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Abstract

We investigate situations in which players make costly contributions as group mem-

bers in a group conflict, and at the same time engage in contest with fellow group members

to appropriate the possible reward. We introduce within group power asymmetry and

complementarity in members’ efforts, and analyze how each group’s internal conflict in-

fluences its chance of winning in the external conflict. We find that a more symmetric

group may expend more effort in external conflict when the (common) collective action

technology exhibits a high degree of complementarity. Furthermore, depending on the

degree of complementarity, the stronger player’s relative contribution to external conflict

may be higher in a more asymmetric group and, as a result, it is possible for the weaker

player to earn a higher payoff. In absence of any complementarity, the rent-dissipation is

non-monotonic with the within-group power asymmetry.
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1 Introduction

Groups often engage in costly confrontations in order to win a reward, while at the same

time the group members contest with each other in order to divide the possible reward

among themselves. In such cases each group member often makes decision about exerting

costly effort for the group collective action, and also about exerting costly effort to compete

with own group members. In this article, we study such situations in the shadow of power

asymmetry among group members.

There are numerous examples from Political Economy. In an open-list electoral system,

a candidate expends resources to convince voters to vote for his party, and separately, to

choose himself as the candidate within his party (Ames, 1995). Interest groups compete for

rents from government policies while individuals - with possible unequal powers - within the

interest group contest for the spoils of the victory (Münster, 2007). When countries in an

alliance engage in conflict against another alliance, they also need to decide how to share the

burden of costs. This logic works in the same way for the parties within a political alliance

(Konrad and Kovenock, 2009). It is also related to the long unanswered issue of the ‘linkage

between internal and external conflict’ in Political Science, and it is noted that "While a

variety of theoretical perspectives would argue for such linkages between internal and external

conflict, difficult questions continue to focus scholarly attention on this relationship" (Starr,

1994).

Similar examples can be drawn from Industrial and Organizational Economics. Firms

producing a system good as complements compete against another system and also divide

profits among themselves. Competing research joint ventures face the same issue. Employees

in an organization expend efforts collectively to overcome rival organizations, but at the same

time they compete with each other for promotions, bonuses and internal rents (Glazer, 2002).

Partners in an organization may compete with each other, as well as with outsider owners

to appropriate surplus (Müller and Wärneryd, 2001). Labor unions simultaneously confront
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the authority as well as other unions. But even within a union, workers sharing the same

political interest may conflict upon ethnic issues (Dasgupta, 2009).1

In all these examples, the nature of internal conflict simultaneously characterizes the shape

of external conflict, in particular, through collective action between players within a group.2

This article analyzes how the inter-group conflict interacts with intra-group conflict in these

environments with special emphases on the power asymmetry between the group members

and complementarity in collective action. In a model of group contest, in which players expend

resources to both internal and external contest simultaneously and incur additive cost, we

use a stochastic (Tullock, 1980) contest success function, consider heterogeneity among group

members in terms of power asymmetry, and introduce complementarity in collective action

through a Constant Elasticity of Substitution (CES) group impact function.3 Consequently,

the interplay between the internal and the external conflict turns out to be a key feature in

the analysis of the overall contest.

There are two contrasting conventional wisdoms about the question of how each group’s

internal conflict influences its chance of winning in external conflict. One view suggests

that a group with less internal conflict has an advantage in external conflict against a rival

group (Deutsch, 1949). The other view is that intra-group conflict is more conducive in

eliciting efforts from group members for external conflict (Lüschen, 1970). The group contest

literature, in general, does not provide a definitive answer.

Most analyses in the group contest literature focus on issues related to contest design that

manipulates total rent dissipation by observing different impact functions, cost structures

and value distributions. This area of literature originated with Katz et al. (1990), who

1Various other important illustrations of such situations come from Biology. Even in nature, different
species compete for limited resources within and between species-type simultaneously (Vandermeer, 1975).
Sperm competition under polyandry reflects another example of this structure. There are cases in which
sperms from a male bird compete with each other in fertilizing the ovum of a polyandric female bird, but at
the same time the sperms extract enzymes or take other collective actions that damage (at least the likelihood
of the success of) sperms of other males (Baker, 1996; Buckland-Nicks, 1998).

2This area of literature dates back to Olson (1965) and was later developed by Becker (1983), Palfrey and
Rosenthal (1983), Hardin (1995) among others. This can also be interpreted as the collective action problem
in two potentially important environments: competition between groups and internal conflict within a group.
See Ostrom (2000) and Sandler and Hartley (2001) for literature reviews.

3An impact function is a function that maps group members’ individual efforts to the ‘group effort’ (Wärn-
eryd, 1998). A group contest success function is a function that maps group efforts into the probability of
winning the contest (Münster, 2009).
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use a perfectly substitutable impact function. The group effort enters in a Tullock contest

success function and the winner group is decided. They show that the equilibrium group

rent dissipation is unique, however multiple equilibria exist in terms of individual equilibrium

efforts. Baik (1993, 2008) generalizes the analysis by introducing asymmetric valuation within

groups. He shows that the equilibrium rent dissipation by a group depends crucially on the

distribution of prize valuation and not on the group size.4 Lee (2012) and Chowdhury et

al. (2013a) instead use weakest link and best-shot impact functions, respectively. Kolmer

and Rommeswinkel (2013) use a CES impact function ranging from weakest link to perfectly

substitute. Finally, Chowdhury and Topolyan (2013) analyze cases in which different groups

can follow different impact functions. These studies, however, do not model any internal

conflict within the groups.5

There is an existing area of literature that considers both intra and inter group contest

(see, for example, Katz and Tokatlidu, 1996; Wärneryd, 1998; Stein and Rapoport, 2004).

