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ABSTRACT 24 

Discharges from combined sewer overflows (CSO) are increasingly unacceptable, 25 

particularly when these are not linked to wet weather. This paper presents evaluation of an 26 

online artificial intelligence based analytics system to give early warning of such overflows 27 

due to system degradation. It integrates a cloud based data driven system using artificial 28 

neural networks and fuzzy logic with near real-time communications, taking advantage of the 29 

increasingly available real-time monitoring of water depths in CSO chambers. The data 30 

driven system has been developed to be applicable to the vast majority of CSOs and requiring 31 

a minimum period of data for training. Results are presented for a live assessment of 50 CSO 32 

assets over a six-month period demonstrating continuous assessment of performance and 33 

reduction of CSO discharges. The system achieved a high true positive rate (86.7% on 34 

confirmed positives) and low false positive rate (3.4%). Such early warnings of CSO 35 

performance degradation are vital to proactively manage our ageing water infrastructure, and 36 

to achieving acceptable environmental, regulatory and reputational performance. The system 37 

enables improved performance from legacy infrastructure without gross capital investment.  38 

 39 

Key words: Combined sewer overflows, Artificial neural networks, Fuzzy inference system, 40 

Cloud computing, Internet of Things, Rainfall radar, Depth prediction. 41 

 42 

Practical Applications 43 

Combined sewerage networks convey both wastewater from residential and commercial 44 

properties as well as rainfall runoff from the urban catchment. Combined Sewer Overflows, 45 

widely known as CSOs, provide a relief valve when runoff from rainfall would overwhelm 46 
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the downstream network and treatment works. Excess water is spilt to a nearby watercourse, 47 

ideally when the watercourse flow has increased to provide additional dilution and thus 48 

minimise impacts. If a blockage or other defect downstream of a CSO results in a decrease in 49 

discharge capacity, the CSO can spill earlier than it is designed to, or even in dry weather. 50 

Prior to the deployment of level sensors, such premature spills could only be identified 51 

through a visible spill or water quality impact. Sensors allow water utilities to monitor depths 52 

in CSO chambers, however each utility will have a large number of CSOs, thus an automated 53 

system is needed to identify premature spills. This paper discusses the development and 54 

validation results obtained from a pilot deployment of a data analytics solution to identify 55 

abnormal water depths in a CSO. 56 

 57 

INTRODUCTION 58 

Drainage systems in urban areas across the western world have developed over long periods 59 

of time, expanding in a piecemeal manner with the populations that they serve. In many 60 

locations, combined sewer systems were installed, capturing both foul flows and runoff from 61 

rainfall. Excess flows during heavy rainfall would overwhelm downstream networks and 62 

treatment works and potentially cause flooding, thus combined sewer overflows (CSOs) are 63 

used to divert excess flows to a receiving watercourse.   64 

Legislation, such as the EU Water Framework Directive (Council Directive (EC) 65 

2000/60/EC) means that pollution of water courses is under increasing scrutiny, and 66 

discharges from CSOs have the potential to be a significant source of pollution, especially if 67 

they are not operating as designed. Poor performance of a CSO is often a function of both the 68 

variety of waste discharged through the sewer system and also the age and condition of the 69 
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assets. These two factors can either in isolation or together reduce the capacity of the system 70 

through partial or even complete blockages. Where these blockages occur downstream of a 71 

CSO it is likely that the CSO will discharge to the watercourse prematurely, causing 72 

pollution. In the past, there was little option but to assume CSOs were operating as designed 73 

unless evidence suggested otherwise. Due to infrequent and spatially sparse sampling of 74 

rivers, the most likely source of this evidence would be from members of the public noticing 75 

the pollution or even a discharge from the outflow pipe itself. There has always been the 76 

potential for water service providers (WSP) in the UK to be fined for unconsented discharges, 77 

but this has tended to occur relatively infrequently due to the lack of definitive evidence.  78 

Increased monitoring of CSOs has become feasible with advances in technology. In some 79 

cases uptake has been politically driven, for example in the UK, Richard Benyon MP (2013) 80 

wrote to water company chief executives asking for monitoring of the vast majority of their 81 

CSOs by 2020. This led to the Environment Agency requiring installation of event duration 82 

monitoring (EDM), which was a significant feature in AMP6 (five year Asset Management 83 

Periods used in the UK water industry) running from 2015-2020 in order to assess CSO 84 

performance. While EDM provides broad data on CSO performance, the potential to use such 85 

water depth data for the day to day management has also been recognised (e.g. Sumer et al., 86 

2007). Ofwat has posed significant efficiency challenges to UK WSPs for AMP 7 (running 87 

until 2025), including cutting pollution incidents by more than a third (Ofwat, 2019). The UK 88 

context is mirrored worldwide, to one extent or another, regulations concerning the operation 89 

of CSOs vary significantly and are often linked to annual spill counts, or impacts, as 90 

discussed by Botturi et al (2021). In the EU there is an ongoing review of the Urban Waste 91 

Water Treatment Directive which regulates the discharge of waste water (EU, 2022). This 92 
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provides a strong driver for the water industry to make proactive use of the available data in 93 

order to meet or exceed these targets.  94 

The presence of CSOs within sewerage networks is a somewhat contentious issue. One 95 

school of thought is that they should not exist and that sewer networks should be dual 96 

systems with separate pipe for foul water and for storm water. Separated sewer systems have 97 

their own problems in that mis-connections are common when properties are extended or 98 

upgraded, potentially resulting in untreated discharges occurring continuously in dry weather 99 

from storm systems. Furthermore, the washoff from urban catchments cannot truly be 100 

considered clean with washoff of hydro-carbons, heavy metals and bacterial pathogens. 101 

Beyond this is the consideration that replacement of existing combined sewer systems with 102 

separated systems would, in the majority of cases, be prohibitively expensive. Looking 103 

forward, changing climate will compound the challenges our already struggling sewer 104 

systems face in meeting the demand of growing populations and urbanisation. Recent 105 

findings suggest that co-occurrence of rising sea levels, storm surges, and increased 106 

precipitation will lead to an increase in ‘compound flooding’ and increased pressure on sewer 107 

systems, and therefore the likelihood in the need to use CSO infrastructure (Fortier and 108 

