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Observation of Zitterbewegung in photonic
microcavities
Seth Lovett1, Paul M. Walker 1✉, Alexey Osipov 2, Alexey Yulin2, Pooja Uday Naik1, Charles E. Whittaker1,

Ivan A. Shelykh2,3, Maurice S. Skolnick1 and Dmitry N. Krizhanovskii 1

Abstract

We present and experimentally study the effects of the photonic spin–orbit coupling on the real space propagation of

polariton wavepackets in planar semiconductor microcavities and polaritonic analogues of graphene. In particular, we

demonstrate the appearance of an analogue Zitterbewegung effect, a term which translates as ‘trembling motion’ in

English, which was originally proposed for relativistic Dirac electrons and consisted of the oscillations of the centre of

mass of a wavepacket in the direction perpendicular to its propagation. For a planar microcavity, we observe regular

Zitterbewegung oscillations whose amplitude and period depend on the wavevector of the polaritons. We then extend

these results to a honeycomb lattice of coupled microcavity resonators. Compared to the planar cavity, such lattices

are inherently more tuneable and versatile, allowing simulation of the Hamiltonians of a wide range of important

physical systems. We observe an oscillation pattern related to the presence of the spin-split Dirac cones in the

dispersion. In both cases, the experimentally observed oscillations are in good agreement with theoretical modelling

and independently measured bandstructure parameters, providing strong evidence for the observation of

Zitterbewegung.

Introduction

The study of analogues to effects appearing in the

domain of high energy physics is among the trends of

modern condensed matter physics. In this connection,

Fabry–Perot optical microcavities, structures where the

internal spinor wavefunction can be directly imaged via

photon tunnelling through the mirrors, are of particular

interest. Such cavities generally support ballistic propa-

gation of two polarisation states of light and have an

inherent polarisation–wavevector coupling, the TE–TM

splitting, which is an equivalent of spin–orbit coupling

(SOC)1. They may also support birefringent polarisation

splitting, all of which features have allowed observation of

a range of important physical effects such as optical spin-

Hall effect2, the emergence of monopoles3 and the onset

of the non-Abelian gauge fields4,5. In semiconductor

microcavities, quantum wells (QWs) can be added,

resulting in the formation of composite part-light part-

matter quasiparticles called exciton–polaritons. Their

unique properties, related to the extremely small effective

mass (about five orders of magnitude less than the mass of

a free electron), high sensitivity to magnetic fields, giant

nonlinear optical interactions, and possibility for optical

amplification, have allowed the demonstration of optical

condensates with macroscopically large coherence length

(in the mm scale)6, formation of acoustic black holes and

Hawking effect7, observation of anomalous Hall drift8,

and many other effects. In this work, we use such semi-

conductor microcavities but focus on the properties

coming from the photonic constituent of polaritons, and

so we demonstrate the relevant fundamental principles

using highly photonic (>98%) polaritons.

Furthermore, there has been much recent work on

engineering the bandstructure of microcavities by imposing
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a laterally varying optical potential9–11. This has allowed the

study of flat bands in Lieb lattice potentials10, topological

physics12–14 and engineering of Dresselhaus SOC for pho-

tons15,16. Such lattices, as well as being substantially more

tuneable via the added in-plane degrees of freedom, can be

used to build photonic analogues of a wide variety of phy-

sically important Hamiltonians based on Bose-Hubbard

type models17. Combined with the other favourable prop-

erties of polaritons discussed above, this creates a very wide

perspective for polaritonic simulation.

One of the textbook examples of quantum relativistic

effects is Zitterbewegung. It consists of an oscillatory

motion of a propagating wavepacket transverse to its

ballistic trajectory despite the absence of transverse for-

ces18. It was first predicted by Schrödinger for the motion

of free electrons governed by the Dirac equation19 and

appears due to interference between positive and negative

energy states of a spinor (two-component) system,

enabled by the coupling of internal (spin) and external

(momentum) degrees of freedom.