However, most of the papers consider a sequence in within and between groups conflicts,

i.e., the inter group conflict is assumed to occur before the intra group conflict (or the other

way round). Within this framework, important topics such as the effects of introducing

an additional level of conflict in fiscal federalism, organizational structure, ownership issues

etc. are analyzed. Unlike these studies, Hausken (2005) and Münster (2007) consider the

case in which the within and between group contests with Tullock contest success functions

occur simultaneously and the players are budget constrained. Hausken (2005) constructs a

model with perfectly substitute impact function in which group members expend resources

simultaneously to collective action and within group conflict for a fixed prize. He analyzes the

effects of group size on equilibrium. He further compares the results with a model in which

players expend resources to produce the rent. This concept of allocating scarce resources into

production, inter-group conflict and intra-group conflict is later used also by Münster (2007)

with a CES impact function. In this model a negative correlation between the intensity

4A series of follow up analyses include Nitzan (1991), Esteban and Ray (2001), Niou and Tan (2005),
Inderst et al. (2008). Please see Konrad (2009) for a survey.

5All these studies use a stochastic contest success function. Group contests with deterministic (all-pay auc-
tion) contest success function is analyzed by Baik et al. (2001), and Topolyan (2013) for perfectly substitute,
Chowdhury et al. (2013b) for weakest link, and Barbieri et al. (2014) for best-shot impact function across
groups; and Chowdhury and Topolyan (2014) for heterogenous impact functions across group.
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of inter-group conflict and that of intra-group conflict is observed. Münster (2007) further

studies the optimal group size and the optimal number of groups from a contest designer’s

perspective.

Unlike the existing studies, our paper addresses the issue of the impact of the heterogeneity

within groups and complementarity on inter-group conflict. At a technical level, we consider

linear costs for internal and external conflicts and do not include a budget constraint. Given

this, we show that both the views of Deutsch (1949) and Lüschen (1970) have some validity by

clarifying the interaction between inter-group and intra-group contests. Furthermore, we ask

the following questions. Does internal conflict matter in group members’ collective action

for external conflict? Since the players are heterogeneous in terms of their within-group

power, which player is better off within a group? How significantly can the degree of power

asymmetry change the rent dissipation?

The severity of internal conflicts within a group is measured in terms of the rate of rent

dissipation within intra-group conflicts. Not surprisingly, as group members have similar

power, internal conflict becomes more severe. In this sense, a more conflictive group is

defined as one in which the power asymmetry is less. We find (Proposition 1) that a stronger

player’s relative contribution to the external conflict is higher for the group with a higher

degree of power asymmetry. Moreover, a more conflictive group expends more effort in the

inter-group conflict, when the (common) collective action technology exhibits a higher degree

of complementarity (Proposition 2) . This is because each member’s incentive to contribute to

the collective action depends on one’s equilibrium share of the prize in the internal conflict.

Thus, when we compare the weaker individuals within groups, the individual in a more

conflictive group is willing to contribute to collective action more than the one in a less

conflictive group. The same logic holds for the stronger players. As a result, if individuals’

efforts are relatively complementary in impacting the collective action, a more conflictive

group faces a free-rider problem (in terms of not expending enough effort in collective action)

at a lesser degree.

The answer to the question about whether a stronger player is better off than a weaker

player within a group is not straightforward. Although the stronger player can dominate the
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weaker player in internal conflict and have a larger share of the prize, the stronger player

usually also contributes more to collective action for external conflict. Hence, when the col-

lective action technology is perfectly complementary, then the stronger player earns a higher

payoff than the weaker group member. But, when the technology is perfectly substitute,

this results in a non-monotonic relationship between the power asymmetry and the players’

payoffs (Lemma 3). A similar outcome (Proposition 4) holds for the relationship between the

power asymmetry and the total rent dissipation which is also non-monotonic with the power

asymmetry parameter for a perfectly substitute technology and is not maximized when the

players are symmetric. This result contrasts starkly to the standard (single) contest models

in which the rent dissipation gets smaller with player asymmetry.

The rest of the paper is structured as follows. Section 2 lays out the basic model whereas

Section 3 constructs the equilibrium efforts both in inter- and intra-group conflicts. We

consider the effects of power asymmetry in external conflict to compare win probabilities in

Section 4. In Section 5 and Section 6, we demonstrate the special cases of perfectly substitute

and perfectly complementary impact functions to investigate the payoff and rent dissipation.

Section 7 concludes.

2 Model: Collective Action and Conflict Technologies

Consider two groups, A and B, that contest for a reward with common value R > 0. Each

group G(= A,B) consists of two risk-neutral players, G1 and G2. The way the reward is

allocated between the two groups depends on the collective efforts put forth by each group. A

group’s share of the reward is further contested by the members of each group simultaneously.

Thus, members of the same group have a common interest and cooperate in external contest

against the rival group, but they are competitors against each other in the division of the

spoils. Each player chooses two different non-negative efforts: contributing to collective

activity for inter-group conflict and contesting a given share of the reward within the group.

For the sake of simplicity we assume a linear cost function in which the total cost of effort

for a player is the sum of the effort in the internal conflict and the external conflict. Player
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i in group A (B) allocates ai (bi) units of effort towards internal conflict and αi (βi) units

of effort for collective action towards external conflict. We assume complete information and

that all players make their decisions simultaneously.

Internal Conflict. Contrary to a substantial part of the literature, we assume players

within a group to be heterogeneous by ability or power, where power is defined in terms of

advantage conferred in internal conflict. Without any loss of generality, we designate player

1 of each group to have at least as much power as player 2 and thus to have (weak) advantage

in internal conflict. This advantage is embedded in the conflict technology. Let pG(x1, x2)

be the probability that player 1 wins in the internal conflict when x1 and x2 are the internal

effort levels exerted by player 1 and 2; with x = a when G = A, and x = b when G = B.