Mailhot, 2015). It is hence reasonable to assume that CSOs, and their potential discharges, 109 

are a feature we have to accept in many places and that the challenge is to minimise 110 

unintended discharges from them, ideally with the minimum of investment in new built 111 

infrastructure. This research presents a likely key technology to achieve this.  112 

This paper presents evidence of how an online artificial intelligence system can be an 113 

effective advance warning system of degradation in CSO performance, providing information 114 

that can be acted on proactively to help avoid unintended or premature CSO discharges. The 115 

contributions include development of a fuzzy logic system for classification, cloud based 116 
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implementation to enable scalability, and historic and live validation to evidence the veracity 117 

of the information derived. 118 

 119 

BACKGROUND 120 

Internet of Things (IoT) objects and sensors connect to the cloud giving rise to the concept of 121 

‘smartness’ and the development of ‘Smart cities’ and ‘Smart water.’ The sensing of data that 122 

could not be gathered in the past and collecting them on IoT platforms enables new value to 123 

be created. As these technological capabilities advance, so does the ability to collect 124 

information from remote devices and correlate that information across diverse systems. An 125 

infrastructure that can connect the monitoring and control systems to an IoT platform allows 126 

the effective use of the operational information the systems hold, and helps to achieve near-127 

real time situational awareness based on digital performance twins. Hence, a new generation 128 

of smart and connected urban sewer systems will be enabled by emerging wireless 129 

technologies and data algorithms.  130 

IoT enabled urban drainage systems can play an essential role in the “smart water cities” of 131 

the future, where sewerage infrastructure evolves from being passive to adaptive units that 132 

can proactively respond depending on any given situation (Lund et al. 2018). Water utilities 133 

are starting to take advantage of this, for example deploying arrays of sensors that capture 134 

and generate time-series data in real time. Transforming this data into timely, relevant insight 135 

using rich analytics is a key goal of any cloud-based, open IoT operating system. 136 

Data from CSOs can be very valuable in understanding the performance of that asset and the 137 

immediately adjacent sewer system (Bachmann-Machnik et al. 2021), however with a large 138 

number of assets (in the thousands for many WSPs) it is not feasible (or affordable) to 139 
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manually interpret this data and deterministic centralised modelling is often too complex, 140 

uncertain and time consuming. Data driven Artificial Intelligence (AI) systems are an option 141 

to address this, offering a way to incorporate the data without resorting to detailed physically-142 

based mathematical models with their inherent high computational and calibration 143 

requirements. One recent study showed a near 5-fold performance improvement (ratio of 144 

overflows to precipitation) was achieved after commissioning of a real-time sensing (and 145 

subsequently) control system (Kerkez et al. 2016). Data driven software sensors have been 146 

used to estimate CSO emission flow rates from complex CSO structures by utilising 147 

correlation analyses between physical water depth sensors and discharge measurements (Ahm 148 

et al. 2016). 149 

Data-driven modelling seeks to provide a mapping between the inputs and outputs of a given 150 

system, with little prior process knowledge – and is now being widely adopted for prediction 151 

and classification in water systems. More complex control algorithms have been shown to 152 

outperform more simple control strategies (van der Werf et al. 2022). Artificial Neural 153 

Networks (ANN) are one such approach, being universal computing machines capable of 154 

arbitrary non-linear function approximation (Hornick et al. 1989) for pattern recognition, 155 

classification, generalisation and abstraction, and the interpretation of incomplete or noisy 156 

data (Lingireddy and Brion 2005). Recent research for urban drainage systems has explored 157 

the utilisation of rainfall radar data, hydraulic models and data-driven modelling approaches 158 

for the prediction of urban flooding in real-time (for example Duncan et al. 2013, Garcia et 159 

al. 2015). Fernando et al. (2006) applied a standard feed-forward, back-propagation ANN 160 

model to forecast the occurrences of wastewater overflows in a combined sewerage system. 161 

The data used included the traditional model predicted overflow rates for one overflow 162 

structure and artificially generated rainfall for the rain-gauge in the closest proximity. Sumer 163 
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et al. (2007) researched the feasibility of real-time detection of sanitary sewer overflows 164 

(SSOs) using time series analysis and ANN techniques in two case studies in Arizona, USA. 165 

An ANN was developed to estimate the 6-hour component of the forecast. In order to identify 166 

whether an SSO was occurring, control limit theory was used to detect important deviations 167 

between measured and expected depth and flow data. Kurth et al. (2008) demonstrated that a 168 

three hidden-layer Multilayer Perceptron ANN trained with back-propagation is capable of 169 

learning the underlying relationship between local rainfall occurrence and CSO response. In 170 

order to predict water depths 3 time steps into the future (fifteen minutes), lags of twelve 171 

previous values of two rain gauges and a lag of five of recent water depths for a CSO 172 

chamber were used. In Guo and Saul (2011) the concept of CSO Analytics was introduced in 173 

which an ANN (adaptive linear) was used to predict, at times of dry weather and in response 174 

to rainfall (measured using in catchment rain gauges), the hydraulic performance of a CSO in 175 

terms of flow depth. Mounce et al. (2014a) further developed this approach to incorporate 176 

rainfall radar data and demonstrated a prediction of CSO depth with less than 5% error for 177 

predictions more than one hour ahead for unseen data. Cross correlation was used to explore 178 

the spatial (rainfall radar cells) and temporal (time lags) i.e. the time of concentration and 179 

hence to inform the ANN inputs for a number of models. Whilst Mounce et al. (2014a) 180 

showed ANNs could be used to accurately predict future water depths in CSOs, based on 181 

radar rainfall (rather than rain gauges) and recent water depths, this methodology was unable 182 

to indicate when the performance of the CSO changes due to its reliance on recent depths. 183 

