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Abstract— Although deep learning (DL) techniques have
been extensively researched in upper-limb myoelectric con-
trol, system robustness in cross-day applications is still
very limited. This is largely caused by non-stable and time-
varying properties of surface electromyography (sEMG)
signals, resulting in domain shift impacts on DL models.
To this end, a reconstruction-based method is proposed
for domain shift quantification. Herein, a prevalent hybrid
framework that combines a convolutional neural network
(CNN) and a long short-term memory network (LSTM),
i.e. CNN-LSTM, is selected as the backbone. The paring
of auto-encoder (AE) and LSTM, abbreviated as LSTM-
AE, is proposed to reconstruct CNN features. Based on
reconstruction errors (RErrors) of LSTM-AE, domain shift
impacts on CNN-LSTM can be quantified. For a thorough
investigation, experiments were conducted in both hand
gesture classification and wrist kinematics regression,
where sEMG data were both collected in multi-days. Exper-
iment results illustrate that, when the estimation accu-
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racy degrades substantially in between-day testing sets,
RErrors increase accordingly and can be distinct from
those obtained in within-day datasets. According to data
analysis, CNN-LSTM classification/regression outcomes
are strongly associated with LSTM-AE errors. The aver-
age Pearson correlation coefficients could reach −0.986 ±

0.014 and −0.992 ± 0.011, respectively.

Index Terms— sEMG, deep learning, long short-term
memory network, auto-encoder, domain shift
quantification.

I. INTRODUCTION

IN HUMAN-MACHINE interfaces (HMI), such as intel-
ligent prostheses or rehabilitation robotics, the identifi-

cation and prediction of upper-limb motions from surface
electromyography (sEMG) signals have received considerable
attention [1], [2]. This is largely due to the non-invasiveness of
sEMG and the rich neural information that is highly correlated
with skeletal muscle contraction [3]. Currently, the machine
learning (ML) method has become a prevalent scheme in
myoelectric systems. It mainly consists of classification-based
gesture recognition and regression-based kinematics/kinetics
estimation. The former focuses on the identification of discrete
upper-limb activations, enabling dexterous control of multiple
degrees of freedom (DoF) [4]. The latter, in contrast, focuses
on continuous joint motions to support simultaneous and
proportionate control. It has attracted significant interest due
to its compatibility with human body movements naturally [5].

To further improve the estimation accuracy and robustness,
deep learning (DL) approaches, especially convolutional neu-
ral network (CNN), have drawn more and more attentions in
both classification [6], [7], [8], [9] and regression [10], [11],
[12]. Different from traditional ML models that rely on the
extraction and selection of hand-crafted features, CNN-based
feature learning requires less expertise in domain knowledge
and maintains more information for accurate inference. Never-
theless, a main limitation of CNN is that it inherently focuses
on the spatial correlations but is unable to well capture tempo-
ral dependencies, whereas upper-limb movements are contin-
uous and preferable to be viewed as time-series data [13].
By contrast, recurrent neural networks (RNNs), particu-
larly long-short term memory network (LSTM), shows great
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effectiveness in capturing long-term dependencies by learning
contextual information from previous model inputs [14], [15].
To this end, the combination of CNN and RNN/LSTM (such
as CNN-RNN, CNN-LSTM, RCNN, etc.) has become one of
the-state-of-art frameworks in myoelectric control [13], [16],
[17], [18], [19], aiming to better exploit the spacial-temporal
correlation of sEMG data via deep feature extraction and
sequential regression.

However, it has been noted that the estimation accuracy
of pre-trained models tends to decline dramatically in real-
world situations, especially in the cross-day scenarios, which
severely inhibits the commercialization of myoelectric sys-
tems [20], [21], [22]. From the perspective of physiology, it is
because the properties of sEMG are non-stable in long-term
conditions and can be massively influenced by many external
factors such as muscle fatigue, electrode shift, variations
of contraction forces, arm position effects, etc. [23], [24],
[25], [2], [26]. More specifically, those disturbances result
in domain shifts on pre-trained models, as ML/DL methods
usually assume that the training and testing data stem from
the same underlying distribution [27]. To this end, numerous
efforts have been reported, mainly involving dynamic/alternate
training [28], [29] to enlarge the labelled dataset and transfer
learning [27], [30], [31], [32] to enable parameter adaptation,
etc. For instances, Waris et al. [29] investigated the robust-
ness of myoelectric controls in multiple days, and observed
that the increase of training size by pulling data from sev-
eral days tend to improve real-time performance. By con-
trast, Wang et al. [32] introduced an unsupervised adaptive
approach to eliminate the retraining burden over days.

Although the aforementioned studies can help to improve
model generalization in some specific scenarios, there still
lacks a generic method to predict domain shift impacts on
ML/DL models in myoelectric control, especially in the cross-
day application. In fact, different from many specific distur-
bances such as electrode shift, arm position effect, and muscle
fatigue, it is less feasible to detect the long-term drift of sEMG
via sensors (for example, IMU or computer vision can be
used to measure the variation of arm posture or electrode
position) or by analysing statistic features of sEMG (such as
the mean or median spectrum of sEMG). Therefore, it is of
vital importance but also challenging to evaluate the cross-
day reliability, whereas domain shift quantification becomes a
practical approach.