Then, internal conflict is resolved by a Tullock (1980) type contest. The contest success

function (CSF) in group G is given by

pG(x1, x2) =






xm1
xm1 +θGx

m
2
, if x1 + x2 6= 0

1
2 , otherwise.

where θG ∈ [0, 1] , and G = A,B.

The probability that player 2 wins is simply 1− pG. The parameter θG represents asym-

metry in power distribution within group G, with a higher θG implying a more even power

distribution.6 For instance, if θG = 1, the power is evenly distributed between the two

players, whereas if θG = 0, all the power in internal conflict is possessed by player 1 with

pG(x1, x2) = 1. We refer to player 1 as the stronger player and player 2 as the weaker player.

We also refer to a decrease in θG as an increase in the power asymmetry within group G.

Collective Action. Let F (y1, y2) : R
2
+ → R+ refer to an impact function that represents

collective action of a group in external conflict when the stronger and weaker players con-

tribute y1 and y2, with y = α when G = A, and y = β when G = B. As discussed

6One way to interpret this function is that player 1 has some advantage within the group in terms of
education, experience, incumbency, technology etc. This specification is introduced by Gradstein (1995).
See Skaperdas (1996) and especially Clark and Riis (1998) for axiomatization of this type of contest success
function. In this study we focus on Pure Strategy Nash Equilibria, and impose the condition m ∈ (0, 2) to
ensure equilibrium in pure strategies.
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earlier, in the existing literature, collective action is usually assumed to be a sum of each

individual’s effort. This assumption of a perfectly substitute impact function ignores any

possibility of complementary effects in collective action. However, there are a wide variety

of situations in which collective action cannot be treated as the sum of individual members’

effort.7 We capture the issues of complementarity in collective action by introducing a CES

impact function as follows.

F (yi, yj) =
[
yri + y

r
j

] 1
r

From the properties of a CES function, one can note that (i) F (yi, yj) is concave, Fi(yi, yj) ≥

0, Fii(yi, yj) ≤ 0, and Fij(yi, yj) ≥ 0, where i, j = 1, 2 with i 6= j and the subscripts indicate

partial differentiation. Hence, collective action is increasing in each member’s contribution,

but at a diminishing rate. (ii) This impact function is designed to have a constant returns to

scale. (iii) r ∈ [−∞, 1] represents the degree of complementarity between individuals’ efforts.

External Conflict. The group conflict technology is assumed to be driven by a logit-type

contest success function (axiomatized by Münster, 2009). Let q(F (α1, α2), F (β1, β2)) denote

the probability that group A wins in external conflict. Hence:

q(F (α1, α2), F (β1, β2)) =






F (α1,α2)
F (α1,α2)+F (β1,β2)

, if F (α1, α2) + F (β1, β2) 6= 0

1
2 , otherwise

The probability that group B wins is simply 1− q. To economize on notation, we will often

use α = (α1, α2) and β = (β1, β2). For instance, q(α,β) =
F (α)

F (α)+F (β) .

Our formulation assumes that each player makes a decision on his choice of effort in

internal and external conflicts simultaneously. It is particularly useful if we interpret q(α,β)

as the probability that group A wins in a winner-take-all external contest. However, if we

take the alternative, non-probabilistic, interpretation of q(α,β) as the share of A’s contested

7For example, Scully (1995) states "[p]layers interact with one another in team sports. The degree of
interaction among player skills determines the nature of the production function." Also, in the early literature
of voluntary contributions to a public good, Hirshleifer (1983) studies the possible complementary effect in
collective action. Borland (2007) also argues that while the production function in baseball is nearly additive
in the sense that hitting and pitching are separate activities, players’ efforts are almost perfect complements
in American football. See Konrad (2009) chapters 5.5 and 6.3 for detailed discussion in this.
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resource, the analyses will still work. In the following we will interpret our results in terms

of winner-take-all probabilities in both within and between group contests.

3 Equilibrium Analysis

3.1 Internal Conflict within Groups

The players in group A maximize the objective functions represented by

VA1 = pA(a1, a2)q(α,β)R− a1 − α1

VA2 = [1− pA(a1, a2)]q(α,β)R− a2 − α2.

Similarly, the objective functions for the players in group B are given by

VB1 = pB(b1, b2)[1− q(α,β)]R− b1 − β1

VB2 = [1− pB(b1, b2)][1− q(α,β)]R− b2 − β2.

We first derive an invariance result that each player’s winning probability in their internal

conflict (p, 1− p) is independent of the level of their contributions to external conflict (α,β).

The equilibrium probability of winning in internal conflict depends only on the respective

group’s power distribution parameter θG. This result, summarized in the following Lemma,

considerably simplifies our analysis.8

Lemma 1 In equilibrium, both the stronger and the weaker players of group G choose the

same level of efforts for internal conflict (a∗1 = a∗2 and b
∗
1 = b∗2). As a result, the winning

probabilities for the stronger and the weaker players depend only on θG; pA(a
∗
1, a

∗
2) =

1
1+θA

and pB(b
∗
1, b

∗
2) =

1
1+θB

.

8 In this and in the next section we focus on r ∈ (−∞, 1) and consider the corner cases of perfectly substitute
and perfectly complement in the subsequent sections. Also, following Marchi (2008) we consider only the cases
where the Gonzi condition in the payoff functions are satisfied. This ensures both existence, and FOC to be
sufficient for the maximization problem. This, however, does not assure uniqueness. As will be shown in
the next section, multiple equilibria may exist for symmetric within group power; or for the extreme case of
perfect complementary collective technology even for power asymmetry within groups.
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To investigate the relationship between the rent dissipation in internal conflict and the

power distribution within each group, let us define

λA =
a∗1 + a

∗
2

q(α,β)R
and λB =

b∗1 + b
∗
2

[1− q(α,β)]R
.

The denominator of λG represents the expected value of the collective prize for group G in the

external conflict whereas the numerator of λG is the total effort expended in internal conflict.