When a blockage occurs, it was found that the predicted water depth very rapidly followed 184 

the measured trend. Subsequent work (Mounce et al. 2014b) addressed this issue and 185 

provided a performance assessment by further classification of model outputs in order to 186 

provide a per asset state on a daily basis by developing a fuzzy logic based ‘traffic light’ 187 

evaluation system.  188 
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Other authors have explored similar approaches. Rosin et al. (2018, 2021) applied 189 

evolutionary ANN models to predict water depth in several CSO chambers up to 6 hours 190 

ahead using inputs of past CSO depth, radar rainfall and rainfall forecast data. This system 191 

was applied offline to four CSOs and the authors note the potential for future online operation 192 

for blockage detection. They found that it is more difficult to model major rainfall events 193 

precisely at higher forecast horizon values. In their most recent work, Rosin et al. (2022) 194 

further tested the system by incorporating Statistical Process Control for blockage detection, 195 

and validated it manually offline on 10 real world CSO sites with a total of 16 historic 196 

blockages. Bizer and Kirchhoff (2022) developed performance indicators based on regression 197 

modelling and applied these to a historic dataset for 11 CSOs (using CSO data and hourly 198 

precipitation in Cumberland, Maryland for the years 2005–2020). Annual thresholds of 1-199 

hour precipitation intensity above which CSO incidence is predicted (and below which it is 200 

not predicted) in each year were identified. Subsequently they built a regression model to 201 

predict CSO volume from the precipitation depth and average intensity of the preceding 202 

rainfall event. Some initial work has explored using Deep Learning (Lecun et al. 2015) for a 203 

multi-step-ahead (close horizon) prediction of CSO water depth collected by IoT (Zhang et 204 

al. 2018a, 2018b). Kanneganti et al. (2022) applied a random forest model to predict sewer 205 

flow rates in 3 separate sewer systems with an accuracy of 91.7%, albeit for daily flows and 206 

with a short 5.5 week test period. It was demonstrated for case studies that fairly precise time 207 

series predictions could be produced for sewer system management, however there are few 208 

examples of the application of such predictions for system management and those that do are 209 

based on small validation case studies (e.g. Bailey et al., 2018). Any system that is 210 

practicably deployable by a water utility needs to be demonstrably robust and scalable.  211 

 212 



10 

 

METHODOLOGY 213 

Previous work described in the literature has indicated the potential of Artificial Intelligence 214 

(AI) techniques to be able to predict water depths within CSOs. The work described here has 215 

further developed the approach described by Mounce et al. (2014b). An important advance in 216 

this research was to take into consideration the effects of rainfall, this was done by combining 217 

the ANN for prediction with a Fuzzy Inference System (FIS) which flagged significant 218 

changes in CSO performance in near real time. In order to demonstrate transformational 219 

scalable capability, the tool was re-written in Python and deployed on the MindSphere IoT 220 

open operating system, and utilised for a real world 50 asset case study. To prove the value of 221 

the information derived, validation from a two year historic period (2017-2019) and a 6-222 

month live period (2020) is presented based on manual data interpretation, integration with 223 

the water utility control room and operational teams. Evaluation also included comparison to 224 

a moving average based legacy system.  225 

System overview 226 

The WSP partner has used a suite of tools, termed pollution tracker (PT) to analyse CSO 227 

depth data based on moving averages and rates of change of depths. This information is 228 

processed on a daily basis and ranked, the top fifty ranked CSOs are considered to be 229 

potentially underperforming and thus flagged for further investigation. During dry weather 230 

PT is able to flag assets which may be performing badly. However, the analysis is based 231 

purely on the data from the CSO depth monitors, so is unable to correctly understand the 232 

difference between water depths changing legitimately as a function of rainfall or when the 233 

water depths are changing because of a drop in performance of the sewer network. A CSO 234 

may therefore rank highly either because it has poor performance, due for example, to a 235 

blockage in a downstream pipe, or because there has been rainfall in its catchment.  236 
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The CSOA (CSO Analytics) cloud based methodology consists of a number of processes, as 237 

shown in Fig. 1. Each CSO has a unique response to rainfall, which is a function of the 238 

characteristics of the catchment and sewer networks upstream and downstream of the CSO, 239 

as well as the design of the CSO itself. It is therefore necessary to train each ANN to each 240 

asset’s individual performance using historic CSO depth and rainfall radar data. However, in 241 

order to ensure scalability, training overheads need to be kept to a minimum, this has been 242 

achieved through the use of a transferable ANN architecture. Once the model is trained, it can 243 

be used by the live cloud system, where rainfall radar data is input to the ANN to produce a 244 

predicted depth. A FIS is then utilised to determine whether the measured data is within an 245 

acceptable range of the prediction. 246 

 247 

 248 

 249 

Fig. 1: System Architecture 250 
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A live system ran on the IoT platform providing continually updated results, as well as the 251 

facility for historic replay (see Fig. 2). Data from the live system and site summaries were 252 

available in the water company’s operation control room through this live dashboard.  253 

 254 

 255 

Fig. 2: IoT platform for system access 256 

 257 

Data processing and quality 258 

Water depth data from CSOs from the WSP telemetry system was used at 15-minute 259 

resolutions, the data units were a percentage value (in some cases 100% does not equate to 260 

the spill level). Rainfall radar data was obtained from WeatherOnline (the original producer 261 

being the MetOffice) also at 15-minute resolution. The data units were in mm (amount of 262 

rainfall in the last 15 minutes) with a spatial resolution of 1 km cells. Cells within a site 263 

specific radius (determined as part of the training) of the CSO were used in the analysis. 264 

Water depth data has missing values linearly interpolated. 265 
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Historic data was used in the training process, this covered the period from July 2017 to July 266 