In addition to free relativistic electrons, the effect is

predicted for electrons in crystals with Rashba and

Dresselhaus SOC20–22. The predicted high frequency and

low amplitude of the oscillations for the vacuum case, and

the difficulty of observing single electrons in solids, make

experimental observation highly challenging18. This has

led to a search for analogous systems in which the

observation can be made. Gerrtisma et al. 23 performed a

quantum simulation of the Dirac equation using a single

trapped ion. Measurement of the transverse position was

made indirectly since most observables cannot be directly

measured in ion trap experiments. High-frequency oscil-

lating currents were also observed in the motion of spin-

polarised electrons in a doped semiconductor device24. In

optics, the Zitterbewegung was observed in arrays of

coupled waveguides where the internal degree of freedom

mimicking spin was introduced by having two slightly

different waveguides per unit cell25. In that case, the

energy separation of positive and negative components

was fixed by the geometry of the waveguides rather than

being continuously tuneable. Thus different lattices had to

be used to examine different parameters. Furthermore,

the Zitterbewegung had to be detected indirectly using the

fluorescence induced by the intensity of the light inside

the waveguides. Microcavities, by contrast, allow direct

imaging and excitation of the internal wavefunction and

addressing of different energy separations using pump

laser incidence angle and frequency.

Whereas Zitterbewegung is usually understood as an

oscillation occurring without external forces, it is worth

noting that zig–zag oscillations have also been observed in

microcavities with a transverse trapping potential26. A

possible explanation in terms of Zitterbewegung was

suggested27 but still awaits confirmation through detailed

analysis and comparison with theory to rule out the

effects of the transverse potential. Similarly, it was

recently shown that polariton SOC contributes to the

periodicity of transverse oscillations of condensate in an

etched ring trap, alongside the contribution from con-

densate motion in the transverse trapping potential28.

Since the SOC underpins Zitterbewegung in planar

structures, its contribution may be interpreted as a

manifestation of Zitterbewegung in the ring traps. How-

ever, no direct observation of Zitterbewegung was possi-

ble. In general, oscillations in structures with transverse

trapping potentials are hard to attribute to Zitterbewegung

since there are alternative explanations, such as inter-

ference between multiple transverse modes29.

So far, Zitterbewegung has not been directly observed in

the microcavity structures where polaritons can be

formed and which allow the wide range of optical ana-

logues discussed above, although it has recently been

theoretically predicted in both planar microcavities30 and

honeycomb microcavity lattices at wavevectors close to

the Dirac point16. In this work, we bridge this gap between

theory and experiment and report the observation of

Zitterbewegung in both types of structures. For the planar

cavity, we demonstrate tuning of the Zitterbewegung

period by varying the incidence angle and propagation

direction in the birefringent cavity. In the case of wave-

vectors near the Dirac point in a honeycomb lattice, the

ability to engineer the bandstructure allows observation of

smaller period Zitterbewegung while retaining an obser-

vable amplitude. The Zitterbewegung essentially arises

from interferences between the two components of the

spinor wavefunction. The propagating beam has finite

spatial width and hence finite width in momentum

(angular) space. Since the polarisation states depend on

the momentum through the spin–orbit coupling, different

angular components of the beam have different relative

amplitudes of the spinor components, and these can

evolve with propagation. As discussed above, we experi-

mentally demonstrate the essential principles of the effect

in the highly photonic regime, but polaritons can be made

more excitonic by simple tuning of the photon–exciton

detuning, which opens up wider perspectives.

Results

We begin with the case of the planar microcavity. In

these structures, a two-wavelength thick cavity layer is

enclosed between two Bragg mirrors (periodically repeating

stacks of quarter-wave layers of two different materials), as

illustrated in the schematic in Fig. 1a. In our case, the cavity

is made of GaAs, the mirror materials are GaAs and

Al0.85Ga0.15As, and the structure was grown by molecular

beam epitaxy. Three In0.04Ga0.96As QWs are embedded in

the cavity. The energy detuning between the QW excitons

and the cavity photons is more than 20meV.
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The polarisation and angle-dependent reflection of the

cavity mirrors leads to a wavenumber-dependent energy

splitting (TE–TM splitting) of the cavity modes having

electric and magnetic fields transverse to the wavevector.