Thus, λG is the equilibrium rate of rent dissipation in internal conflict. It measures the level

of resources used up for internal conflict relative to the expected value of collective prize

for group G. The next lemma shows that the group with less power-asymmetry dissipates

proportionately more rent out of their expected group prize in internal conflict. In this sense,

the group with more even power distribution is more conflictive.

Lemma 2 λA R λB as θA R θB.

Without loss of generality, for the rest of the analyses, we assume θA ≤ θB, i.e., the power

is more asymmetric in group A compared to group B. This implies that group B is more

conflictive than group A. This, however, does not necessarily mean that players in group

B spend more resource for internal conflict. Since the total efforts depend on the size of

contestable expected prize, players in group A may expend more efforts in internal conflict if

group A’s winning probability is much larger in the external conflict.

3.2 External Conflict between Groups

Now we study how the inter-group conflict is shaped by the intensity of internal conflict

and the distribution of power within each group. With the invariance result from Lemma

1, we can state each player’s objective function in relation to their contribution to external

conflict.9 For notational simplicity, we denote the equilibrium probability that player 1 wins

9Casual observation might suggest that the role of power disparity in this model is providing an exogenous
division rule of the prize. This is not true because the players’ effort levels are important in our comparison
of the equilibrium payoffs and the rent-dissipation.
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in group G by pG. For the members of group A, the payoff can be written as follows.

VA1 = pAq(α,β)R− a
∗
1 − α1

VA2 = (1− pA)q(α,β)R− a
∗
2 − α2.

For external conflict, player i in group A maximizes his payoff function VAi by choosing αi,

where i = 1, 2, given that all players act optimally. One can derive similar conditions for

group B members who choose βi; and the first-order conditions can be expressed as

F1(α)F (β)

[F (α) + F (β)]2
R =

1

pA
= (1 + θA), (1)

F2(α)F (β)

[F (α) + F (β)]2
R =

1

1− pA
= (

1 + θA
θA

), (2)

F (α)F1(β)

[F (α) + F (β)]2
R =

1

pB
= (1 + θB), and (3)

F (α)F2(β)

[F (α) + F (β)]2
R =

1

1− pB
= (

1 + θB
θB

). (4)

They can be further manipulated and summarized in the following way.

F1(α)

F2(α)
=

1− pA
pA

= θA, (5)

F1(β)

F2(β)
=

1− pB
pB

= θB, (6)

F1(α)

F1(β)

F (β)

F (α)
=

pB
pA

=

(
1 + θA
1 + θB

)
, and (7)

F2(α)

F2(β)

F (β)

F (α)
=

1− pB
1− pA

=

(
θB
θA

)(
1 + θA
1 + θB

)
(8)

Equations (5) and (6) tell us about the relationship between the marginal contributions of

players 1 and 2 in the generation of collective action in each group. In each group, the weaker

player’s equilibrium marginal contribution to the collective action is greater than the stronger

player’s. This is because the player with less internal power is expected to receive a smaller

share of the prize in external contest. This asymmetry in the relative marginal contributions

of the two players translates into the asymmetry in the relative total contributions. Each
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player’s incentive to contribute to collective action depends on one’s power in the internal

conflict. Hence, the relative contribution of player 1 is greater in the less conflictive group A.

This leads us to the following result.

Proposition 1 The stronger player’s relative contribution to external conflict vis-a-vis the

weaker player’s is higher in group A where power distribution is relatively more asymmetric,

i.e.,
α∗1
α∗2
≥

β∗1
β∗2
as θA ≤ θB or, pA ≥ pB.

One important implication of this result is that the two groups exhibit different patterns

of inefficiency. Clearly, the generation of collective action in each group is inefficient, because

efficiency requires that an individual is compensated with full marginal return of one’s effort.

It is easy to note that the inefficiency in terms of player 2 (player 1) is more pronounced for

group A (B) in which the internal power distribution is more asymmetric (symmetric).

4 Win Probability in External Conflict

A basic, but unanswered, question is which group has a higher winning probability in external

conflict, i.e., whether q(α,β) is greater than 1/2 or not. This is equivalent to asking whether

F (α∗1,α
∗
2)

F (β∗1,β
∗
2)
≥ 1. Equations (7) and (8) together result in

F (α∗1, α
∗
2)

F (β∗1, β
∗
2)
=

(
1 + θB
1 + θA

)(
θA

θB − θA

)[
F2(α

∗
1, α

∗
2)

F2(β
∗
1, β

∗
2)
−
F1(α

∗
1, α

∗
2)

F1(β
∗
1, β

∗
2)

]
. (9)

This shows that the answer hinges on the ratio of marginal contributions between stronger

and weaker players in equilibrium. Thus, the way in which collective action is generated

through individual contributions is crucial to predicting which group will win. In addition, it

is worthwhile to study how each group’s winning probability is changed by the distribution

of power within a group.

An important factor in collective action is a possible complementarity between individual

members’ contributions. The elasticity of substitution in the CES function is 1
1−r , which is a

measure of the degree of complementarity (or substitutability) between individual members’
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contributions. As r increases, the contributions of the two players in the same group become

less complementary (more substitutable).10 In the next proposition we derive the relationship

between the properties of the group impact function and the group winning probability.

Proposition 2 If the individuals’ contributions are relatively complementary in the genera-

tion of collective action common to both groups, the winning probability of more conflictive

group is greater, and vice versa, i.e., F (α∗1, α
∗
2) R F (β

∗
1, β

∗
2) as r R 1/2.

At a first sight, the result in Proposition 2 appears to be counter-intuitive. Under cir-

cumstances in which collective action requires complementary efforts, the individuals in the

more conflictive group contribute to collective action more than in the less conflictive group.

