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Abstract 

To survive, all organisms must detect and respond to mechanical cues in their 

environment. Cells are subjected to a plethora of mechanical forces, such as 

hydrostatic pressure, cell-cell contact, stretch, compression, and shear stress. 

Mechanosensitive membrane proteins have evolved across all life kingdoms to sense 

and respond to forces in the membrane. Bacterial mechanosensitive ion channels 

provide a blueprint for understanding the fundamental mechanisms that underpin 

cellular responses to mechanical signals. Recently, the identification of eukaryotic force 

transducers, which includes membrane proteins other than channels, has led to the 

recognition of common structural hallmarks and unified biophysical mechanisms that 

could potentially link these diverse proteins. Accumulating evidence suggests G 

protein-coupled receptors (GPCRs) are candidates for pressure sensing in mammals. 

This review summarises the current knowledge on mechanosensitive GPCRs, describes 

the tools used to assess their mechanosensitivity, and aims to highlight the key 

characteristics that link these receptors to established mechanosensors. 
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Introduction 

Mechanotransduction is the process by which mechanical force is converted into 

intracellular biochemical signals. At the most basic level, mechanotransduction 

protects prokaryotes from osmotic shock under extreme turgor pressure [1-4]. In 

animals, it permits not only the sense of touch but also proprioception, hearing, pain 

and vascular regulation [4]. Because mechanotransduction is conserved across all life, 

it is thought to be one of the most primitive sensory transmission pathways [3]. 

 

The primary target for mechanical force in cells is the plasma membrane. Membranes 

are highly dynamic structures, composed mostly of phospholipids, cholesterol, and 

proteins, which form a protective barrier around the cell. Mechanotransduction, 

therefore, relies on the presence of membrane-embedded MS macromolecules. Most 

MS proteins identified to date are ion channels, biomolecules that contain a central 

pore through which ions and water can cross the semi-impermeable lipid bilayer. Patch 

clamp electrophysiology studies on the bacterial MS channels of large (MscL) and 

small (MscS) conductance laid the foundations for our understanding of the 

biophysical principles underlying mechanotransduction [5,6] and were crucial in 

establishing a model for mechanosensing in membranes. 

 

Mechanisms for force sensing 

It is widely accepted that MS channels in bacteria gate in response to bilayer stretch 

alone. This observation led to the proposal of the "force-from-lipids" model, which 

states that membrane protein conformation and function are governed by protein 

interactions with surrounding lipids [5,7] [Figure 1]. These interactions are influenced 

by both tension-induced global stretching of the membrane and local distortions 

caused by membrane curvature [8]. Membrane stretch thins the bilayer and alters the 

equilibrium of pressure known as the transbilayer pressure profile [9]. Hydrophobic 

mismatch ensues between the membrane-facing domains of intrinsic proteins and the 

bilayer, inducing a shift in the protein conformation [8]. 

 

In the case of MscS [10,11], MscL [12-14], and the mammalian two-pore domain 

potassium (K2P) channels TRAAK [15,16], TREK-1 [16,17] and TREK-2 [18], dissociation 

of lipids from hydrophobic pockets under membrane tension appears to drive a 

conformational change consistent with channel gating [19]. These findings prompted 

the development of a novel mechanism. Derived from the force-from-lipids principle, 

the "lipid-moves-first" model posits that lipids behave as non-specific, low-affinity 

negative allosteric modulators for integral MS channels [10,12,13,20] [Figure 1]. 

Jo
ur

na
l P

re
-p

ro
of



Membrane proteins are so intimately associated with annular lipids that the acyl chains 

penetrate into the TM cavities. In this model, when membrane stretch increases the 

total planar area of the bilayer, hydrophobic forces "pull" lipids out of the pockets and 

into the bilayer to satisfy the equilibrium position [10,20]. In response, the protein 

adjusts its conformation to protect the newly exposed hydrophobic residues. When 

tension decreases, the process is reversed. Indeed, several high-resolution structures 

of MscS in detergent and membrane mimetics (termed nanodiscs), solved by X-ray 

crystallography [10] and cryogenic electron microscopy (cryo-EM) [11,21-23], report 

lipid-like density within the TM pockets. In comparison to the open-state channel, it is 

clear that these lipid-binding regions significantly reduce in volume when the channel 

opens [10,24]. Of course, it could be argued that the reverse is true; that when integral 

membrane proteins rearrange, their associated lipids must reorganise too [7]. 