2019, although data from some sites was not available from the beginning, the average 267 

number of historic data days was 583, within this there were an average of 14 days of missing 268 

data. The data selected for training did not need to be continuous, but was selected based on 269 

data quality and consistency. Data would be rejected where it was missing for a significant 270 

period (e.g. > 1 day in dry weather, > 0.5 day in wet weather); periods of time where the data 271 

was noisier than usual for the site; periods where the background depth varied significantly 272 

from normal and was not due to seasonal variability (e.g. where there was a potential 273 

performance issue (e.g. a blockage), the sensor had been moved, was obstructed, or otherwise 274 

providing inconsistent data). Where the data contained rejected periods, date ranges with 275 

good data were collated. If the total period of good data was greater than 60% of the whole 276 

data set then the good data was split 60-40 into training and test sets. If the good data period 277 

was less than 60% of the whole data set then all of the good data was used for training. The 278 

rationale was to capture variation in weather and asset behaviour that occurred over the 279 

course of the year. 280 

 281 

Artificial Neural Network 282 

The ANN was implemented in Python (using the PyTorch machine learning framework). The 283 

model uses rainfall radar data as the predictor and the depth data input as a target, depth is 284 

predicted at the current time step. In order to capture diurnal variations, the ANN training 285 

uses two time features (sine and cosine of the hour) to replicate the diurnal dry weather flow, 286 

along with rainfall data. A standard one layer feed- forward ANN with no hidden layers was 287 

utilised to minimise training data requirements and for transferability (i.e. the ANN 288 

architecture as regards the structure was not changed from one asset to the next). The goal 289 
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was not point wise accuracy for the depth prediction itself but a learning of the rainfall/depth 290 

response (for the depth at the current time following a rainfall lag of values), thus the 291 

overhead of recurrent networks or multi-time step predictions was avoided. 292 

The spatiality and temporality of rainfall data as a predictor of CSO depth is a complex 293 

function of the sewer network. Mounce et al (2014b) used manual selection of radar cells 294 

based on assessment of the upstream sewer network, but this is not scalable. Hence for each 295 

CSO a total of 12 models were created using different rainfall data combinations, these being 296 

four spatial windows with 1, 2, 3 and 5 km radius and 3 temporal windows of 6, 12 and 24 297 

hours (prior to the prediction time step). These temporal window periods were based on 298 

extensive autocorrelation tests (cf. Mounce et al., 2014a). This method is a better candidate 299 

for future automation removing the requirement for subjective human assessment. 300 

The number of inputs was dependent on the amount of rainfall cells being included and the 301 

temporal window length. Since 15 minute data was used, total inputs were equal to 302 

rainfall_hours * 4 * num_cells depending on which of the 12 model types (therefore 6 hours 303 

rainfall for one cell would result in 24 inputs). The activation function on the output layer was 304 

rectified linear units (ReLU). This was used for better convergence and avoiding outputs less 305 

than 0, which should not in reality be possible in CSOs (except for calibration problems with 306 

instrumentation). General Matrix Manipulation with gradient descent was used as the 307 

optimiser and RMS (Root Mean Squared) as the cost function on the training data. Empirical 308 

trials revealed standardised values of 0.01 for learning rate and 50 epochs of training 309 

provided good performance for training with the datasets used.  310 

For each asset, multiple models were trained and the best models were selected by the 311 

following criteria: loss on test data, with a general bias for selection of models that slightly 312 

over predict rather than under predict to avoid false positives (based on visual assessment to 313 
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ensure a good overall fit, especially to the wet weather periods and with particular emphasis 314 

on predicting delayed runoff response).  315 

The ANN used in this work is intended to work with a minimum number of parameters and a 316 

minimum period of historic data. This architecture reduces the overhead required for training 317 

the ANN and thus helps to ensure scalability, at the expense of some accuracy. However, the 318 

degree of accuracy is appropriate to work with the FIS system to enable assessment of 319 

performance with regard to rainfall influences. 320 

 321 

 322 

Fuzzy Inference System 323 

Having an acceptably accurate prediction of the CSO depth is the first stage of the system, 324 

the second stage is to identify whether the actual CSO depth is within a reasonable range of 325 

the predicted depth or not. This is a relatively easy task for an experienced professional, but 326 

these come at a premium and are not scalable. It is challenging for an automated system to 327 

capture the processes of such experts. Fuzzy logic (FL) is a useful technique for building 328 

systems that can incorporate the impreciseness associated with human reasoning and can be 329 

used to determine whether the measured data is within an acceptable range of the prediction.  330 

The FL was implemented using the Python library Scikit-fuzzy using the difference between 331 

the measured and predicted CSO depths and the recent rainfall. Some of the complexities that 332 

the expert is judging, and which the FL system is capturing, are as follows: during dry 333 

weather, including insignificant rainfall, the depth in most CSOs follows a diurnal pattern 334 

around a mean value. At some locations this mean value varies according to the catchment 335 

wetness which affects the volume of infiltration into the sewer network. Depending on local 336 
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topography and soil types this infiltration may be just for a period of hours or days after 337 

significant rainfall, or may follow a seasonal pattern (i.e. higher baseline water depths in 338 

winter than summer). In dry weather it is expected that the depth residual (predicted depth 339 

minus measured depth) will vary within a consistent range. During heavier rainfall however it 340 

is more difficult to make an accurate prediction, hence the absolute value of the residual will 341 

increase. Following a rainfall event, the CSO depth should gradually return to the dry weather 342 

condition. 343 

The FL uses a moving window of data, Mounce et al. (2014b) used an 8 hour moving 344 

window, and this period was a function of the data and analysis only being updated on a daily 345 

basis. This new work is designed to benefit from regularly updating field data by using a 346 

shorter moving window. Testing showed that a 1 hour window provided the best trade-off 347 

between response to performance issues and stability of generated alerts (i.e. a shorter 348 

window provides a quicker response, but is significantly affected by short term fluctuations in 349 

the data). The data input to the FL is the 1 hour total rainfall and the 1 hour mean depth 350 

residual (predicted – measured). Four key values calculated from the training data period, 351 

were used in the FL, these were: the nth percentile of the 1 hour mean depth residual (Depth 352 

nth percentile, where n is between 1 and 3, determined on a per asset basis) representing a 353 

measured depth that is considered significantly higher than the predicted value, this percentile 354 

is variable to adjust the sensitivity of the FL; the 50th percentile of the 1 hour mean depth 355 

residual (Depth 50th percentile) representing an average residual; the 80th percentile of the 1 356 

hour rainfall depth (Rainfall 80th percentile) to represent insignificant rainfall; and the 90th 357 

percentile of the 1 hour rainfall (Rainfall 90th percentile) represents the rainfall depth above 358 

which rainfall is considered significant (wet).  359 
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The FL has four input membership functions, each of which uses the number of times that the 360 

data for the past three hourly time steps is less than the lower percentile or higher than the 361 

high percentile. A degree of membership to each membership function is calculated resulting 362 

in a value between 0 and 1. These feed into three rules, which can be summarised as: 363 