Conventional wisdom advises that conflict harms cooperation. However, our result implies

that conflict and cooperation can coexist well, in particular, in situations of complementary

collective action.

In the case of military alliances, the individuals’ contributions are more likely to be sub-

stitutable. Thus, our model predicts that leadership in each alliance matters in external

conflict. In fact, in the Cold War era, superpower dominance was at issue in the two military

alliances, NATO and the Warsaw Pact. On the other hand, in the case of business alliances,

the individuals’ contributions are more likely to be complementary. For example, the com-

plementarity between the distribution capability and the manufacturing skill is one of the

most popular reasons for the strategic alliance. Thus, the size or market power of partners

needs to be similar for a strong alliance to form.

A solution for
F (α∗1,α

∗
2)

F (β∗1,β
∗
2)
enables us to conduct comparative statics in terms of power distri-

bution to study whether the internal redistribution of power increase or decrease the group’s

winning probability. One famed argument by Olson (1965) in the context of public goods is

that the redistribution of wealth in favor of inequality can make individuals contribute to col-

lective action more, because an individual who gains a significant proportion of total benefits

from public goods has more incentive to contribute. We, however, study this issue in terms of

10While we obtain the most popular, additive impact function with no complementarity as r becomes 1; we
obtain the impact function with perfect complementarity as r becomes −∞.
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power distribution in a group contest. The following Corollary is derived immediately from

the Proposition 2.

Corollary The asymmetry of power increases (decreases) the group’s probability of win-

ning when the individuals’ contributions is relatively substitutable (complementary); i.e.,

∂
∂θA

(
F (α∗1,α

∗
2)

F (β∗1,β
∗
2)

)
Q 0 and ∂

∂θB

(
F (α∗1,α

∗
2)

F (β∗1,β
∗
2)

)
R 0 as r R 1/2.

This result confirms the intuition of Olson (1965) in a group contest setting. He argues

that more asymmetry can facilitate collective action in a public good setting when collective

action is defined as the sum of individuals’ efforts (r = 1). We show that more asymmetry in

terms of power can facilitate collective action even in a group contest setting and it is valid

for any r ≥ 1/2 . In contrast, it should also be emphasized that the result can be sharply

reversed if the individuals’ contribution is relatively complementary as the case of r < 1/2.

When individuals’ efforts are relatively substitutable or the stronger player in the group

plays a significant role in the collective action, the redistribution of power towards the stronger

player facilitates collective action. This result is consistent with Olson’s argument, as the

driving force is that the stronger players have more incentives to contribute to collective

action. By contrast, this result is sharply reversed for the specific impact functions in which

individuals’ efforts are relatively complementary or the weaker player turns out to be the

crucial player in generating collective action. Thus, in this case, a more equal distribution

of power fosters collective action. In addition, the power distribution in a rival group gives

the idea of a fierce or a milder conflict and this affects the amount of collective action in a

similar way.

To characterize equilibria and comparative statics of the game, one can use Lemma 1

and the results from Kolmar and Rommeswinkel (2013) who fully characterize group con-

test with CES impact function. We can directly employ a modified version of their result

(pp. 12) and find that the effort in the external conflict is independent of the degree of

complementarity when there exists no power asymmetry. However, as a simple case, when

θA = θB = θ < 1, then in the intermediate range the effort expended by the stronger player

will be α∗1 = β∗1 =
R

4(1+θ)[1+(θ)r/(1−r)]
and the effort expended by the weaker player will be

14



α∗2 = β∗2 =
θR

4(1+θ)[1+(1/θ)r/(1−r)]
. Note again from the results of Kolmar and Rommeswinkel

(2013), however, that for different values of r, some cases can only be covered by a limit and

the transitions for different values of r are not smooth. It is also possible, as we will show in

the next section, to obtain multiple equilibria. As a result in the next section we focus on

the two most analyzed, and arguably most interesting polar cases of the r values.

5 Who is better off: the Stronger or the Weaker Player?

In addition to the issues discussed in the previous section, an implicit assumption that is

made so far to ensure the players to expend strictly positive resources is that the players

earn non-negative payoff in the equilibria. This is called a participation constraint. In the

standard group contests with only external conflict this constraint is satisfied in equilibrium.

However, it may not be so obvious for this particular structure. In this section we focus

on two contrasting cases, namely perfectly substitutable (additive effort, when r = 1) and

perfectly complementary (weakest link effort, when r = −∞) group impact functions, to

compare the equilibrium effort levels and payoffs and show that equilibrium exists - for which

the participation constraint is also satisfied.

In the case of additive effort group impact function, collective action is performed by

the sum of individual group members’ efforts, i.e., F (yi, yj) = yi + yj . In the case of weakest

link group impact function, the minimum effort among individual group members establishes

the level of collective action, i.e., F (yi, yj) = min{yi, yj}. We can compute the equilibrium

effort levels in external conflict as follows. The proof of this lemma comes directly from Baik

(1993) and Lee (2012) and is not included.

Lemma 3 (1) Suppose F (yi, yj) = yi + yj. In this case, weaker players completely free-ride

in contributing to collective action.

α∗1 =
p2ApB

[pA + pB]
2R =

θB

[2 + θB + θB]
2R ≥

pAp
2
B

[pA + pB]
2R =

θA

[2 + θB + θB]
2R = β

∗
1 and α

∗
2 = β

∗
2 = 0.
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(2) Suppose F (yi, yj) = min{yi, yj}. There are multiple equilibria, but we focus on the

payoff-dominant outcome and obtain

α∗1 = α∗2 =
[1− pA]

2 [1− pB]

[1− pA + 1− pB]
2R =

θ2AθB(1 + θB)

[2θAθB + θA + θB]
2R

≤
[1− pA] [1− pB]

2

[1− pA + 1− pB]
2R =

θAθB
2(1 + θA)

[2θAθB + θA + θB]
2R = β

∗
1 = β

∗
2.