This combines with a slight optical birefringence31–33,

resulting in a complicated splitting between linear polar-

isation states. For small in-plane wavevector components,

the Hamiltonian of the system in the basis of circularly

polarised states reads33

Ĥ ¼
�h2k2

2m
Ω

2 � β k 0x � ik 0y

� �2

Ω

2 � β k 0x þ ik 0y

� �2
�h2k2

2m

0

B

@

1

C

A
ð1Þ

where m is the effective mass of the polaritons, k 0x and k 0y
are the in-plane wavevector components of the photons in

the sample reference frame where x' is the fast axis (see

Supplementary Fig. 1), k2 ¼ k 02x þ k 02y , and parameters Ω

and β describe the values of the k-independent optical

birefringence and TE–TM splitting, respectively. The

parameter β is related to the difference of the longitudinal

and transverse masses of the photons ml and mt as
34

β ¼ �h2

4

1

mt

� 1

ml

� �

ð2Þ

To clarify the notation, mt and ml are the masses of the

TE and TM polarised photons. Note that we define β with

the opposite sign compared to the definitions in refs. 33,34,

but this does not affect the physics. The corresponding

dispersions of the two photon branches split in linear

polarisations read

E± ¼ �h2k2

2m
±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

β2k4 � βΩk2 cos 2φþΩ
2

4

s

ð3Þ

where φ is the in-plane angle between the wavevector k'

and the x'-axis of the crystal. With these definitions, the

energy of the TE polarised mode (electric field perpendi-

cular to k') increases faster with k than the TM mode for

positive β, and at k= 0 the mode polarised along x' has

higher energy for positive Ω. Note, that the combination

of birefringence and TE–TM splitting leads to a clear in-

plane anisotropy of the dispersions, which cross for φ= 0

at k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ω= 2βð Þ
p

. This will now be seen experimentally as

we present the basic characterisation of the sample.

The experiments in this paper were performed at

approximately 10 K temperature in a continuous-flow

cold-finger cryostat. The energy vs. wavevector dispersion

relations E(ky) at kx= 0 was measured by angle and

polarisation resolved photoluminescence (PL) spectro-

scopy and can be seen in Fig. 1c, d. Note that x and y are

coordinates in the laboratory reference frame (see Fig. 1a).

In both figures, the angle θ on the horizontal axis gives the

wavevector ky ¼ k0 sin θ, kx ¼ 0, where k0 ¼ 2π=λ. Fig. 1c
shows the case where the sample is rotated such that

k ¼ kyŷ is parallel to y0 (φ=90°). Two branches with dif-

ferent polarisations are visible. As expected, there is a

splitting at k= 0 resulting from the birefringence and the

splitting increases with k due to the TE–TM splitting.

Fig. 1d shows the case where the sample is rotated such

that k ¼ kyŷ is parallel to x0 (φ= 0°). In this case, the

dispersions cross at 5.7° (k= 0.73 µm−1), again as expec-

ted. Note that at the crossing point, the polarisation

degree is low because the contributions from the two

branches have similar intensity but are not coherent with

one another owing to the spontaneous nature of photo-

luminescence emission. For each measured dispersion, we

extract the energy at the peak intensity for each angle and

for each polarisation and fit the resulting energy vs. angle

curves to find the parameters describing the sample. We

find Ω= 43 ± 19 µeV, β= 33.6 ± 3.5 µeV µm2. The energy
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Fig. 1 Zitterbewegung in planar cavities. a Schematic of the planar

