

This is a repository copy of 610 Immune biomarker analysis of RP1 in combination with nivolumab in patients with advanced solid tumors.

White Rose Research Online URL for this paper: <u>https://eprints.whiterose.ac.uk/199919/</u>

Version: Published Version

Proceedings Paper:

Harrington, K, Nenclares, P, Leslie, I et al. (21 more authors) (2022) 610 Immune biomarker analysis of RP1 in combination with nivolumab in patients with advanced solid tumors. In: Journal for ImmunoTherapy of Cancer. SITC 37th Annual Meeting (SITC 2022), 08-12 Nov 2022, Boston, USA. BMJ , A642.

https://doi.org/10.1136/jitc-2022-sitc2022.0610

© Author(s) (or their employer(s)) 2022. Reproduced in accordance with the publisher's self-archiving policy.

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

610 IMMUNE BIOMARKER ANALYSIS OF RP1 IN COMBINATION WITH NIVOLUMAB IN PATIENTS WITH ADVANCED SOLID TUMORS

¹Kevin Harrington*, ²Pablo Nenclares, ¹Isla Leslie, ³Ari VanderWalde, ⁴Tawnya Bowles, ⁵Joseph Sacco, ⁵Anna Olsson-Brown, ⁶Jiaxin Niu, ⁷Katy Tsai, ⁸Jason Chesnev. ⁹Bartosz Chmielowski, ¹⁰Adel Samson, ⁴Terence Rhodes, ¹¹Gino In, ¹²Anna Pavlick, ¹³Trisha Wise-Draper, ¹⁴Miguel Sanmamed, ¹⁵Laxminarasimha Donthireddy, ¹⁵Yawei Zhang, ¹⁵Jeannie Hou, ¹⁵Praveen Bommareddy, ¹⁵Robert Coffin, ¹⁶Mark Middleton, ¹⁷Mohammed Milhem. ¹Royal Marsden NHS Foundation Trust & ICR, Sutton, UK; ²The Institute of Cancer Research, London, UK; ³West Cancer Center and Research Institute, Germantown, TN, United States; ⁴Intermountain Medical Center, Murray, UT, United States; ⁵Clatterbridge Cancer Centre, Liverpool, UK; ⁶Banner MD Anderson Cancer Center, Gilbert, AZ, United States; ⁷Helen Diller Family Comprehensive Cancer, San Francisco, CA, United States; ⁸James Graham Brown Cancer Center, Louisville, KY, United States; ⁹University of California Los Angeles, Los Angeles, CA, United States; ¹⁰University of Leeds, Leeds, UK; ¹¹Norris Comprehensive Cancer Center, Los Angeles, CA, United States; ¹²Weill Cornell Medical College, New York, NY, United States; ¹³University of Cincinnati, Cincinnati, OH, United States; ¹⁴Clínica Universidad de Navarra, New Haven, CT, United States; ¹⁵Replimune Inc. Woburn. MA. United States: ¹⁶Churchill Hospital. Oxford. UK: ¹⁷Holden Comprehensive Cancer Center, Iowa City, IA, United States

Background RP1 is a novel, enhanced potency, oncolytic version of HSV-1 engineered to express human GM-CSF and GALV-GP R-.¹ RP1 + anti-PD1 therapy combination has resulted in deep and durable responses, including in melanoma patients who have previously failed prior anti-PD1 therapy.² Here we present biomarker data from the ongoing clinical trial of RP1 + nivolumab (nivo).

Methods Tumor biopsies were taken pre-treatment and at 43 days after the first dose of RP1. The tumor immune microenvironment (TIME) was analyzed IHC for CD8 (SP57 clone, Ventana) and PD-L1 (PD-L1 IHC 28-8 pharmDx by Agilent) and by gene expression analysis using the NanoString IO360 panel. The tumor inflammation signature score (TIS) was also calculated using an 18 gene signature.³ Systemic anti-tumor immunity was assessed using PBMCs by sequencing the CDR3 regions of human TCR β chains using the immunoSEQ assay. Correlation analysis of baseline tumor PD-L1 and CD8 status versus clinical response was also performed.

Results A consistent increase in CD8 and PD-L1 expression in the tumor was observed in most of the tested biopsies (30/ 44), which generally appeared to be co-located. These increases were observed both in superficial lesions and visceral tumors, including in the liver. A notable reversal of CD8 T cell exclusion was observed in a melanoma patient who failed prior ipilimumab and nivo treatment. Clinical responses were independent of baseline CD8 T cell infiltration, PD-L1 expression levels, and prior anti-PD-1 therapy. Gene expression analyses of tumor biopsies (n=11) demonstrated significant increases in the expression levels of genes associated with innate and adaptive immune activation and genes previously reported to be associated with responsiveness to anti-PD1 therapy, particularly CD8, CXCL9, CD27, and TIGIT, as well as consistent increases in TIS. TCR sequencing of PBMCs revealed expansion of pre-existing T cell clones and the appearance of new clones with 20-80% of these changes being newly detected clones. Expansion of new clones (n=170) was observed in a melanoma patient who had a complete response.

Conclusions The biomarker data indicate broad immune activation by RP1 + nivo. Clinical responses are independent of baseline PD-L1 expression and associated with increases in gene signatures associated with cytotoxic T, NK, and Th1 cells. The data indicate the potential for broad utility of RP1

in a range of tumor types, including in patients with primary or acquired resistance to immune checkpoint blockade. **Trial Registration** NCT03767348

REFERENCES

- Thomas S, Kuncheria L, Roulstone V, Kyula JN, Mansfield D, Bommareddy PK, Smith H, Kaufman HL, Harrington KJ, Coffin RS. Development of a new fusionenhanced oncolytic immunotherapy platform based on herpes simplex virus type 1. J Immunother Cancer. 2019;7(1):214.
- Milhem M, Vanderwalde V, Bowles T, Sacco J, Niu J, Tsai K, Chesney J, Chmielowski B, Samson A, Rhodes T, In G, Pavlick A, Wise-Draper T, Sanmamed M, Bommareddy P, Zhu J, Coffin R, Harrington K, and Middleton M. Updated results from the skin cancer cohorts from an ongoing phase 1/2 multicohort study of RP1, an enhanced potency oncolytic HSV, combined with nivolumab (IGNYTE). Journal of Clinical Oncology. 2022;40(16_suppl):9553-9553
- Ayers M, Lunceford J, Nebozhyn M, Murphy E, Loboda A, Kaufman DR, Albright A, Cheng JD, Kang SP, Shankaran V, Piha-Paul SA, Yearley J, Seiwert TY, Ribas A, McClanahan TK. IFN-?-related mRNA profile predicts clinical response to PD-1 blockade. J Clin Invest. 2017;**127**(8):2930-2940.

Ethics Approval The study was approved by the institutional review board or the local ethics committee at each participating site. Informed consent was obtained from patients before participating in the trial.

http://dx.doi.org/10.1136/jitc-2022-SITC2022.0610