Recall that variations of sEMG are hard to describe and
represent in advance, it is preferable to regard this pro-
cess as unsupervised anomaly detection [21]. A potential
solution is the to use auto-encoders (AE), an unsupervised
neural network, to reconstruct model inputs. In this context,
the reconstruction errors (RErrors) can work as anomaly
scores/indexes [33]. The basic idea behind this approach is
that, when AE is trained exclusively with anticipated data,
it is supposed to be unfamiliar with unforeseen patterns of
anomaly sEMG samples. In another word, AE replicates
foreseen sEMG at the output layer with a low reconstruction
error but provide a high error rate for significantly varied data.
Based on this assumption, an investigation was reported in [34]
to reject unknown hand gestures using CNN features of sEMG.

However, AE is a non-recurrent structure and thereby may not
be well qualified to exploit the temporal dependencies in time-
series data, particularly in regression tasks.

In this paper, a reconstruction-based method based on the
pairing of LSTM with AE, or LSTM-AE, is introduced for
domain shift quantification of CNN-LSTM frameworks. The
main purpose is to enhance model usability of DL in cross-
day upper-limb motion estimation. To be specific, LSTM-
AE reconstructs CNN features of given sEMG data, and the
obtained RErrors are utilized to quantify the domain shift that
can impact the final estimation performances of CNN-LSTM.
Based on the quantification results, threshold strategies can
be applied to identify out-of-domain samples. To validate the
effectiveness of LSTM-AE, experiments were conducted in
both hand gesture recognition and wrist kinematics estimation.
The former utilizes a benchmark composed data collected in
multi-day classification, and the latter recruits five healthy
participants to perform wrist flexion-extension in a two-day
experiment. Our main contributions can be summarized as:
1) To the best of our knowledge, this is the first study to
investigate domain shift quantification of DL models in cross-
day utilization; 2) For a comprehensive research, both classifi-
cation and regression schemes were involved in experiments;
3) Feature visualization was conducted to provide deeper
insights on domain shift impacts.

The reminder of this paper is organized as follows:
Section II introduces the framework of domain shift quan-
tification. In this section, a CNN-LSTM hybrid model is
firstly presented for upper-limb motion estimation (including
both gesture classification and kinematics regression), and the
design of LSTM-AE for sequential feature reconstruction is
elaborated to quantify domain shift impacts. Section III intro-
duces experiment setups in cross-day classification/regression.
Section IV demonstrates the experiment results. Discussions
are presented in Section V, and the conclusion is drawn in
Section VI.

II. METHODOLOGY

Fig. 1 demonstrates the flowchart of proposed method for
domain shift quantification in upper-limb motion estimation
based on CNN-LSTM model. Firstly, raw sEMG data are
converted into matrices for CNN-based feature learning. Then,
extracted deep features vectors are further processed to obtain
feature sequences for LSTM-based classification or regres-
sion. Meanwhile, LSTM-AE is applied to reconstruct feature
sequences to quantify domain shift impacts on CNN-LSTM
estimation in cross-day utilization. In the following part,
we will introduce each module elaborately.

A. CNN-LSTM for Upper-Limb Motion Estimation

In general, there are two types of frameworks in the design
of CNN-LSTM, i.e. an end-to-end network composed of both
CNN and LSTM layers or a hybrid one cascaded of CNN and
LSTM nets separately. In this study, the later is chosen because
the extracted CNN features will also be fed into LSTM-AE
for domain shift quantification.
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Fig. 1. Flowchart of domain shift quantification for CNN-LSTM hybrid
model in upper-limb motion estimation using sEMG. It mainly consists
of a CNN module for deep feature extraction, a LSTM module for motion
estimation, and a LSTM-AE module to quantify domain shift impacts
based on feature reconstruction.

1) Deep Feature Extraction: Since CNN is originally
designed for processing data in the form of multiple arrays
such as images, sEMG matrices/images should be constructed
from multi-channels signals. Herein, the one-dimensional (1D)
multichannel format [35] is utilized to reduce computational
burden. The sEMG data are firstly shaped into 1 × L × C
sized matrices using sliding windows, where L is the length
of data in one segment/window and C is the number of sensor
channels. Following our previous study [13], the fast Fourier
transform (FFT) is conducted to obtain the spectrum of sEMG
in each channel, as sEMG matrices are observed to be more
discriminative in frequency-domain. More specifically, a L-
points frequency vector is obtained in each channel after FFT,
where each element of the vector denotes the amplitude of
corresponding frequency ranges. Empirically, the double-sided
amplitude spectra are maintained such that the shape of sEMG
matrices are the same with those in time-domain.