However, this model would necessitate strongly bound lipids to act as force 

transducers, which is not consistent with the requirement for the entropy-driven free 

exchange of lipids between proteins and the bilayer [10,20]. Further, it is known that 

MS channels are sensitive to changes in membrane thickness and asymmetry induced 

by the addition of amphipathic molecules, suggesting that force is transmitted from 

rather than to the bilayer [5,10,25]. 

 

It is not yet clear if these lipid-centric models extend to mechanotransduction in the 

cells of higher organisms. In the alternate "tethered" model, force is relayed to 

channels via additional structures such as the extracellular matrix (ECM), intracellular 

cytoskeleton, or a combination of both [4] [Figure 1]. It was recently suggested that 

the human MS channels PIEZO1 and PIEZO2 are functionally tethered to the actin 

cytoskeleton [26]. Although this study is the first to suggest the force-from-tether 

model in mammalian cells, molecular dynamics simulations and patch clamp 

electrophysiology experiments performed on the Drosophila MS channel NompC 

suggest that tethers to microtubules allow force to be transmitted to the channel [27]. 

There is also evidence to advocate for the force-from-lipids model for mammalian 

mechanotransduction. PIEZO1 in membrane blebs and lipid droplets, which lack 

auxiliary elements, retains its MS [28,29]. Human TRAAK and TREK-1 respond 

exquisitely to applied force in excised patches following reconstitution into liposomes 

[16]. Given the complexity of these systems, a hybrid model with relative contributions 

from both the membrane and tethers seems to be the most appropriate. 
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Figure 1. Schematic representation of current hypotheses for mechanosensing in 

membranes. A. According to the "lipid-moves-first" model, closed-state integral 

membrane proteins, such as ion channels and receptors, are stabilised by lipids 

occupying cytoplasmic-facing pockets. B. The "force-from-lipids" model encompasses 

all lipid membrane-driven mechanisms resulting in protein conformational changes in 

response to pressure in the bilayer. C. The "force-from-tether" model describes how 

attachments to auxiliary cellular components, namely the ECM and the cytoskeleton, 

are involved in conformational changes that lead to ion influx. Created using 

BioRender.com, adapted from [30]. 

 

In the last 30 or so years, new classes of human MS proteins have been identified, and 

advances in structural and functional studies have revealed common characteristics 

that may point towards a universal mechanism for force sensing. An increasing number 

of G protein-coupled receptors (GPCRs) have been shown to respond to mechanical 

stimuli in a ligand-independent manner. This review aims to highlight the role of 

GPCRs in mechanotransduction in humans and to evaluate their position within the 

mechanosensing paradigm. We will also discuss existing tools and propose new 

approaches to address mechanosensitivity in GPCRs. 

 

G protein-coupled receptors 

GPCRs make up the largest family of membrane proteins in humans, with some 800 

members. They recognise a vast array of chemical signals, including most hormones 

and neurotransmitters, to mediate important physiological processes, including vision, 

olfaction, and taste [31,32]. Despite huge variability in function, all GPCRs share two 

defining characteristics. Firstly, their structure is comprised of an extracellular N-

terminus, seven transmembrane (TM) ⍺-helices (TM1-TM7), connected by three 

intracellular loops and three extracellular loops, and an intracellular C-terminus [31]. 
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Secondly, they couple to heterotrimeric guanine nucleotide-binding proteins (G 

proteins), formed from G⍺, Gβ and Gγ subunits [31].  