For additive effort, the winning probability in the external conflict depends only on the

stronger players’ effort. Thus, the less conflictive group’s winning probability is always higher,

i.e.,

For F (yi, yj) = yi + yj , q(α
∗,β∗) =

pA
pA + pB

≥ 1/2.

In the case of weakest-link, as is well-known, multiple equilibria emerge. We select the largest

matched effort level because it gives the highest equilibrium payoffs to each player in each

group and turns out to be the coalition proof equilibrium (Lee, 2012). Then, the collective

action is virtually determined by the weaker players, because the stronger players merely

make the same effort as much as the weaker players in own group. In this case, the more

conflictive group’s winning probability is always higher, i.e.,

For F (yi, yj) = min{yi, yj}, q(α
∗,β∗) =

1− pA
1− pA + 1− pB

≤ 1/2.

In this sense, these two polar cases make our earlier argument in Proposition 2 and the

corresponding Corollary even clearer.

Now, let us compare the equilibrium payoffs of the two players within a group. The

following Proposition shows that the stronger players earn higher payoff in the weakest link

effort case. However, in the case of additive effort, the result is very different.

Proposition 3 In the weakest-link case, V ∗G1 ≥ V ∗G2 always for G = A,B. In contrast, in

the additive effort case, we obtain

V ∗A1 ≥ V
∗
A2 and V

∗
B1 ≥ V

∗
B2 only if θB ≥

θA
2 + 2θA − 1

(1− θA)
and θA ≥

θB
2 + 2θB − 1

(1− θB)
.
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This result is illustrated in Figure 1. Since we confine our attention to θB ≥ θA, we

focus on the area above the 45 degree line. Loosely speaking, the result implies that when

the power asymmetry among the group members is small enough (θ is high enough), then

the weaker player has a higher payoff than the stronger player. This is because the weaker

player’s free riding benefit is large despite his small share of the prize when the asymmetry

is small enough. In addition, since the relative benefit of free riding is greater in the more

conflictive group, the parameter range in which the weaker player’s payoff is greater is larger

in the more conflictive group. This becomes completely clear when we consider the polar

case, θ = θA = θB. In this case the result reduces to V
∗
G1 R V

∗
G2 as θG Q 1/2.

Getting back to the issue of existence and participation constraint for equilibria, it can

be noted that for both the cases showing existence is trivial. Given the effort choices of

other players, a player does not deviate from the effort choice outlined in an equilibrium.

Furthermore, it is easy to show that the equilibrium payoffs (for the additive case and for

the coalition proof weakest link case) of the players are non-negative. Below we provide a
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summary of the result for θ = θA = θB and m = 1 and in the next section we provide a

broader discussion regarding rent dissipation.

Example. For the case of weakest-link impact function F (yi, yj) = min {yi, yj} , we find

a∗ = θ
(1+θ)2

R
2 and α

∗ = θ
1+θ

R
4 from Lemma 1 and Lemma 3 respectively. Each player’s

symmetric equilibrium payoff is

V = p(a∗)q(α∗)R− a∗ − α∗ =
R

4

[
1−

3θ

(1 + θ)2

]
≥ 0

for any θ ∈ [0, 1] . Similarly, for the case of additive impact function F (yi, yj) = yi + yj , we

obtain a∗ = θ
(1+θ)2

R
2 and α

∗ = θ
(1+θ)2

R
8 . Each player’s symmetric equilibrium payoff is

V = p(a∗)q(α∗)R− a∗ − α∗ =
R

4

[
1−

5θ

2(1 + θ)2

]
≥ 0

for any θ ∈ [0, 1] .

6 Equilibrium Rent Dissipation

In this section, we compute the total equilibrium rent dissipation, (a∗1 + a
∗
2 + α

∗
1 + α

∗
2)/R +

(b∗1 + b
∗
2 + β

∗
1 + β

∗
2)/R, and analyze how this changes with the power asymmetry. Note that

it measures the total efforts relative to the value of the prize, R. We have already derived

α∗i and β
∗
i in the previous section, and here we find a

∗
i and b

∗
i for the two impact functions,

respectively. Since we are interested in the effect of the power asymmetry on the total rent

dissipation across the groups, we now assume symmetric power asymmetry across the groups,

i.e., θ = θA = θB and p(θ) = pA = pB = 1/(1 + θ). We first derive the following Lemma.

Lemma 4 Under symmetric power asymmetry across the groups, the rent dissipation in

internal conflict is the same in the additive and the weakest link effort cases.

This result allows us to pin down the total rent dissipation for the contest. It is summa-

rized in the next Proposition.
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Proposition 4 Under the same power asymmetry across groups, in the weakest-link case,

the total rent dissipation is monotonically increasing in θ. In the additive effort case, the total

rent dissipation 2p(θ)(54 − p(θ)) is increasing for θ ∈ [0, 3/5] and decreasing for θ ∈ (3/5, 1].

In the weakest-link case, the rent dissipation is increasing in power asymmetry, i.e., de-

creasing in p(θ) both on external and internal conflict. This is observed since when the power

asymmetry is smaller, the internal conflict becomes severe. In addition, since the weaker

player determines the level of contribution to collective action, the external conflict becomes

intense as well. Thus, the total rent dissipation (2p(θ) + 1)(1− p(θ))R is decreasing in p(θ)

(increasing in θ).

In contrast, the additive effort case is more interesting. The rent dissipation on internal

conflict is obviously decreasing in p(θ) (increasing in θ). However, note that the rent dis-

sipation on external conflict is increasing in p(θ) (decreasing in θ). This means that more

severe the external conflict more heterogeneous are the players. It is because the free-rider

problem is overshadowed as the stronger player’s equilibrium share of the prize is larger. As
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a result, we find that the total rent dissipation does not behave monotonically with the power

asymmetry as follows.