Without loss of generality, basic structures of both classifi-
cation and regression models are based on LeNet-5. There are
4 convolutional blocks (Conv Block) and 2 fully connected
blocks (FC Block). Each Conv Block is composed of a 1D
convolutional layer, a batch normalization layer, a leaky ReLU
layer, a max-pooling layer, and a dropout layer. The kernel size
of convolutional layer is 3, with a boundary padding of 1 and
the stride of 1. There are 16 kernels in the 1st and 2nd Conv
Block, whilst 32 in the 3rd and 4th block. In each FC Block,
the batch normalization layer, leaky ReLU layer and dropout
layer are also attached. There are 100 hidden units in the 1st
FC Block and 20 in the 2nd. Outputs of the 2nd FC Block
work as CNN features of sEMG matrices.

2) Sequential Estimation: LSTM captures the non-linear
mappings between CNN features and target gestures or kine-
matics via a recurrent structure. It contains cycles that feed the
network activations from a previous time-step to influence pre-
dictions at the current time-step. To enable recurrent learning,
successive CNN feature vectors f are rearranged into feature
sequences such as [f1, · · · , ft ], where t denotes the number
of time steps. In this way the historical information can be

passed recursively in the whole loop of LSTM. Mathematical
descriptions of a LSTM module are as follows.

i i = δ
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W i
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si = oi ⊙ tanh (ci )

yi = W y si + by (1)

where si is the hidden state at time-step i in a given feature
sequence [f1, · · · , ft ], ci is the activation vector, i i is the input
gate, mi is the forget gate, oi is the output gate, δ is the logistic
sigmoid function, W is the weight matrix in each gate and
layer, b is the corresponding bias vector, and ⊙ is the scalar
product.

To reduce over-fitting, only one LSTM layer with 64 hidden
units is adopted in both classification and regression, and a
dropout layer is attached to improve model generalization.
Empirically, a many-to-one structure is applied in LSTM, and
the gesture or angle of final time-step works as the label of
each sequence sample.

3) Model Training: In this study, a separate training strategy
is applied for CNN-LSTM hybrid framework to improve
efficiency [13]. Firstly, sEMG matrices, together with ges-
ture labels or wrist angles, are collected to tune CNN.
To enable supervised learning, a classification/regression layer
is attached to CNN. In the second step, CNN works as a
feature extractor. Thereby, parameters of CNN are fixed, and
deep feature vectors are extracted from the 2nd fully connected
layer. These features are then reconstructed to train LSTM for
sequential classification/regression.

In classification, a softmax function LS normally works
as the training loss in both CNN and LSTM, which can be
mathematically expressed as

LS = −

N∑
k=1

log
ewT

yk
f k+byk∑m

j=1 ewT
j f k+b j

(2)

where f k denotes the kth deep feature that belongs to yk class,
w and b are weights and bias of CNN, respectively. N and m
denote the total number of mini-batch samples and the number
of classes.

Referring to [34] and [36]. a centre loss LC is suggested
to train CNN jointly with LS , which aims to improve the
discriminate property of CNN deep features. More specifically,
LC penalizes distances between deep features and their centre.
In this way, instances of the same category tend to cluster more
closely around the centre of the category. The mathematical
expression of LC is

LC =

N∑
k=1

∥∥ f k − cyk

∥∥2 (3)

where cyk is the class centre of deep features that belong to kth
class, which is computed by averaging these feature vectors
in a mini-batch training set [36].

Fig. 2 demonstrates the design of joint loss function in
CNN. As we can see, the joint loss L, which is the sum of LS
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Fig. 2. Design of the joint loss to enable a more discriminant supervised
learning of CNN feature extractor.

and LC , maximizes the distance of inter-class instances in the
latent space while minimizing that of the intra-class. In this
regard, the classification loss of CNN is expressed as

L = LS + λLC (4)

where λ is a hyper-parameter to control the trade-off between
two losses.

As for the regression scheme, the mean squared error (MSE)
loss is utilized in both CNN and LSTM training. For instance,
the training loss of LSTM can be expressed as

L =

N∑
k=1

t∑
i=1

∥∥∥ yik
p − yik

gt

∥∥∥2
(5)

where yik
p and yik

gt denote the prediction and ground-truth of
each deep feature, respectively. Please recall that this equa-
tion is a generic expression for multi-dimensional kinematics
regression. A scalar form is used when only one DoF is
involved.

It is worth to note that a joint training of CNN and LSTM is
also applicable in regression scheme. Nevertheless, a separate
training is preferable mainly because this strategy can be more
efficient in model training as the input in each time-step of
LSTM is a constant vector rather than convolution operations.
Besides, the sequential regression part can be easily optimized
or replaced without re-training the entire model [37].

B. LSTM-AE for Feature Reconstruction
LSTM-AE is a variation of AE which has achieved great

success in feature extraction and internal representation learn-
ing. For better clarity, the structure of AE is elaborated first.

AE is a type of deep neural networks trained to reconstruct
model input via unsupervised manner. The basic structure of
AE is composed of an encoder and a decoder. The encoder
part converts its input, such as deep feature fi herein, to a
latent representation x through deterministic mapping:

x = σen(W en f i + ben) (6)

where σ()en is normally a non-linear function for encoding,
W en is the weight matrix and ben is the bias.