 

One subfamily of receptors, the adhesion GPCRs (aGPCRs), also includes an extended 

N-terminal extracellular region composed of cell-adhesive protein motifs and a GPCR 

autoproteolysis-inducing domain (GAIN) [33]. Autoproteolysis dissects the receptor 

into an extracellular N-terminal fragment (NTF) and a C-terminal fragment (CTF), the 

latter of which includes the 7TM region. However, not all aGPCRs are thought to be 

cleavable at the GAIN domain due to the absence of a highly conserved sequence 

motif within the GPCR proteolysis site (GPS) [33]. Interestingly, aGPCRs are implicated 

in mechanotransduction via a tether-like mechanism due to enhanced cell-cell or cell-

ECM interactions [34,35]. Examples of putative MS aGPCRs include EMR2 (ADGRE2), 

CD97 (ADGRE5), GPR56 (ADGRG1), GPR114 (ADGRG5), GPR126 (ADGRG6), latrophilin-

1 (ADGRL1) and VLGR1 (ADGRV1) [34,35]. For this subset of receptors, activation and 

signalling is triggered by the interaction of a tethered low-affinity peptide agonist 

(termed the Stachel) with the 7TM region [34-36]. Whilst the exact mechanism of MS 

activation is yet to be elucidated, it's hypothesised that mechanical force causes 

separation of the NTF and CTF, exposing the Stachel to the 7TM binding site, and/or 

that mechanical perturbation of the N terminus induces a conformational reorientation 

of the Stachel to an active position [34,35]. 

 

For rhodopsin-like class A GPCRs, initiation of signalling is canonically achieved by 

ligands interacting with a binding site typically found within the TM helices on the 

extracellular side of the receptor. Ligand-induced structural rearrangement of the TM 

region allows the signal to be transmitted across the cell membrane. Agonists shift the 

receptor energy landscape towards the "active" receptor conformation, so that the 

receptor spends more of its time in a conformation that can bind transducer proteins, 

such as G proteins, GPCR kinases (GRKs), and arrestins, intracellularly [31,32,37]. It is 

thought that mechanical forces acting on cells can also elicit intracellular signals by 

inducing a shift in the conformational equilibrium of GPCRs embedded in the plasma 

membrane. 

 

Mechanosensitive GPCRs 

The first reported putative MS GPCR was the angiotensin II type-1 receptor (AT1R), a 

mediator of cardiac hypertrophy and myogenic vasoconstriction. Mechanical stretch 

of cardiomyocytes expressing AT1R in the absence of its endogenous peptide 

angiotensin II (Ang II) was shown to activate downstream extracellular signal-regulated 
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kinases (ERKs), Jak2, and inositol phosphates [38,39]. Importantly, stretch-induced 

receptor activation was inhibited by an AT1R-selective inverse agonist [38]. This work 

was supported by Mederos y Schnitzler et al. (2008) [40], who co-expressed AT1R with 

transient receptor potential channel-6 (TRPC6), a mechano-insensitive ion channel 

activated by diacylglycerol (DAG). Osmotic membrane stretch activated TRPC6-

dependent cation currents via AT1R-mediated phospholipase C (PLC) activation [40]. 

The authors carried out similar patch clamp experiments with the histamine H1 

receptor (H1R), type-5 muscarinic acetylcholine receptor (M5R) and vasopressin 1a 

receptor (V1aR) to establish a broader role for G⍺q/11-coupled GPCRs as MS proteins 

[40]. The role of G⍺q/11-coupling was later challenged by Rakesh et al. (2010) [41], 

who demonstrated via a DAG reporter assay that mechanical activation of AT1R 

operates through β-arrestin recruitment, independently of G proteins or Ang II. 

  

Most MS GPCRs identified to date have important roles in vascular function. Smooth 

muscle cells of small resistance arteries are inherently sensitive to changes in 

intraluminal pressure and constrict in response to elevated tension [42]. This 

phenomenon is known as the Bayliss effect or the myogenic response. In vivo, blood 

flow exerts a frictional force known as shear stress on the endothelial cells (ECs) that 

line the vessel walls. The identity of specific mechanosensors located in vascular ECs 

has been a topic of debate for decades. GPCRs are among the list of candidates, which 

also includes ion channels, junctional complexes, integrins, and the cytoskeleton, all of 

which are thought to influence the myogenic response [43]. 