This result, represented in Figure 2, has several important implications. First, it is well-

known that the rent dissipation is decreasing in the heterogeneity of the players in a single

contest model. This is no longer true in simultaneous inter and intra group contest. Second,

our result suggests that the rent dissipation is underestimated in many studies based on the

symmetric case single contest. In fact, when the group members are symmetric, the total rent

dissipation is not maximized for the additive effort case. Finally, we show that simultaneous

contest can be used to ensure full rent dissipation as in the weakest link case.11

7 Discussions

We develop a model of group contest in which simultaneous within and between group conflict

interplay with each other. This structure is an abstract representation of several situations

in Political Economy, Industrial and Organizational Economics and Biology. We introduce

power asymmetry within groups and complementarity in collective action to analyze their

impact on within and inter-group conflicts, equilibrium payoff and rent dissipation. We find

that the degree of complementarity plays a crucial role in determining collective action. As

a result, a group that faces relatively higher level of inner conflict also contributes more

to the between group conflict, only when the degree of complementarity is high. Having a

higher power within a group does not necessarily result in higher payoff, when the degree of

complementarity is low.

There are interesting ways this analysis can be further pursued in terms of both relaxing

some of the assumptions and modifying the structure to incorporate other field applications.

As we start our analysis with pre-specified groups, our analysis implicitly suggests that the

heterogeneity of individuals will be an important factor in the study of the endogenous

formation of groups. It would be an interesting exercise to extend our model to endogenize

the group formation problem. Also, in our structure the two groups share the same group

11One may be interested in the asymmetric case of θA < θB . We also conducted comparative statics of the
total rent dissipation with respect to t < 1 when θA = tθB and obtained a similar result: the rent dissipation
on external competition is increasing in t, but that on internal competition is decreasing in t.
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impact function, it will again be interesting to analyze the situation with different impact

functions. Clark and Konrad (2007), and Chowdhury and Topolyan (2013, 2014) study the

case where the attackers follow a best-shot and the defenders follow a weakest-link function,

respectively. It would be worthwhile to extend their models to be a group contest with internal

conflict. Finally, we assume symmetric (unit) marginal cost of internal and external conflict.

Relaxing this assumption in terms of either a general non-linear function, or by introducing

a budget (as in Hausken, 2005; Münster, 2007; Baik, 2008) may provide different analyses.

Several examples discussed in the introduction may also be analyzed by introducing a budget

constraint on the total internal and external resources. Those, in our specific structure, may

provide some new interesting features. We leave them as avenues for further research.
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8 Appendix

8.1 The Proof of Lemma 1.

The first order conditions with respect to internal conflict in group A are given by

∂VA1
∂a1

=
θAma

m−1
1 am2

[am1 + θAa
m
2 ]
2
q(α,β)R− 1 = 0

∂VA2
∂a2

=
θAa

m−1
2 am1

[am1 + θAa
m
2 ]
2
q(α,β)R− 1 = 0.

The first-order conditions can be summarized by

a1
m
=
a2
m

=
θA

(1 + θA)2
q(α,β)R. (10)

Both the players in group A choose the same level of efforts, a∗1 = a∗2 (as functions of

α1, α2, β1, β2) for internal conflict regardless of their possibly different choice of α1 and α2

for external conflict. By proceeding in a similar manner, we can also derive that

b1
m
=
b2
m

=
θB

(1 + θB)2
[1− q(α,β)]R (11)

This implies that b∗1 = b∗2. However, the total effort spent on internal conflict can be

different for each group. The equilibrium conditions (10) and (11) lead us to the result that

the stronger player’s winning probabilities in Group A’s internal conflict is pA(a
∗
1, a

∗
2) =

1
1+θA

and the same for the weaker player is 1−pA(a
∗
1, a

∗
2) =

θA
1+θA

. A similar result holds for group

B internal conflict with pB(b
∗
1, b

∗
2) =

1
1+θB

. �

8.2 The Proof of Proposition 1.

F (., .) is a homothetic function. This means that the slopes of the level sets of F (., .) are the

same along rays coming from the origin. Hence, α∗1 (β
∗
1) must have a linear relationship with

α∗2 (β
∗
2). Let us define those as sA = α

∗
2/α

∗
1 and sB = β

∗
2/β

∗
1. Equations (5) and (6) can then
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be written as

F1(1, α
∗
2/α

∗
1)

F2(1, α∗2/α
∗
1)
=
F1(1, sA)

F2(1, sA)
≤
F1(1, sB)

F2(1, sB)
=
F1(1, β

∗
2/β

∗
1)

F2(1, β
∗
2/β

∗
1)
,

because Fi(yi, yj) and Fj(yi, yj) are homogeneous of degree 0. Note that
F1(1,sG)
F2(1,sG)

is increasing

in sG under Fjj(yi, yj) < 0 and Fij(yi, yj) > 0 as follows.

∂

∂sG

[
F1(1, sG)

F2(1, sG)

]
=
F12(1, sG)F2(1, sG)− F1(1, sG)F22(1, sG)

[F2(1, sG)]2
≥ 0.

Therefore we must have sA = α
∗
2/α

∗
1 ≤ β

∗
2/β

∗
1 = sB.�

8.3 The Proof of Proposition 2.

Equation (5), (6), (7), and (8) correspond to

α1
α2

=

(
1− pA
pA

) 1
r−1

, (5’)

β1
β2

=

(
1− pB
pB

) 1
r−1

, (6’)

(
α1
β1

)r−1 βr1 + β
r
2

αr1 + α
r
2

=
pB
pA

and (7’)

(
α2
β2

)r−1 βr1 + β
r
2

αr1 + α
r
2

=
1− pB
1− pA

. (8’)

Define ρ = r
1−r . Putting equation (5’) and (6’) into (7’), we obtain (

α1
β1
) = pB

pA
·
1+
(

pA
1−pA

) r
r−1

1+
(

pB
1−pB

) r
r−1
.