By contrast, the decoder is a transformation that maps x to
original input, which can be expressed as:

f̂i = σde(Wdex + bde) (7)

Fig. 3. The unfolded structure of LSTM-AE that is composed of LSTM
encoder and LSTM decoder. Please note that a dropout layer is attached
to each LSTM layer, and a time distributed dense layer is added to the
decoder to obtain final outputs. For the sake of brevity, some of these
details are not presented in this figure.

where f̂i represents the reconstruction of input fi , whilst σ()de,
Wde, and bde denote the mapping function, weight matrix and
bias for decoding, respectively.

As illustrated in Fig. 1, LSTM-AE combines the recur-
rent networks with AE by performing the encoding and
decoding process via LSTM networks. More specifically, the
encoder LSTM converts the sequence feature [f1, · · · , ft ] to x,
whilst the decoder LSTM reconstructs the output

[
f̂1, · · · , f̂t

]
from x inversely. The unfolded structure of LSTM-AE is
shown in Fig. 3. Consistent with CNN-LSTM in classifica-
tion/regression, one LSTM layer with 64 units is adopted
in both the encoder and decoder module of LSTM-AE, and
a dropout layer is also attached. Different from the clas-
sification/regression task, LSTM-AE uses the many-to-many
structure for feature reconstruction.

The principle of training LSTM-AE is to minimize RErrors
of given sequential features, such that the reconstructed ones
can be close to original inputs. Typically, RError of [f1, · · · , ft ]
is formulated as

RError =
1
t

t∑
i=1

∥∥∥fi − f̂i

∥∥∥2
(8)

where the MSE loss is utilized to calculate the difference
between input sequence and the reconstructed. For model
training, RErrors of a mini-batch of feature sequences will be
averaged, and optimal weights of LSTM encoder and decoder
can be learned through error backpropagation.

As illustrated in Fig. 4, the implementation of our proposed
method mainly includes three steps. Firstly, a CNN-LSTM
is trained for motion estimation using labelled sEMG data,
where CNN works to extract deep feature vectors from sEMG
and LSTM conducts sequential classification or regression.
Secondly, a LSTM-AE is trained to reconstruct CNN features
via unsupervised learning (following Eq. 6). In the third step,
RErrors of given new data are obtained to quantify domain
shift impacts that CNN-LSTM suffers. There are several feasi-
ble application of LSTM-AE in practice. Typically, threshold
strategies can be applied for identification of out-of-domain
samples or determining the recalibration of CNN-LSTM in
motion estimation.
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Fig. 4. The implementation protocol of LSTM-AE for domain shift
quantification in CNN-LSTM based upper-limb motion estimation.

For brevity, we mainly discuss one of the practical applica-
tions of domain shift quantification. More specifically, LSTM-
AE is utilized to detect of out-of-domain sEMG samples from
normal ones. Recall that, in this study, data in Tr and Ts1 can
be treated as normal ones, whereas those in Ts2 are regarded
as out-of-domain data. Referring to Fig. 4, a threshold strategy
is introduced as follows:

Given sEMG Data =

{
Out-of-domain RError ≥ α

Normal otherwise
(9)

where the threshold α can be determined based on the distribu-
tion of RErrors obtained in Tr or Ts1. Herein, α is empirically
set to be larger than 95% of RErrors in Tr of each subject,
such that the majority of within-day samples will not be
misidentified. It is noted that α varies among subjects due
to the user-specific nature of sEMG.

III. EXPERIMENT SETUP

In this study, the effectiveness of LSTM-AE is validated in
both hand-gesture classification and joint kinematics regres-
sion. The setups of two experiments will be firstly introduced.
The signal pre-processing methods and hyper-parameter set-
tings will also be presented.

A. Gesture Classification
The purpose of LSTM-AE is to enhance the usability of

CNN-LSTM in cross-day scenarios. Therefore, the classifica-
tion experiment was conducted using a benchmark dataset, i.e.
Non-Invasive Adaptive Hand Prosthetics Database 6 (NinaPro
DB6) which was established to investigate the repeatability
of sEMG-based hand gesture recognition in cross-day appli-
cation [20]. The data were collected from 10 healthy partici-
pants (noted as P1-P10 for brevity), consisting of 2 sessions
(morning and afternoon) each day and lasting for 5 days.
As shown in Fig. 5, each session involved 12 repetitions of
7 typical hand grasps in Activities of Daily Living (ADLs).
Each grasp repetition lasted approximately 4s, followed by
4s of rest to avoid muscle fatigue. The sEMG signals were
measured with 14 Delsys Trigno sEMG Wireless electrodes
attached on the forearm. The sampling rate was 2 kHz.