 

It is possible that the endothelial response to shear stress requires synergistic 

cooperation between two or more candidates. For example, it has been shown that 

vasoconstriction mediated by the MS ion channel transient receptor potential vanilloid 

4 (TRPV4) is potentiated by several GPCRs, including the type-3 muscarinic 

acetylcholine receptor (M3R) in rat arterioles [44] and AT1R and proteinase-activated 

receptors (PAR1 and PAR2) in mouse aorta [45]. In another study, it was shown that 

shear stress in bovine aortic ECs activates PIEZO1, resulting in the release of 

adrenomedullin, which subsequently activates its Gs-coupled receptor, calcitonin 

receptor-like receptor CALCRL [46]. Importantly, Xu et al. (2018) [47] demonstrated 

that shear stress-induced calcium transients mediated by the MS receptor G protein-

coupled receptor 68 (GPR68) were present even when PIEZO1 and PIEZO2 were 

knocked down. The same study showed that PIEZO1-dependent calcium transients 

were activated by turbulent shear stress but not by smooth laminar flow in HEK293T 

cells transfected with mouse Piezo1 [47]. Taken together, these data suggest that both 

ion channels and GPCRs are important for shear force sensing. Indeed, it is likely that 
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ECs integrate different types and intensities of mechanical input to generate the 

appropriate biological response. Ion channels, which respond within milliseconds, are 

likely required in instances of acute or rapid mechanical stress. Conversely, 

metabotropic receptors function more slowly and may result in long-term cellular and 

tissue modifications in response to mechanical signals. Other examples of reported 

shear stress sensors include the receptors bradykinin B2 (B2R) [48], dopamine D2 [49] 

and D5 [50], H1R [49], adenosine A2A [49], sphingosine 1-phosphate [51], apelin [52] 

and parathyroid hormone type-1 [53]. 

 

Mechanistic insights into mechanosensing GPCRs 

The principal technique for studying MS ion channels is single channel patch clamp 

electrophysiology. Since ion transport is not a characteristic feature of receptor 

function, most studies on MS GPCRs monitor indirect readouts, such as downstream 

effectors, to infer protein conformational changes. However, a few studies have linked 

mechanical activation to conformational transitions directly using fluorescence 

resonance energy transfer (FRET) [48,49,53]. Recently, the structural basis of receptor 

activation by mechanical force was attributed to helix 8 (H8), a short ⍺-helix found in 

most receptors located immediately after TM7 [49]. Erdogmus et al. (2019) [49] 

observed a reduction in FRET signals between fluorophores inserted at the C-terminus 

and proximal end of H8 in H1R following shear stress, which the authors suggest was 

caused by H8 stretch. The removal of H8 from H1R by C-terminal truncation resulted 

in insensitivity to mechanical stress, and insertion of the motif into one isoform of the 

gonadotropin-releasing hormone receptor (GnRHR), which intrinsically lacks H8, was 

sufficient to confer mechanosensitivity on the previously insensitive receptor [49]. On 

the other hand, Ozkan et al. (2021) [54] did not observe suppression of shear stress-

induced fluorescent signals upon deletion of H8 from GPR68. However, the force 

applied in this study (2.6 dyn/cm2) was much lower and is at the lower end of the 

physiological range. Arteries are exposed to shear stress of up to 10 dyn/cm2 and in 

arterioles, pressure can reach up to 70 dyn/cm2 [55]. Involvement of the H8 region in 

mechanosensing is partially supported by an earlier mutagenesis-based study, which 

demonstrated that mechanical stress causes TM7 in AT1R to rotate anticlockwise, away 

from H8, towards the ligand-binding pocket [56]. 

