) is clearly visible, hence there
has to be a point where δn passes through zero. This
crossing appears to be unrelated to thermalization as the
deviation from the canonical ensemble is still pronounced
on either side of the crossing. This could be caused by
the particular choice of the observable, and it is possible
that other observables may not exhibit such a behavior.
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[31] M. Medenjak, B. Buča, and D. Jaksch, Isolated heisen-
berg magnet as a quantum time crystal, Phys. Rev. B
102, 041117(R) (2020).

[32] K. Bull, J.-Y. Desaules, and Z. Papić, Quantum scars as
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Abanin, T. Prosen, and Z. Papić, Slow dynamics in
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