cavity structure resonantly excited at one point with the photons

propagating away along the cavity. b Intensity of the photon field in

the cavity when excited resonantly vs. x and y. The colour scale gives

the intensity I relative to the peak intensity I0 in decibel units. The zero

of the y-axis is defined as the point of peak intensity vs. y. c Angle and

polarisation resolved photoluminescence spectrum showing the

dispersion relation E ky
� �

at a fixed kx ¼ 0 for the case where the

birefringent crystal principle axis y′ (φ ¼ 90°, see Supplementary

Section 1) is parallel to the direction y along which the polaritons are

injected in the resonant excitation experiment. d As panel (c) but for

the case where x′ is parallel to y (φ ¼ 0°). In (c) and (d) the colour scale

indicates the polarisation degree Ix � Iy
� �

= Ix þ Iy
� �

with red indicating

x polarisation and blue indicating y polarisation (Ix and Iy are the

intensities in the x and y polarisations). Points with total intensity

Ix þ Iy
� �

less than 0.20 of the peak have been set to white since the

polarisation degree is not well defined for low intensities. e The

energy splitting between the TE and TM polarisations for the two

values of φ. Points show the values extracted by fitting Lorentzian

peaks to the data in panels (c, d). Dashed black curves are the fits

described in the main text
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at k= 0 (averaged between the two dispersions) is

1.4531 eV and �h2=ð2mÞ ¼ 947.5 µeV µm2.

We now proceed to measure the Zitterbewegung effect

in the sample. We excited the cavity resonantly using a

tuneable continuous-wave Ti:Sapphire laser, as illustrated

in Fig. 1a. The laser energy and incident angle were set to

match points on the dispersion allowing efficient injection

of photons into the cavity. The laser spot incident on the

sample was circular with full-width-at-half-maximum

(FWHM) 15 µm. The size of the Fourier transform of this

spot, e.g. its size vs. wavenumber k, was sufficient to

efficiently excite both polarisation branches. The excita-

tion polarisation was circular to ensure equal excitation of

both branches. The light was collected from the opposite

side of the sample to the excitation (transmission geo-

metry), and the total intensity was recorded by a thermo-

electrically cooled CCD camera. An example of the

recorded intensity pattern is shown in Fig. 1b. The highest

intensity part peaking at y= 0 µm is related to the inci-

dent laser spot. Since we excite at a finite angle where the

group velocity (slope of the dispersion) is finite, the

photons in the cavity propagate away from the excitation

spot in the positive y direction, decaying by emitting

photons through the Bragg mirrors towards the detector.

For any value of y, we can take a slice along x and find the

value of x at which the intensity is maximum. To mini-

mise the effects of the scatter of the data points, it is better

to define the centre of intensity according to

xc yð Þ ¼
R1
�1 x � I x; yð Þ � dx
R1
�1 I x; yð Þ � dx ð4Þ

In Fig. 2, we plot xcðyÞ for different incidence angles and
orientations of the sample. Fig. 2a, b shows the cases for 8°

and 12° angles of incidence, respectively and where

we inject light along the y0-axis of the cavity (φ= 0). The

blue points give the experimentally extracted trajectory of

the wavepacket. Clear oscillations of xc are visible with

increasing distance y away from the excitation spot. We

discuss sources of uncertainty in xc in Supplementary

section 4. For the Zitterbewegung effect, the period of the

oscillation L corresponds to the frequency separation of

the positive and negative branches and is expected to vary

with excitation angle30. Qualitatively, at the larger angles,

we expect higher frequency (shorter period) oscillations as

the TE–TM splitting between the branches increases (see

Fig. 1e). As expected, we see in the experiment that the

period becomes shorter at higher angles. We simulated
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the expected trajectory of the wavepackets using a model

of the evolution of the spinor wavefunction accounting for

both TE–TM splitting and birefringence (see Supple-

mentary Section 1). The red curves in Fig. 2a, b shows the

theoretical evolution of xc vs. y. The parameters

Ω= 28.8 µeV µm2 and β= 32.45 µeV µm2 for the simu-

lation were obtained by fitting the experimental oscilla-

tions. Both the period and amplitude of the simulated

trajectories are in excellent agreement with the experi-

mental points. Importantly, the values of β and Ω found

from fitting the oscillations are in good agreement with

the values found independently from fitting the dispersion

relations (β agrees within 0.33 of the uncertainty,Ω agrees

within 0.75 of the uncertainty), as discussed above. We

then rotated the sample and measured the oscillations for

the case where we injected light along the x0-axis of the

cavity (φ= 90°). As discussed above, this changes the

nature of the dispersion, in particular, the splitting

between the two polarisation branches for a given angle.