Plugging this into (7’) again, we get
αr1+α

r
2

βr1+β
r
2
=

(
1+
(

pA
1−pA

) r
r−1

1+
(

pB
1−pB

) r
r−1

)1−r (
pB
pA

)r
. Using this, we can

further manipulate the equation as follows.

F (α∗1, α
∗
2)

F (β∗1, β
∗
2)

=

(
αr1 + α

r
2

βr1 + β
r
2

) 1
r

=





1 +

(
pA
1−pA

) r
r−1

1 +
(

pB
1−pB

) r
r−1






1−r
r (

pA
pB

)

=



p
r

1−r

A + (1− pA)
r

1−r

p
r

1−r

B + (1− pB)
r

1−r





1−r
r
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Now, F (α∗1, α
∗
2) R F (β

∗
1, β

∗
2) is comparable to p

ρ
A+ (1− pA)

ρ R pρB + (1− pB)
ρ. Let us define

the function,

g(x) = xρ + (1− x)ρ, where x ≥ 1/2.

This function is increasing in x for ρ > 1 and decreasing in x for ρ < 1, because g′(x) =

ρ(xρ−1 − (1 − x)ρ−1). Note that ρ must be greater than 0 for r < 1. Therefore, since

p(θA) > p(θB), F (α
∗
1, α

∗
2) R F (β∗1, β

∗
2) must correspond to ρ R 1, which is again equivalent

to r R 1/2.�

8.4 The Proof of Proposition 4.

The difference between the two players’ equilibrium payoffs in group A is written as

V ∗A1 − V
∗
A2 = (2pA − 1)q(α,β)R− (α

∗
1 + a

∗
1) + (α

∗
2 + a

∗
2).

From Lemma 1, both players exert the same level of effort in internal conflict, i.e., a∗1 = a
∗
2. In

addition, from Lemma 3, in the case of weakest-link effort, they also contribute the same level

of effort to collective action, i.e., α∗1 = α
∗
2. Finally, by construction θA < 1 i.e., p(θA) > 1/2.

As a result, we must have V ∗A1 ≥ V
∗
A2. The same logic applies to the players in group B. Hence,

the stronger player always has a higher payoff than the weaker player in the weakest-link case.

Applying the results from Lemma 1 and Lemma 3, the difference between the two players’

equilibrium payoffs in group A for the additive effort case boils down to

V ∗A1 − V
∗
A2 = (2pA − 1)q(α,β)R− α

∗
1

=
pA

pA + pB
R

[
(2pA − 1)−

pApB
pA + pB

]

The stronger player’s advantage is a higher winning probability in internal conflict. However,

the stronger player’s disadvantage is that only he has to contribute to external conflict because

the weaker player free rides completely, α∗2 = 0. As a result, the stronger player has a (weakly)

higher payoff than the weaker player in group A in the weakest-link case only if the second
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part of the above given expression in non negative. This condition, after expressing the

probabilities in terms of the asymmetry parameter becomes θB ≥
θA

2+2θA−1
(1−θA)

. Similarly, in

group B, the stronger player has a (weakly) higher payoff than the weaker player in group A

in the weakest-link case only if θA ≥
θB

2+2θB−1
(1−θB)

. Combining these two conditions, we obtain

the result.�

8.5 The Proof of Lemma 4.

Inserting q(α∗,β∗) into (10) and (11), we obtain

For F (yi, yj) = yi + yj ,






a∗1 = a
∗
2 =

p2A(1−pA)
pA+pB

R

b∗1 = b
∗
2 =

p2B(1−pB)
pA+pB

R

For F (yi, yj) = min{yi, yj},






a∗1 = a
∗
2 =

pA(1−pA)
2

(1−pA)+(1−pB)
R

b∗1 = b
∗
2 =

pB(1−pB)
2

(1−pA)+(1−pB)
R.

Imposing θ = θA = θB and p(θ) = pA = pB = 1/(1 + θ), the total rent dissipation

in internal conflict for both the weakest link and the additive effort case turns out to be

(a∗1 + a
∗
2 + b

∗
1 + b

∗
2) /R = 2p(θ)(1− p(θ)).�

8.6 The Proof of Proposition 5.

Using the results of Lemma 4, the following results can be immediately derived.

For F (yi, yj) = yi + yj ,






(α∗1 + α
∗
2 + β

∗
1 + β

∗
2) /R =

p(θ)
2

(a∗1 + a
∗
2 + b

∗
1 + b

∗
2) /R = 2p(θ)(1− p(θ))

For F (yi, yj) = min{yi, yj},






(α∗1 + α
∗
2 + β

∗
1 + β

∗
2) /R = (1− p(θ))

(a∗1 + a
∗
2 + b

∗
1 + b

∗
2) /R = 2p(θ)(1− p(θ)).

In the weakest-link case, The total rent dissipation is: TR ≡ (a∗1 + a
∗
2 + α

∗
1 + α

∗
2)/R +

(b∗1 + b
∗
2 + β

∗
1 + β

∗
2)/R = (2p(θ) + 1)(1 − p(θ)) = θ2+3θ

(1+θ)2
. It is easy to show that d(TR)

dθ > 0.

Hence, total rent dissipation is decreasing in the power asymmetry. In the additive effort
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case TR ≡ (a∗1 + a
∗
2 + α

∗
1 + α

∗
2)/R + (b

∗
1 + b

∗
2 + β

∗
1 + β

∗
2)/R = (

5
2p(θ) − 2p(θ)

2) = 5θ−1
(1+θ)2

. It

is easy to show from d(TR)
dθ that rent dissipation is 1/2 when θ = 0, is increasing and reaches

its maximum at θ = 3/5 then it declines to 3/4 when θ = 1.�
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