If the residual is not significantly negative, status is normal, i.e. regardless of rainfall, 364 

if the predicted depth is not significantly lower than measured;  365 

If the rainfall is low and residual is significantly negative, status is abnormal high, i.e. 366 

the weather can be considered dry, but the measured depth is significantly higher than 367 

predicted; 368 

If the rainfall is high and residual is significantly negative, status is normal, i.e. in wet 369 

weather the quality of the prediction is lower, thus to avoid unwarranted alerts, a 370 

measured depth that is higher than predicted can be considered normal. 371 

The fuzzy inference methodology used is the Mamdani method (Mamdani and Assilian, 372 

1975), this is applied to the above rules to generate the output membership functions shown 373 

in Fig. 3. This was then de-fuzzified to produce a 3 category ‘traffic light’ status system, 374 

termed stable, alert and alarm, the output variable boundaries being: Stable < 0.6; 0.6 < Alert 375 

< 0.8; 0.8 < Alarm.  376 
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 377 

Fig. 3: Output Membership Function for CSOA 378 

Case study and validation 379 

The case study reported here concerns a collaborative project with a UK water utility 380 

company. The WSP partner had rolled out IoT ready level sensors in a large number of its 381 

CSOs and developed a number of systems and practices that provided an overview of their 382 

CSO performance based on recorded depths, termed pollution tracker (PT). However, whilst 383 

these systems adequately captured trends in dry weather flow, they did not incorporate 384 

rainfall data, and therefore offered little benefit during or immediately after any rainfall 385 

events within the WSP’s area. The validation of the AI system reported here was conducted 386 

on a subset of fifty of these CSOs. The selection criteria were designed to obtain a cross 387 

section of CSOs covering a range of performance and location characteristics within the 388 

company’s catchment area, and to include some with recorded historic unconsented 389 

discharges. The cloud based system was compared against the pre-existing baseline of the PT 390 

system, where the daily top fifty ranked sites are considered as alerts. Each CSO has data 391 

within two discrete periods, historic data from July 2017 to July 2019 as used in training and 392 

testing, and live data, when the CSO was on MindSphere, from January to July 2020. Both of 393 
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these periods are sufficiently long to cover multiple seasons, thus the system is tested against 394 

a range of rainfall types and catchment wetnesses. The operations team provided their records 395 

of when maintenance teams were sent to a CSO (termed as a job raised) to investigate and 396 

resolve any issues, there was provision for maintenance teams to provide useful feedback 397 

(e.g. ‘blockage cleared’), but often no feedback is received, sometimes raised jobs are 398 

precautionary and with hindsight were not required, hence a job being raised is not proof of a 399 

performance issue. Conversely there are times when, with hindsight, it is clear that there was 400 

a performance issue with the CSO, but no job was raised, or there was a delay in a job being 401 

raised. It should be noted that an apparent performance issue can also be a sensor issue (e.g. 402 

the sensor was accidentally moved during maintenance, or there is debris obstructing the 403 

sensor), but without further information it is impossible to identify whether the problem is 404 

with the sensor or with water levels. The sensor data is generally robust and any issue with 405 

the sensors is worthy of being flagged by an alert as it detracts from the sensor’s ability to 406 

identify a performance issue. Validation was therefore carried out manually using the best 407 

available information from the operations team, combined with expert judgement as to 408 

whether the CSO was performing acceptably. This ‘best available information’ classification 409 

denotes whether an alert should reasonably be returned and is divided into three categories. 410 

Normal (green) indicates that the CSO appears to be performing normally. Probable 411 

performance issue (amber alert) indicates when the CSO seems to have a higher than 412 

expected water depth and it is not currently, nor recently has been raining significantly; this 413 

could be interpreted as there possibly being a blockage. Definite performance issue (red 414 

alarm) is only returned if a job report confirms a blockage was present, or if the observed 415 

water depth is significantly higher than normal and there is no apparent reason for this. The 416 

validation methodology was discussed and agreed with the operations team using example 417 

data, it was not feasible to discuss and agree a classification for each event.  418 
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RESULTS 419 

Examples of individual events are provided to show the operation of the system and how 420 

validation was performed, then per site summaries are illustrated to show the range of 421 

operational performance over time and finally an overview of results for the full group of 422 

CSOs over a longer time period are presented to evaluate overall system performance. 423 

Example events 424 

Three examples are presented to exhibit the difference in performance of different assets and 425 

the analytics tool. Each example shows a compilation of four plots, the top being rainfall 426 

intensity from radar data, the mean, minimum and maximum across the cells input to the 427 

analytics is shown. The second plot shows the measured and predicted depths of water in the 428 

CSO. The third plot shows the residuals, calculated as predicted minus measured, thus a 429 

negative value (i.e. measured depth is greater than predicted) indicates a potential blockage 430 

downstream of the CSO. The bottom plot shows the warnings output by CSOA and PT, 0 431 

represents normal stable operation; 0.5 an alert (CSOA only); and 1 an alarm (for PT this is 432 

taken as the CSO appearing in the top 50 ranking).  433 

Fig. 4 shows a well-defined event at CSO 20 which, based purely on the time series data was 434 

very likely a blockage. The event starts around 16:00 on 30th January in dry weather, as 435 

indicated by a sudden increase in water depth and decrease in the residual. CSOA flags this 436 

event almost immediately after it occurs. The site is ranked 1st in PT on 1st and 2nd February 437 

and drops to 15th on 3rd February. A high priority job was raised on 1st February, the job was 438 

completed with an outcome of ‘Blockage Removed’ on 1st February. The depth plot shows 439 

that water depths returned to normal on 1st February in the early afternoon, the final CSOA 440 
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alert appears shortly after the blockage was removed. The CSOA alert occurs significantly 441 

earlier than that of PT and the alert status also returns to normal more quickly. 442 