In our experiment, the data in NinaPro DB6 were segmented
into three parts, including Tr for model training and Ts1/Ts2

Fig. 5. Classified gestures in NinaPro DB6 [20]. (a) Large Diameter;
(b) Adducted Thumb; (c) Index Finger Extension; (d) Medium Wrap;
(e) Writing Tripod; (f) Power Sphere; (g) Precision Sphere.

Fig. 6. Data acquisition in the wrist flexion-extension experiment.

for testing. According to experiment results reported in [20],
domain shift impacts between sessions are already significant.
Therefore, Tr and Ts1 came from the morning session in
the first day (Day 1) to eliminate the cross-day influence.
In particular, the first 6 repetitions of each grasp were used
for the construction of Tr, and the rest repetitions were used
for Ts1. To validate the cross-day performances, Ts2 came
from the afternoon session in Day 5. In the following part,
Ts1 and Ts2 are also mentioned as within-day testing set and
between-day set, respectively.

B. Kinematics Regression
Due to the lack of public benchmark for cross-day joint

kinematics estimation using sEMG, experiments were con-
ducted to obtain our customized dataset. With the approval
of MaPS and Engineering joint Faculty Research Ethics
Committee of University of Leeds, UK (reference MEEC
18-006), five able-bodied subjects (4 male and 1 female, aged
28-55, noted as S1-S5) were recruited. All subjects were
offered the informed and written consent. As shown in Fig. 6,
participants were asked to perform smooth and periodical wrist
rotations (flexion-extension) lasting about 3 minutes in each
trail. Consistent with gesture classification, three trials were
collected, i.e. Tr for model training and Ts1/Ts2 for testing.
In particular, Tr and Ts1 were conducted subsequently in case
of significant domain shift, whilst Ts2 was obtained about one
day later as the cross-day application.

During experiments, subjects seated comfortably in a chair
with their forearm limbs relaxed on the table. Twelve bipolar
electrodes were placed on the proximal portion of a forearm
to collect six channels of sEMG signals using the Shimmer
sensing system. Reference electrodes were placed near the
wrist. Positions of all electrodes were marked in case of a
substantial electrode shift in the second day test. An inertial
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measurement unit (IMU, composed of an accelerometer, gyro-
scope, and magnetometer) was attached on the back of hand to
calculate the roll, pitch, and yaw angles as the ground-truth of
wrist movements. Sampling rates for IMU and sEMG were set
as 100 Hz and 1024 Hz, respectively. The data of two sensing
systems were then synchronized for model training/testing.

C. Signal Pre-Processing
The sEMG signals in two datasets were both processed

using a 3rd order Butterworth high pass filter (20 Hz) and a
low pass filter (450 Hz) to remove unusable noise. A Min-Max
scaling was applied to normalize sEMG in each channel [38].
For data segmentation, the sliding windows were set to be
100ms with 50ms increment. This is to ensure that sufficient
samples are provided for model training in one participant.
To be specific, the number of data segments in Tr is about
5000∼6000 in classification and 3000∼4000 in regression.
As for data labelling, angles calculated by IMU in each
sliding window were averaged to obtain ground-truth labels
of corresponding sEMG signals in kinematics estimation.
After CNN-based feature extraction, the time duration of
reconstructed feature sequence was set to be around 1 second.

D. Hyper-Parameter Setting
In this study, hyper-parameters of CNN-LSTM were mainly

identified referring to our previous work [13]. In addition,
according to [34], the coefficient λ was set as 0.0005 to
balance the softmax loss and centre loss of CNN training in
classification schemes. As for LSTM-AE, a grid search based
on 5-fold cross-validation was used to tune hyper-parameters
using Tr of each participant. Empirically, we report a generic
setting which trained model in a 32 sized mini-batch for
100 epochs by stochastic gradient descent (SGD) with a
0.01 learning rate, and the forgetting rate of dropout layer
was 0.3.

E. Baseline Methods
Several baseline methods widely used in anomaly detection,

including one class support vector machine (OCSVM) [39],
Isolation Forests (iForest) [40], and conventional AE [34],
were applied for comparison. In particular, OCSVM and
AE have been investigated in deep learning applications [34],
[39]. As for hyper-parameter setting, a RBF kernel func-
tion was applied in OCSVM for non-linear mapping. Other
hyper-parameters of OCSVM and iForset were tuned based on
data in Tr such that approximately 95% of training samples can
be identified as normal ones. Consistent with the structure of
LSTM-AE, AE is composed of a three fully-connected layers,
with 128, 32 and 128 hidden units in each layer.

F. Evaluation Metric
Since the out-of-domain sEMG data are expected to be

detected, the detection performances were evaluated. Herein,
an metric named as Efficiency was presented. More specif-
ically, Efficiency = Accuracy − ErrorRate, where Accuracy
and ErrorRate denotes the detection rates of out-of-domain

Fig. 7. Distributions of projected CNN features and the associated
classification results of CNN-LSTM in Tr, Ts1, and Ts2 of a represen-
tative subject in Ninapro DB6. (a)-(c) illustrate feature distributions in the
latent space, where scatters belonging to the same gesture (including
the ‘rest’ class) are in the same colour. (d)-(f) present the classification
performances, where the definitions of 7 gestures can be found in Fig. 5.
Label 0 denotes the resting state of the hand.

data in Ts2 and Ts1, respectively. It is interesting to find that,
if the novelty detection is regarded as a binary classification,
Efficiency is equivalent to the Youden Index metric [41].