 

Structural similarities between GPCRs and MS ion channels 

Recognition of common structural features among mechanosensitive proteins has led 

to consensus on a potential common underlying mechanism for pressure sensing. 

Despite vast differences in their global structures, most known mechanosensitive ion 
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channels have an amphipathic helix positioned approximately parallel to the 

cytoplasmic membrane [57] [Figure 2]. This helix has no sequence conservation or 

defined length, yet it has been resolved in the structures of MscS [10,21,22], MscL 

[58,59], PIEZO1 [60,61], PIEZO2 [62], TRPV4 [63], TRAAK [15], TREK-1 [17], and TREK-2 

[18]. In all cases, the orientation of this helix in relation to the adjacent TM helices 

allows for the formation of pockets that are responsible for mechanical sensing and 

response in these channels [10,12,13] [Figure 2]. First identified in MscS [64], 

hydrophobic pockets located close to the protein-bilayer interface have since been 

found in many MS ion channels [10-12,16-18,21,22,65,66]. It is interesting that H8 in 

GPCRs closely resembles the horizonal helices found in MS channels and is also 

inherently amphipathic [67]. A new study on the so-called "pocketome" of 557 GPCRs 

revealed nine newly identified pockets, most of which were located around the TM7 

bundle, in close proximity to H8 [68]. Mutagenesis of key residues within these pockets 

in M3R and B2AR significantly affected G-protein activation and β-arrestin recruitment 

[68]. We hypothesise that the positioning of H8 in GPCRs gives rise to the formation 

of hydrophobic pockets analogous to those first identified in MS channels [10,12,64, 

69,75], and that lipid contacts in this region directly affect receptor function, as 

exemplified in MS ion channels [11-13,19,23]. 

 

 

Figure 2. Mechanosensitive membrane proteins feature an amphipathic helix positioned 

horizontally and in close proximity to the intracellular protein-bilayer interface. The 

orientation of this helix permits the formation of lipid-binding pockets. A. 
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Homoheptameric ion channel MscS (PDB 6PWP). One subunit is shown in cartoon form, with 

remainder in surface view to highlight the various cavities formed between subunits and 

around the amphipathic helix (magenta). B. Homopentameric channel MscL (PDB 2OAR). The 

pocket-forming region is shown in green. C. Pseudotetrametic dimer TREK-1 (PDB 6W84). A 

single subunit is shown as a cartoon, with the helix of interest highlighted in orange. D. 

Monomeric GPCR AT1R (PDB 6OS0) is depicted in both cartoon and surface view. The terminal 

end of TM7 and TM1, and the proximal end of helix 8 (H8), are coloured blue. 

 

Tools for studying MS GPCRs 

From a structural perspective, monitoring MS ion channels by electrophysiology may 

also be regarded as an indirect method. Recently, advanced electron paramagnetic 

resonance (EPR) spectroscopic techniques, such as pulsed electron-electron double 

resonance (PELDOR) spectroscopy, also known as double electron-electron resonance 

(DEER) spectroscopy, have been used to study integral membrane protein 

conformation and oligomerisation  by enabling accurate distances to be measured 

between engineered protein spins [12,64,69-73]. PELDOR spectroscopy in combination 

with site-directed spin-labelling of residues at the entrance to hydrophobic pockets in 

MscL [12] revealed an expanded state of the channel, comparable to the reported sub-

conducting state of Methanosarcina acetivorans MscL (MaMscL) [74]. PELDOR 

spectroscopy was first applied to the structurally-disparate MscS channel and 

successfully assigned its conformation in native conditions [64,75-78]. Whilst EPR has 

been useful to monitor MS channel conformation in response to changes in protein-

lipid contacts [12,69], spectroscopic techniques have not yet been used to study 

mechanically-activated proteins by membrane tension application directly. This is 

because both NMR and EPR require measurements to be performed on purified 

(and/or reconstituted) protein samples in solution, and it has been challenging to 

mimic membrane tension outside of an electrophysiology or a cell-based assay set-