 443 

 444 

Fig. 4: Analysis of a blockage event at CSO 20 during January/February 2019 showing 445 

rainfall, resulting depth and the response of both PT and CSOA analytics. 446 

Fig. 5 shows an event at CSO 10, with a smaller change in depth and noisier data. The depth 447 

plot shows a sudden significant increase on 30th April in dry weather, this drops down to a 448 

depth that is still higher than normal on the same day. The CSOA responds rapidly to the 449 

initial event, but alarming red over a short period initially, then having many short periods at 450 

amber alert and occasionally red alarm. This periodic alerting is due to the short time window 451 

used and also likely to be a function of the sensitivity. PT ranks the site in the top 50 worst 452 

sites 13 times between 1st and 19th May, four jobs were raised on 3rd, 7th, 13th and 18th May. 453 
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The water depths can be seen to reduce on 14th May and finally return to normal on 18th May. 454 

The jobs sheet contains no comment as to whether a blockage was removed on any occasion. 455 

 456 

 457 

Fig. 5: Analysis of a longer period of high depth at CSO 10 during April/May 2019 showing 458 

rainfall, resulting depth and the response of both PT and CSOA analytics. 459 

Fig. 6 is an example of an alert occurring and coinciding with rainfall at CSO 47. A sudden 460 

increase in depth is seen in the afternoon on 9th June, CSOA Alerts immediately and PT ranks 461 

the site as the 17th worst the following morning. There was however no job raised and the 462 

water depth returns to normal at around 10:00, it is likely that the water level had returned to 463 

normal before the operations team were able to visually check the data, having higher priority 464 

alerts at the time. The water depth remained below spill level, hence a pollution event did not 465 

occur, but it is highly likely that a partial blockage occurred, but this self-cleared during the 466 

morning high flows. Rainfall can be seen to occur overnight, during this rainfall, CSOA 467 
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cannot be sure that the high levels are caused by a performance issue, hence the alert is 468 

suspended, but reappears immediately after the rainfall. 469 

 470 

Fig. 6: Analysis of a probable self-clearing blockage at CSO 47 during June 2020 showing 471 

rainfall, resulting depth and the response of both PT and CSOA analytics. 472 

 473 

Example per site daily analysis  474 

The daily analysis takes the maximum value of the warning in each day in order to make 475 

longer periods of comparison feasible and able to be interpreted statistically. The coloured 476 

tables of data (cf. Fig. 7) have 5 rows for each day. The first row is the ‘best available 477 

information’ judgement as to whether an alert would reasonably be returned: green indicates 478 

that the CSO appears to be performing normally; amber indicates a probable performance or 479 

sensor issue; red is only returned if there is definitely a performance or sensor issue. Best 480 
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available information is left blank if data is missing for a significant proportion of the day (at 481 

least 8 hours).  482 

The next two rows summarise the alerts for the analytics. When an asset appears in PT (i.e. in 483 

the top 50), it is classed as a red warning on that day, otherwise it is green. The CSOA tool 484 

outputs warnings upon receipt of new data, these are red (alarm), amber (alert), or green 485 

(stable), consequently the highest severity warning occurring in the day is used, red being 486 

highest. 487 

The final two rows are an evaluation of the analytics alert for PT and CSOA respectively, 488 

compared to the best available information. This has five possible outcomes: 1) True 489 

negative, coloured light blue, the best available information and the analytics agree that the 490 

status of the CSO is normal; 2) False negative, coloured red, the analytics returns a normal 491 

status (green), but the best available information is red or amber; 3) True positive, coloured 492 

green, the best available information and the analytics agree that the status of the CSO is a 493 

red or amber warning; 4) False positive, coloured amber, the analytics returns an abnormal 494 

(i.e. amber or red) status, but the best available information suggests the CSO is performing 495 

normally (green); 5) there is no data, the cell is not coloured, the analytics will return a value 496 

because pre-processing has interpolated missing data. 497 

Finally, a table of summary statistics is provided, this includes data for the CSO for the whole 498 

period. Four percentages are given: True Positive rate (TP, also termed sensitivity); False 499 

Negative rate (FN); True Negative rate (TN, also termed specificity); False Positive rate (FP). 500 

TP and FN results are split into ‘All Positives’, where both amber alerts and red alarms are 501 

considered a positive; and ‘Confirmed (Conf.) Positives’ where only red alarms are 502 

considered positives, amber alerts are excluded as being neither conclusively positive nor 503 

negative. 504 
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Fig. 7 and Table 1 show results for CSO 20, here PT rarely alerts and predictability is low as 505 

the false positive rate is almost 50% of the true positive rate for all positives, performance 506 

improves for confirmed positives. CSOA identifies more higher than normal depths than 507 

Pollution Tracker, although performance in identifying all positives is far from perfect, 508 

mainly due to a long ‘amber’ event in 2018 where CSOA only alerts for a small proportion of 509 

the time, however CSOA maintains a low false positive rate. The performance increases for 510 

both PT and CSOA when only confirmed positives are considered, this would be expected as 511 

confirmed positives are likely to have a stronger response than unconfirmed ones. 512 

513 

 514 

Fig. 7: Daily summary of best available information, status prediction from PT and CSOA, 515 

and evaluation of PT and CSOA predictions for CSO 20. 516 

Table 1: Whole period summary of data and analytics evaluations for CSO 20. 517 

Days 

of 

data 

All 

Positives 

Conf. 

Positives 

All Positives 

Confirmed 

Positives Negatives 

  TP(%) FN(%) TP(%) FN(%) TN(%) FP(%) 

PT 795 25 3 4.0% 96.0% 33.3% 66.7% 98.2% 1.8% 

CSOA 795 25 3 32.0% 68.0% 100.0% 0.0% 97.7% 2.3% 

 518 

Fig. 8 shows the data for CSO 5, it can be seen that this site never appears on PT, confirmed 519 

in Table 2 where there are zero true or false positives. CSOA does produce warnings and 520 

there is a reasonably good correlation between these and higher than expected water depths. 521 

Table 2 shows a reduced TP performance for confirmed positives, this is due to the majority 522 
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of these occurring in the 6 month pilot in a period where the model required retraining due to 523 

a clear change in response of the CSO or in the monitor calibration, thus the magnitude of the 524 

residuals was too small to cause an alert. Table 2 also shows that there were issues with this 525 

monitor as significantly less data was available through the historic and live periods than 526 

other sites. 527 

528 

 529 

Fig. 8: Daily summary of best available information, status prediction from PT and CSOA, 530 

and evaluation of PT and CSOA predictions for CSO 5. 531 

Table 2: Whole period summary of data and analytics evaluations for CSO 5. 532 

Days 

of 

data 

All 

Positives 

Conf. 