IV. RESULTS

A. Domain Shift Impacts on CNN-LSTM
As aforementioned, the main function of CNN is to work

as feature extractor of sEMG signals. Thereby, it is supposed
that domain shift impacts should be well reflected on CNN
features in the latent space. For verification, Fig. 7 compared
the distributions of extracted CNN features of three trials
(Tr, Ts1, and Ts2) in gesture classification, associated with
the confusion matrices in each trial. High-dimensional CNN
features are projected into two dimensions using t-distributed
stochastic neighbour embedding (t-SNE) [42] for visualization.
It is noted that the feature distribution in Tr, which does not
suffer from domain shift impacts, works as the reference.

From Fig. 7(a)-(b) it can be observed that, without too much
influence of domain shift impacts on Tr and Ts1, scatters of the
same class are gathering together in the latent space, whilst
those belonging to different classes are distributed distantly.
To summarize, in these two cases, distributions of CNN
features are quite discriminative. On the contrary, scatters in
Fig. 7(c), i.e. Ts2, are heavily overlapped, resulting in a much
worse classification result when compared with Tr and Ts1
(see confusion matrices in Fig. 7(d)-(f)).

According to Fig. 8, similar results can also be obtained in
kinematics estimation. As we can see in Fig. 8(a)-(d), scatters
with similar angles (i.e. those plotted in similar colour) are
clustering closely, whereas those with different angles are
distant to each other. A clear and gradual transition from
flexion scatters (dark red) to extension scatters (dark blue) can
be observed. Accordingly, the estimated trajectory matches the
ground-truth accurately. By contrast, in Fig. 8(e) the feature
distribution in Ts2 differs substantially from those of first two
datasets. Consequently, the estimated trajectory fails to match
the ground-truth (see Fig. 8(f)).
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Fig. 8. Distributions of projected CNN features and the associated
regression results of CNN-LSTM in Tr, Ts1, and Ts2 of a representa-
tive subject in our customized experiment. Subfigure (a), (c), and (e)
illustrate feature distributions in three datasets, respectively. The angles
of scatters (samples) are reflected in colormap, with the dark red
representing the positive maximal values in one DoF and dark blue for
the negative maximum. Subfigure (b), (d), and (f) present the regression
performances accordingly.

B. Domain Shift Quantification via LSTM-AE
Referring to visualization analysis above, domain shift

impacts on classification/regression performances are corre-
lated with CNN features of sEMG. Herein, LSTM-AE is
utilized to reconstruct CNN features, where data in Ts2 are
considered to be unforeseen due to domain shift in cross-day
application. In this regard, RErrors of LSTM-AE should be
useful for differentiating CNN features extracted from Ts1 and
Ts2. For verification, Fig. 9(a) reports the changing of average
RErrors (AREs) of regression samples in three datasets during
model training. As we can see, AREs of Ts2 decreases much
more slowly than those of Tr and Ts1, and a substantial
difference of AREs between Ts1 and Ts2 is observed after
convergence.

Histograms of RErrors in Tr, Ts1 and Ts2 are illustrated in
Fig. 9(b). It can be observed that, the distribution of RErrors
in Ts1, although a little bit skewed, is still close to that in
Tr. However, due to domain shift impacts that result in a
large number of unforeseen data for LSTM-AE, the majority
of RErrors in Ts2 are much larger than those of other two
datasets, thereby the distribution becomes quite separable. The
above results are consistent with observations in Fig. 7 and
Fig. 8, indicating that domain shift on CNN features will
enlarge RErrors of LSTM-AE.

Moreover, Fig. 10 presents the comprehensive analysis on
estimation results of CNN-LSTM and reconstruction per-
formances of LSTM-AE in both gesture classification and
kinematics estimation. In particular, Fig. 10(a) demonstrates
the classification accuracy (ACC) that CNN-LSTM achieved
in Tr, Ts1 and Ts2 in all participants of gesture classification,
and Fig. 10(b) reports the AREs of LSTM-AE accordingly.
Consistently, Fig. 10(c)-(d) demonstrate the experiment results

Fig. 9. Reconstruction results of LSTM-AE in Tr, Ts1 and Ts2 of a
representative subject in kinematics regression: (a) changing of average
RErrors (AREs) during model training in first 30 epochs; (b) histograms
of RErrors after convergence. The bin width in (b) is set to be 1.

in kinematics estimation. Herein, coefficient of determina-
tion [43] (R2) is utilized to evaluate the regression perfor-
mance. It is worth to note that R2 at perfect estimation is
equal to one, whilst a negative value means that estimation
errors are larger than the variance of target values.