up. Recently, a new method for simulating membrane tension was reported in the form 

of membrane-fluidising agents named cyclodextrins (CDs) [11,79] [Figure 3]. CDs are 

truncated cone-shaped molecules formed from cyclic oligosaccharides, which have 

hydrophobic interiors and hydrophilic exteriors [80] [Figure 3]. Their chemical structure 

means CDs are able to extract lipids from bilayers, altering the hydrophobic force 

equilibrium, akin to membrane stretch. Following treatment with β-CD, cryo-EM 

analysis suggested that MscL adopts a flatter, more open-like structure [79], and that 

MscS alters its conformation [11]. Future studies on MS GPCRs could combine several 

of the above techniques in order to address mechanical force sensing at a molecular 

level [Figure 3]. GPCRs are typically less than 50 kDa in weight, meaning they are 

relatively small for most cryo-EM applications, despite recent advances [81,82], and 

they are notoriously difficult to crystallise [83]. However, PELDOR studies on AT1R [84] 
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and B2AR [85] have successfully determined distinct conformations stabilised by 

"biased" ligands [84] and resolved previously unknown intermediate conformations 

formed along the activation pathway [85]. More recently, PELDOR was used to assess 

the effect of cholesterol analogue binding on B1AR conformation and dimerisation 

[86]. PELDOR is not limited by protein size, and it is therefore reasonable to suggest 

this method can be applied to MS GPCRs. The molecular mechanisms behind GPCR 

force transmission are not yet well understood. CD-treatment of GPCRs reconstituted 

into lipid bilayers, monitored by pulsed-EPR, could be a powerful approach for 

determining if MS GPCRs operate analogously to other MS proteins and channels. 

 

 

Figure 3. Tools for simulating membrane force in cells or lipid nanodiscs, and methods 

for detecting mechanical responses. Traditionally, studies on MS GPCRs use hypoosmotic 

stress, mechanical stretch or shear stress to mimic mechanical forces in whole-cell assays. The 

biological readout for such assays typically focuses on detecting changes in downstream 

effectors, such as phosphorylated ERKs, inositol phosphates or cyclic AMP. Electrophysiology 

may be used if the receptor is functionally tethered to an ion channel. A new approach for 

simulating membrane tension includes the use of cyclodextrins (CDs) to remove lipids from 

the bilayer. Detecting structural changes, rather than biological responses, is possible using 

bioluminescence (e.g., FRET) and pulsed electron paramagnetic resonance (EPR) spectroscopy, 

also known as PELDOR or DEER spectroscopy. Created using BioRender.com. 

 

Conclusions and Future Perspectives 

There is convincing evidence to suggest class A GPCRs are capable of sensing 

membrane tension and relaying force signals across the bilayer to trigger intracellular 
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pathways. However, very little is known about the potential mechanisms required for 

force transduction in GPCRs. Many studies involving both prokaryotic and eukaryotic 

MS molecules, such as MscS, MscL, PIEZOs, and K2P ion channels, suggest these 

proteins conform to the force-from-lipids paradigm, meaning their conformation and 

thus function is at least partially membrane-lipid driven. Here, we have highlighted the 

importance of hydrophobic pockets and their lipid availability for force sensing, 

inspired by recent studies on bacterial mechanosensitive channels. Given that GPCRs, 

unlike ion-conducting channels, cannot be studied by patch clamp electrophysiology, 

a platform consisting of pulsed-EPR spectroscopic tools could enable the acquisition 

of interspin distances with Angstrom resolution and reliably reveal the conformational 

state of GPCRs in a native-like membrane environment under certain conditions, such 

as tension. H8 in GPCRs was previously identified as an important structural motif for 

MS, and we here hypothesise that the lipid-moves-first model, which stems from the 

general force-from-lipids principle, may apply to GPCRs. By applying the methods and 

techniques used to study established MS molecules, we may delineate the mechanisms 

of MS GPCRs in a comparable manner. 
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