Positives 

All Positives 

Confirmed 

Positives Negatives 

  TP(%) FN(%) TP(%) FN(%) TN(%) FP(%) 

PT 306 83 14 0.0% 100.0% 0.0% 100.0% 100.0% 0.0% 

CSOA 306 83 14 57.8% 42.2% 21.4% 78.6% 92.8% 7.2% 

 533 

Fig. 9 and Table 3 show the performance for CSO 15, which has one of the highest amounts 534 

of data. CSOA performs well in predicting performance issues. In this example, PT returns 535 

7.5% false positives, as can be seen in Fig. 9, while CSOA only returns 1.7% false positives 536 

and correctly identifies more than twice as many positives in both categories. 537 
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538 

 539 

Fig. 9: Daily summary of best available information, status prediction from PT and CSOA, 540 

and evaluation of PT and CSOA predictions for CSO 15. 541 

Table 3: Whole period summary of data and analytics evaluations for CSO 15. 542 

Days 

of 

data 

All 

Positives 

Conf. 

Positives 

All Positives 

Confirmed 

Positives Negatives 

  TP(%) FN(%) TP(%) FN(%) TN(%) FP(%) 

PT 889 14 7 28.6% 71.4% 42.9% 57.1% 92.5% 7.5% 

CSOA 889 14 7 85.7% 14.3% 100.0% 0.0% 98.3% 1.7% 

 543 

Summary of performance across all sites 544 

Next, information is summarised across all sites for both the historical and live periods. 545 

Distinction is made between the two continuous time periods – the ‘historic’ data from July 546 

2017 to July 2019, and the ‘live’ data from late January to July 2020. Table 4 shows the total 547 

days of data and reveals that there are a higher proportion of confirmed positives in the 2020 548 

data, this is due to a 4 month period where one site was continuously positive, and thus 549 

accounts for 126 confirmed positives. Table 4 also highlights the difficulty of being able to 550 

confidently confirm a performance issue, with the confirmed positive count only accounting 551 

for 15% of all positives. Table 5 gives a comprehensive overview of the performance of both 552 

analytics solutions. The CSOA tool provides strong performance across all data, with a True 553 

Positive rate of 68.2% or 88.4% for confirmed positives only, and a False Positive rate of 554 

4.3%. This high degree of precision in the positive warnings is important for trust in the 555 
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analytical solution. In contrast, PT only correctly identifies 16.0% of unexpectedly high 556 

depths (True Positives) within the data set, improving to 26.6% if only confirmed positives 557 

are considered. PT’s False Positive rate is also higher at 5.4%.  558 

Table 4: Summary of data for sites across both historical and live data periods.  559 

 Total days of 

data 

Missing data 

days 

'Best Info' All 

positives 

'Best Info' 

Confirmed 

positives 

2017-19 28429 702 2101 221 

2020 7238 632 551 177 

Total 35667 1334 2652 398 

 560 

Table 5: Summary of analytics performance for all sites and periods, both all positives and 561 

confirmed (conf.) positives. 562 

 2017-19 data 2020 data All data 

 TP 

(%) 

TN 

(%) 

FP 

(%) 

FN 

(%) 

TP 

(%) 

TN 

(%) 

FP 

(%) 

FN 

(%) 

TP 

(%) 

TN 

(%) 

FP 

(%) 

FN 

(%) 

PT All 17.1 94.6 5.4 82.9 11.6 94.4 5.6 88.4 16.0 94.6 5.4 84.0 

CSOA 

All 

65.9 96.0 4.0 34.1 77.2 94.5 5.5 22.8 68.2 95.7 4.3 31.8 

PT 

Conf. 

39.8 94.6 5.4 60.2 10.2 94.4 5.6 89.8 26.6 94.6 5.4 73.4 

CSOA 

Conf. 

89.6 96.0 4.0 10.4 86.9 94.5 5.5 13.1 88.4 95.7 4.3 11.6 

 563 

DISCUSSION 564 

Most sewerage systems are not managed in real time. They have little or no facilities for 565 

warning of service failure before it has impacted on customers and/or the environment. The 566 

innovation presented here enables a step change in this advance warning of the degradation of 567 

CSO performance which could result in a premature spill or pollution event.   568 
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While no direct comparison is conducted, it appears that performance is comparable to 569 

similar models in the literature, but achieved with an ANN architecture that has been 570 

developed to be transferable between CSOs and hence appropriate for applying at scale, 571 

rather than focussing only on predictive performance. The benefits of the architecture also 572 

include a relatively short training dataset to give acceptably accurate predictions. A short 573 

training dataset has benefits when the catchment response changes significantly (e.g. 574 

additional upstream urbanisation), or a monitor calibration changes for any reason (e.g. when 575 

the monitor or CSO is maintained, the head is either inadvertently moved, or is repositioned 576 

differently), then it is possible to retrain the ANN after only 2 or 3 months (depending on the 577 

number and range of events included). In comparison, deeply structured ANN models (e.g. 578 

Wu et al. 2015), may be able to better represent the performance of the CSO under many 579 

more conditions such as delayed response inflows in wet winter periods. However, these 580 

would require the training dataset to include a much wider range of conditions and events, 581 

which would inevitably mean a longer training period of potentially many years of data.  582 