As we can see in Fig. 10(a) and Fig. 10(c), the classifi-
cation/ regression performances of CNN-LSTM can be well
maintained in Ts1 of most subjects, but drop significantly in
Ts2 due to the domain shift. In accordance, Fig. 10(b) and
Fig. 10(d) illustrate that the AREs of LSTM-AE, although
also change slightly in Ts1, increase much more dramatically
in Ts2.

Herein, the Pearson correlation coefficients (CC) was also
calculated between ACC/R2 and AREs of all subjects, and
found that the average CC for gesture classification and
kinematics estimation is −0.986 ± 0.014 and −0.992 ± 0.011,
respectively. From above results it can be concluded that 1) for
both gesture classification and kinematics estimation, CNN-
LSTM tends to perform poorly in the cross-day utilization;
2) RErrors of between-day testing sets become much
larger and also separable from those obtained in within-
day sets. In this regard, it is indicated that the LSTM-AE
based reconstruction method can work effectively to quan-
tify the domain shift that influences performances of
CNN-LSTM.

C. Out-of-Domain Data Detection
Table I reports the detection rates of out-of-domain data

in Ts1 and Ts2 in gesture classification, and Table II reports
related results in kinematics regression. Please recall that the
detection rate obtained in Ts1 denotes the misidentification of
normal data. By contrast, in Ts2 it is regarded as the detection
accuracy. From two tables it is observed that, with acceptable
misidentification rates in Ts1, a large number of between-day
samples can be effectively detected using LSTM-AE.

Fig. 11 compares the detection performances of four meth-
ods. As we can see, LSTM-AE outperforms the baseline
methods in most participants of both gesture classification
and kinematics regression. A possible explanation is that,
since LSTM-AE works on sequential CNN features whereas
other methods only cope with non-sequential ones, dis-
tributions of RErrors can be more separable due to the
exploitation of temporal dependencies of successive sEMG
samples.
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TABLE I
DETECTION RATES OF WITHIN-DAY AND BETWEEN-DAY DATA VIA THE THRESHOLD STRATEGY IN GESTURE CLASSIFICATION. IT IS NOTED THAT

THE THRESHOLD α IS USER-SPECIFIC AND WAS TO BE LARGER THAN 95% OF RERRORS OF Tr IN EACH PARTICIPANT

Fig. 10. Estimation results and reconstruction performances in gesture
classification and kinematics regression. (a) Classification accuracy
(ACC) of CNN-LSTM in Tr, Ts1 and Ts2 of all participants (P1-P10)
in gesture classification; (b) Average RErrors (AREs) of LSTM-AE
in according experiments; (c) regression performances (coefficient of
determination, R2) of CNN-LSTM in Tr, Ts1 and Ts2 of all subjects
(S1-S5) in kinematics estimation; (d) Average reconstruction errors
(AREs) of LSTM-AE in S1-S5. For better clarity, P1 denotes the first
participant in gesture classification and S1 is used for kinematics regres-
sion.

TABLE II
DETECTION RATES OF WITHIN-DAY AND BETWEEN-DAY SAMPLES VIA

THE THRESHOLD STRATEGY. IT IS NOTED THAT THE THRESHOLD α IS
USER-SPECIFIC AND WAS TO BE LARGER THAN 95% OF RERRORS

Tr ERRORS IN EACH SUBJECT

Interestingly, it can also be observed that the detection effi-
ciency varies substantially among participants. For instance,
the average Efficiency of all methods in P1 (around 0.2)
is much lower than that in P8 (more than 0.7). This is
because, as reported in Fig. 10, the estimation performances
of CNN-LSTM were much less impacted in the between-day
testing set of P1 (classification accuracy maintains at 0.48 in
Ts2). By contrast, the accuracy drops substantially (from
0.84 to 0.22) in datasets of P8.

TABLE III
AUC OF ALL PARTICIPANTS IN CLASSIFICATION TASK

TABLE IV
AUC OF ALL SUBJECTS IN REGRESSION TASK

V. DISCUSSION

As revealed in previous literature [20], [21], [22], [30],
[31], [32], properties of sEMG is non-stable and time-
varying, resulting in obstacles that hinder accurate and reli-
able motion estimation in real-world myoelectric control.
Therefore, an effective evaluation on model reliability is of
vital importance. In this study, a novel method is presented
for domain shift quantification of a prevalent CNN-LSTM
hybrid framework in both gesture classification and kinematics
regression. Compared with many other DL methods, this
framework is preferred because 1) it achieves state-of-the-
art performances by exploiting the inherent spatial-temporal
dependencies among sEMG signals; 2) in this two-step struc-
ture, CNN features can be further utilized by LSTM-AE in a
very feasible way.