The data is shown in Fig. 2c, d for incidence angles 8.5°

and 10°, respectively. We used exactly the same para-

meters as in the φ= 0° case to simulate the trajectory of

the light and obtain semi-quantitative agreement between

the experimental points and the theory without further

fitting. The agreement of the amplitude is slightly less

good than in the φ= 0° case due to proximity to the

crossing of the two polarisation branches (Fig. 1d) at 5.7°.

At this point, there is no splitting, and the period becomes

singular, with the oscillations being correspondingly more

sensitive to the exact parameters at angles close to the

singular point.

Finally, the Zitterbewegung effect arises due to inter-

ference between the two polarisation components, e.g. it

is fundamentally a spinor effect. From theory, we expect

that the oscillations in the total intensity pattern should

disappear if only one polarisation branch is excited. We

tested this in two ways, described in more detail in Sup-

plementary Section 2. First, we tuned the excitation angle

so that one branch was preferentially excited and saw that

the amplitude of the oscillations gradually reduced and

disappeared. Second, we excited the system with light

linearly polarised parallel to one polarisation branch and

perpendicular to the other and did not detect oscillations.

The planar microcavity, with its simple structure and

tuneability through excitation angle, is a good platform

for proof of principle demonstrations. Lattices formed by

etching the microcavity to introduce a lateral pattern

allow a wide variety of physically important band struc-

tures to be simulated and are highly tunable via lateral

patterning. They are thus an important complementary

platform which opens up a wide perspective for future

studies. We, therefore, studied Zitterbewegung in a hon-

eycomb lattice, a photonic analogue of graphene. The

lattice is formed by etching the planar cavity into air post

cavities. These so-called pillar microcavities support dis-

crete energy states localised in all three spatial dimen-

sions. By overlapping neighbouring pillars (see Fig. 3), we

allow photons to tunnel from one pillar to another,

allowing the discrete states to hybridise and form energy

bands. The structure we study here is a honeycomb lat-

tice, which is a triangular lattice with 2 pillars per unit cell.

The diameter of the pillars is 3 µm, the centre-to-centre

spacing of adjacent pillars is d= 2.8 µm, the lattice peri-

odicity is a ¼ d
ffiffiffi

3
p

, the lattice vectors are a
ffiffiffi

3
p

=2; ± 1=2
� �

and the reciprocal lattice vectors are ð2π=aÞ 1=
ffiffiffi

3
p

; ± 1
� �

.

In Fig. 3a, we show a schematic diagram of the honey-

comb lattice structure being excited by the laser beam,

resulting in the propagation of the light in the cavity

accompanied by transverse oscillations. An example of an

experimentally measured intensity pattern is shown in

Fig. 3b and is equivalent to the pattern seen in the planar

case (Fig. 1b), except that it results from the propagation of

photons in the bands of the lattice rather than those of the

planar cavity. The band structure of the lattice can be seen

in the angle-resolved photoluminescence spectrum of

Fig. 3c. Two distinct sets of bands separated by a band gap

can be seen. The lowest set of bands, labelled ’s bands’, are
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recorded for excitation at the black point in panel (c). Colour scale

gives the intensity I relative to the peak intensity I0 in decibel units.
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energies and corresponding incidence wavevectors at which the

Zitterbewegung effect is studied. d, e Dispersion of the p-bands (d) and

s-bands (e) calculated by a tight binding model with parameters from

ref. 16. Red and blue curves represent states linearly polarised along x

and y, respectively
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composed of the lowest energy states of the individual

pillars, resembling lowest order Hermite–Gauss modes16.

The next highest set of bands, labelled ‘p bands’, is com-

posed of the first-order Hermite–Gaussian modes of the

individual pillars. For the purpose of this work, the

essential difference between the two sets of bands is that

the polarisation-dependent tunnelling rates from pillar to

pillar are different, resulting in different splittings and

different group velocities (Fermi velocity) close to the

Dirac points (at kx ¼ 0, ky ¼ 4π= 3að Þ). We, therefore,

expect different Zitterbewegung periods and amplitude

close to the Dirac points in either band.