The period of historic data required to train the ANN is difficult to precisely define as it 583 

depends on the available data, in particular the number and range of rainfall events (and also 584 

climate variability is a factor). The data selected for training did not need to be continuous, 585 

but was selected based on data quality and consistency in order to include a variety of 586 

different rainfall events as well as periods of dry weather. With sufficiently long periods of 587 

data and automated data quality assessment, sites could be retrained at regular intervals with 588 

slightly updated data sets over time as has been implemented in other applications areas, for 589 

example water main burst detection (Mounce et al., 2010). 590 

Supervised learning techniques require datasets where examples of good and degraded 591 

performance are clearly and accurately labelled. As with most water network applications, 592 
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such labelling is not routinely carried out and it is not feasible to do so accurately with large 593 

historic datasets. Unsupervised AI techniques are therefore appropriate to apply to such 594 

datasets. A key example of this was the fuzzy inference system developed and validated here. 595 

The FIS captured expert judgement and assessment of residuals between measured and 596 

predicted depth data. Unlike the expert, the AI system enables repetitive error free operation 597 

at scale. The system is shown to capture a sufficient degree of the expert behaviour to yield 598 

high true positive and low false negative classifications.   599 

The performance of the FL based control systems is a function of the rules and Membership 600 

Functions (MF) which in effect capture expert appreciation of system operation which are 601 

explicit and more human readable than opaque black box solutions, particularly for waste 602 

water. In Ostojin et al. (2011), an automatic control methodology for sewer pumping stations 603 

in dry weather conditions utilising FL was proposed. Simulation results indicated that cost 604 

savings of around 5% were achievable and that the number of pump runs was reduced by 605 

20%. In Mounce et al. (2020) a Genetic Algorithm software tool was coded to optimise a FL 606 

control system which uses local water-depth sensing and a flow control gate to adjust the 607 

spatial distribution of the in-pipe water volume to reduce the local flood risk. The optimised 608 

FL MFs result in an average 25% decrease in the flood volume compared to those selected by 609 

experts for unseen rainfall events. 610 

The UK WSP partner with whom this work has been carried out is a market leader, having 611 

been installing water depth monitors in CSOs for almost two decades. The WSP now has the 612 

majority of their CSOs monitored with data transferred to a central database by telemetry on 613 

at least a daily basis, or when a set alarm depth is breached. The system presented was 614 

designed and implemented on a cloud based architecture to take advantage of such data. 615 

Deployment on 50 assets for a 6 month demonstration showed that the analytics architecture 616 
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could be effectively transferred to cloud operation enabling rapid scale up of deployment. 617 

Following the successful validation of the pilot, the WSP has conducted a full roll-out of 618 

CSOA, with over 2000 assets having an AI model deployed as of 2023. The close 619 

relationships with control room and operational functions within the water utility were vital 620 

in building trust and acceptance of the system, as well as providing the high level of ‘ground 621 

truth’ to the events that are detected. Thus the validation exercise has made it possible to 622 

understand the potential impact/benefit of integrating the tool into daily operations and 623 

replacing existing processes. 624 

CSOA alerts are produced from either online or from archived data. CSOA has the potential 625 

to provide updates on a sub-daily basis when data is available, whereas the PT ranking 626 

methodology is designed to use daily data. The data from the sensors goes into the YW 627 

database and then on into MindSphere at a frequency of at least once a day. A shorter time 628 

window is used by CSOA for raising warnings, this means that a warning can be raised far 629 

more quickly after a change in performance, however it can also result in inconsistent 630 

warnings if depths fluctuate. The sensitivity of CSOA alerts is adjustable, overall this is a 631 

useful feature because different CSOs react in different ways and a fixed sensitivity can result 632 

in wrongly produced warnings, conversely if the sensitivity is too low then warnings might 633 

not appear when they should, or appear later and hence provide less time for a blockage to be 634 

cleared. 635 

 636 

CONCLUSIONS 637 
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This paper demonstrates how cloud based analytics can be applied to transform data from on-638 

line CSO depth monitors combined with rainfall radar data into information about how the 639 

sewer system is performing. 640 

The system is based on a hybrid artificial neural network and fuzzy logic approach that 641 

enables incorporation of rainfall data. This allows expected high water depths to be ignored 642 

and is key to the predictive capability for identifying unexpected high water depths which 643 

could indicate a blockage which could result in a pollution incident. Examples are presented 644 

showing that the new system is resilient to wet weather, allowing performance deterioration 645 

to be identified during minor rainfall or shortly after more significant rainfall. 646 

The ANN architecture was a one layer feed- forward structure which is transferable (i.e. the 647 

ANN architecture was not site specific) and has a comparatively low data requirement for 648 

training. Each asset has multiple models capturing different spatial and temporal windows of 649 

rainfall data, a grid search was used to identify the best structure as regards to ANN inputs. 650 

This approach was found to sufficiently capture the response to rainfall across a large number 651 

of real world locations. 652 

The AI tool performance results for 50 assets over a 6-month live trial when high quality 653 

confirmatory analysis was possible show CSOA correctly identifying 86.9% of confirmed 654 

positives with only 5.5% false positives. This is significantly better than the legacy system 655 

with 10.2% and 5.6% respectively. 656 

The system can deliver tangible benefits by producing reliable advance warnings of adverse 657 

performance of a CSO which may lead to a pollution event. These advance warnings mean 658 

that maintenance can be scheduled and prioritised in order to prevent the problem from 659 



33 

 

escalating into a pollution incident. The cloud based architecture readily enables scaling, with 660 

the system now being rolled out across the water utility, with over 2000 assets on board.  661 

The system presented here will help enable improved delivery of water services from existing 662 

infrastructure in the face of climate change, population growth and increasing urbanisation, 663 

without the need to build more infrastructure: 664 

 The AI tool provided performance equal to or superior than (especially during wet 665 

weather) an existing analysis system based only on moving averages of depths. 666 

 The system is resilient to wet weather, allowing performance deterioration to be 667 

identified during minor rainfall or shortly after more significant rainfall. 668 

 The system is largely resilient to annual fluctuations in dry weather flow depths. 669 

 The system can deliver tangible benefits by producing reliable warnings of decreases 670 

in performance of a CSO which may lead to a pollution event. By receiving these 671 

warnings as early as possible, maintenance can be scheduled and prioritised in order 672 

to prevent the problem from escalating into a pollution incident. 673 
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