From experiment results it can be observed that the quan-
tification performances, i.e. RErrors of LSTM-AE, are highly
correlated with distribution of CNN features and also with the
classification/regression accuracies of CNN-LSTM. Therefore,
it is inferred that domain shift impacts on LSTM estimator
can be well reflected by the distribution of CNN features
in latent space, and these impacts can be further quantified
by reconstruction errors of CNN features using LSTM-AE.
In fact, the domain shift impacts on CNN feature has also
been utilized in metric learning, where the alignment of
CNN features in the latent space across datasets (i.e. the
source domain and target domain) can help to improve the
performance of CNN in the cross-day scenarios.
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Fig. 11. Detection efficiency of OCSVM, iForest, AE, and LSTM-AE in gesture classification and kinematics estimation.

TABLE V
CLASSIFICATION RESULTS OF CONVENTIONAL LSTM AND RECONSTRUCTION ERRORS USING LSTM-AE

To verify performances of LSTM-AE in cross-day gesture
classification, the NinaPro DB6 is used as a benchmark in this
work. NinaPro DB6 is composed of 12 inter-session datasets
across 5 days, and the contributor, Palermo et al. [20], reached
an inter-session accuracy of 25.4% based on a Random Forest
classifier. This is in general similar to results reported in
Fig. 10(a) (see ACC of participants in Ts2), but is much
lower than those reached on other datasets with a similar
number of classes and sensors. The main reason is that the
hand movements of NinaPro DB6, as shown in Fig. 5, are all
grasps that are much less diverse and discernable than the hand
gestures in ordinary datasets. As for kinematics estimation, the
within-day performances of CNN-LSTM are among 0.8-0.9 in
R2. These results are consistent with our previous study [13].
From Fig. 9 and Fig. 10 it can be observed that RErrors
are distinguishable between within-day data and between-day
ones. As aforementioned, LSTM-AE is less able to reconstruct
unforeseen CNN features well compared to foreseen ones,
thereby RErrors of out-of-domain data should be compara-
tively larger than those of normal ones.

As aforementioned in Section III-F, the detection of out-
of-domain sEMG samples, i.e. between-day data, can be
regarded as binary classification. Thereby, area under the curve
(AUC), which is a metric obtained via computing the receiver
operating characteristic (ROC) curve of true positive rate
(TPR) and false positive rate (FPR) under different thresholds,
was applied. Fig. 12 demonstrates performances of LSTM-AE
and baseline methods in representative subjects/participants of
gesture classification and kinematics estimation, respectively.
Table III and Table IV summarize the AUC results of all
methods. As is shown in the figures/tables, LSTM-AE could
outperform AE, OCSVM, and iForest in almost all cases.
In addition, AUC of different subjects/participants varies sub-
stantially. These observations are in general consistent with
results evaluated via detection efficiency.

In our study, we mainly focus on the application of
LSTM-AE on CNN-LSTM framework. This is motivated by

Fig. 12. ROC curves and AUC results of representative sub-
jects/participants in classification (P6) and regression (S5). ROC curves
were computed based on true positive rate (TPR) and false positive rate
(FPR) under varied thresholds. It is noted that OVSVM and iForset can
also provide scores of sEMG samples.

both [34] (combines AE and CNN for outlier detection) and
our experiments (Fig. 7 and Fig. 8) which reveal that domain
shift impacts could be sufficiently reflected on CNN features in
the latent space. Thereby, it could be inferred that LSTM-AE
is able to collaborate well with other variations of CNN
which substitutes LetNet-5 used in the presented CNN-LSTM
framework, where deep features can be extracted from fully
connected layers feasibly.

It is also of our interest to investigate the generalization of
LSTM-AE in other deep learning frameworks. Please recall
that recurrent models (i.e. RNN, LSTM, GRU, etc.) are pre-
ferred since LSTM-AE is proposed for the processing of time-
series data. Without loss of generality, LSTM was selected
as the backbone for classification and regression. A widely
applied temporal-spatial feature set [34] was adopted to extract
hand-crafted features of sEMG.

Table V and Table VI summarize the experiment results of
LSTM-based classification or regression (ACC/R2) as well as
reconstruction errors (AREs) of LSTM-AE. To analyse more
sufficiently, results of Ts2 were obtained as the average of
those in afternoon sessions of Day2-Day5. As we can see,
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TABLE VI
REGRESSION RESULTS AND CORRESPONDING

RECONSTRUCTION ERRORS

AREs of LSTM-AE increase substantially when classification
or regression performances of LSTM decay due to domain
shift in cross-day application, which is consistent with results
of CNN-LSTM. A possible explanation is that domain shift
impacts can also be well reflected on the selected hand-crafted
features, indicating potential generalization of LSTM-AE for
domain shift quantification in some other deep learning or even
machine learning models.

VI. CONCLUSION

In this paper, a reconstruction-based method using
LSTM-AE is presented for the domain shift quantification
in the cross-day application of CNN-LSTM in myoelectric
control. In our experiments, it can be observed that CNN
features of short-term and cross-day dataset are distributed
differently in the latent space, which is associated with the
degradation of estimation accuracies of LSTM using CNN
features. Therefore, the proposed LSTM-AE provides an
effective way for domain shift quantification. Furthermore,
it can be utilized to detect out-of-domain samples or indicate
model re-calibration, helping to improve system reliability in
myoelectric control.
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