The red and black dots in Fig. 3c mark the energy and

wavevector at which we resonantly excite the bands to

measure the Zitterbewegung. As in the planar case, we

equally excite the two bands. More detailed plots of the

band structure are given in Fig. 3d, e for the p and s bands,

respectively. These are obtained from a tight binding

model using parameters from ref. 16, where the same lattice

was studied extensively, a detailed analysis of polarisation

splitting was performed, and the model was fit to the dis-

persion. The red and blue colour of the lines denote x and y

polarised waves, respectively, and the dots (red for s-bands

and black for p-bands) denote the energy and wavevector

of excitation, slightly detuned from the Dirac points.

Around these excitation points, the energy splitting ΔE

between the bands is 65 µeV for the s-bands and 96 µeV for

the p-bands. The wavenumber splitting Δky between the

two bands at the fixed laser energy is 0.49 ´ 2π= 3að Þ for

the s-bands and 0.25 ´ 2π= 3að Þ for the p-bands.

As in the planar case, we use Eq. 4 to extract xc vs. y

from the intensity pattern of the propagating photons.

Fig. 4a, b shows the extracted trajectories of the photons

for the p and s bands, respectively. Oscillations of xc are

visible, and we see that the period of oscillation is

shorter for the s-bands. The period is expected to scale

as L ¼ 2π=Δky. Therefore the shorter period for the

s-band is consistent with the larger Δky near the exci-

tation point for the s-band. We calculated the theore-

tical trajectory for the photons in a similar way as for the

planar case but using evolution equations for states near

the Dirac point of the honeycomb lattice16,35 (see Supple-

mentary Section 3). Parameters for the modelling were

taken from ref. 16, where the same lattice was studied

extensively, and the dispersion relation was fitted. Semi-

quantitative agreement is obtained between the theory and

experiment.

Discussion

In the experiments on the planar cavity, clear oscilla-

tions of the centre of mass with increasing propagation

distance were observed. The oscillation period decreased

with increasing splitting between the branches, and the

oscillations disappeared when only one branch was exci-

ted, as expected. The expected trajectory of the centre of

mass was also calculated using a model of the evolution of

the spinor wavefunction. The model reproduced the

experimental period and amplitude using parameters in

good agreement with those obtained independently from

the dispersion curve measurements. The amplitude of

Zitterbewegung oscillations is, in general, a complicated

function of sample and excitation parameters but, to a

good approximation, is governed by the experimentally

chosen excitation angle30 and, unlike the period, is inde-

pendent of the TE–TM splitting and birefringence para-

meters β and Ω. The fact that both the observed period

and amplitude agree well with the model provides strong

evidence that the oscillations we observe experimentally

are indeed the real transverse oscillations of the wave-

packet in the cavity, which is the Zitterbewegung. We also

studied Zitterbewegung in honeycomb lattices, where

clear oscillations were once again observed with period

and amplitude in good agreement with the numerical

modelling.

Numerical

simulations

Experimental 

data

Experimental 

data

Numerical

simulations
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Fig. 4 Centre of intensity xc vs. propagation distance y for resonant excitation at two different angles. Blue points give the experimental

data. A red solid line gives the theoretical fit. a Case for excitation of the p-band states, corresponding to the black circle in Fig. 3d. b Case for

excitation of the s-band states, corresponding to the red circle in Fig. 3e. The zero of the y-axis is defined as the edge of the lattice where the pump

spot is incident
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In summary, we experimentally demonstrate Zitterbe-

wegung in planar microcavity and microcavity honeycomb

lattices. Unlike previous demonstrations, the Fabry–Perot

cavity design allows direct visualisation of the complex

spinor field inside the device. Lattice structures allow the

building of photonic analogues to important physical

systems, such as the photonic graphene we study here. In

exciton-polariton lattices, identical to our structure, apart

from smaller energy detuning between photons and

quantum well exciton, interparticle interactions and high

sensitivity to magnetic fields can easily be added. This

work then opens the door to studying a very wide class of

photonic analogues of relativistic systems with particle

interactions, time-reversal symmetry breaking and dis-

sipative effects.
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