
This is a repository copy of Towards log slicing.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/199669/

Version: Published Version

Proceedings Paper:
Dawes, J.H. orcid.org/0000-0002-2289-1620, Shin, D. orcid.org/0000-0002-0840-6449 and
Bianculli, D. orcid.org/0000-0002-4854-685X (2023) Towards log slicing. In: Lambers, L. 
and Uchitel, S., (eds.) Fundamental Approaches to Software Engineering: 26th 
International Conference, FASE 2023, Held as Part of the European Joint Conferences on 
Theory and Practice of Software, ETAPS 2023, Paris, France, April 22–27, 2023, 
Proceedings. 26th International Conference, FASE 2023, Held as Part of the European 
Joint Conferences on Theory and Practice of Software, ETAPS 2023, 22-27 Apr 2023, 
Paris, France. Lecture Notes in Computer Science, 13991 . Springer Cham , pp. 249-259. 
ISBN 9783031308253 

https://doi.org/10.1007/978-3-031-30826-0_14

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence 
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the 
authors for the original work. More information and the full terms of the licence here: 
https://creativecommons.org/licenses/ 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Towards Log Slicing

Joshua Heneage Dawes1(�) , Donghwan Shin1,2(�) ,
and Domenico Bianculli1(�)

1 University of Luxembourg, Luxembourg, Luxembourg
{joshua.dawes,domenico.bianculli}@uni.lu

2 University of Sheffield, Sheffield, UK
d.shin@sheffield.ac.uk

Abstract. This short paper takes initial steps towards developing a
novel approach, called log slicing, that aims to answer a practical question
in the field of log analysis: Can we automatically identify log messages
related to a specific message (e.g., an error message)? The basic idea
behind log slicing is that we can consider how different log messages are
“computationally related” to each other by looking at the correspond-
ing logging statements in the source code. These logging statements are
identified by 1) computing a backwards program slice, using as criterion
the logging statement that generated a problematic log message; and 2)
extending that slice to include relevant logging statements.

The paper presents a problem definition of log slicing, describes an initial
approach for log slicing, and discusses a key open issue that can lead
towards new research directions.

Keywords: Log · Program Analysis · Static Slicing.

1 Introduction

When debugging failures in software systems of various scales, the logs generated
by executions of those systems are invaluable [5]. For example, given an error
message recorded in a log, an engineer can diagnose the system by reviewing
log messages recorded before the error occurred. However, the sheer volume of
the logs (e.g., 50GB/h [9]) makes it infeasible to review all of the log messages.
Considering that not all log messages are necessarily related to each other, in
this paper we lay the foundations for answering the following question: can we
automatically identify log messages related to a specific message (e.g., an error
message)?

A similar question for programs is already addressed by program slicing [2,14].
Using this approach, given a program composed of multiple program statements
and variables, we can identify a set of program statements (i.e., a program slice)
that affect the computation of specific program variables (at specific positions
in the source code).

Inspired by program slicing, in this paper we take initial steps towards de-
veloping a novel approach, called log slicing. We also highlight a key issue to

c© The Author(s) 2023
L. Lambers and S. Uchitel (Eds.): FASE 2023, LNCS 13991, pp. 249–259, 2023.
https://doi.org/10.1007/978-3-031-30826-0 14

https://orcid.org/0000-0002-2289-1620
https://orcid.org/0000-0002-0840-6449
https://orcid.org/0000-0002-4854-685X
mailto:d.shin@sheffield.ac.uk
https://doi.org/10.1007/978-3-031-30826-0_14
http://crossmark.crossref.org/dialog/?doi=https://doi.org/10.1007/978-3-031-30826-0_14&domain=pdf


J. H. Dawes et al.

(1) logger.info("check memory status: %s" % mem.status)

(2) db = DB.init(mode="default")

(3) logger.info("DB connected with mode: %s" % db.mode)

(4) item = getItem(db)

(5) logger.info("current item: %s" % item)

(6) if check(item) is "error":

(7) logger.error("error in item: %s" % item)

Fig. 1. An example program Pex

(1) check memory status: okay

(2) DB connected with mode: default

(3) current item: pencil

(4) error in item: pencil

Fig. 2. An example execution log Lex of Pex

be addressed by further research. Once this issue has been addressed, we expect
log slicing to be able to identify the log messages related to a given problematic
log message by using static analysis of the code that generated the log. Further,
since we will be using static analysis of source code, we highlight that our ap-
proach is likely to be restricted to identifying problems that can be localised at
the source code level.

The rest of the paper is structured as follows: Section 2 illustrates a motivat-
ing example. Section 3 sketches an initial approach for log slicing, while Section 4
shows its application to the example, and discusses limitations and open issues.
Section 5 discusses related work. Section 6 concludes the paper.

2 Motivating Example

Let us consider a simplified example program Pex (Figure 1) connecting to a
database and getting an item from it. For simplicity, we denote Pex as a sequence
of program statements 〈s1, s2, . . . , s7〉 where sk is the k-th statement. We can see
that Pex contains logging statements (i.e., s1, s3, s5, and s7) that will generate log
messages when executed3. Figure 2 shows a simplified execution log Lex of Pex .
Similar to Pex , we denote Lex as a sequence of log messages 〈m1,m2,m3,m4〉
where mk is the k-th log message. Note that we do not consider additional
information that is often found in logs, such as timestamp and log level (e.g.,
info and debug)4, so these are omitted.

3 If a program statement generates a log message when executed, it is considered a
logging statement; otherwise, it is a non-logging statement.

4 We ignore log levels since the user may choose a log message of any level to start
log slicing.

250



Towards Log Slicing

The last log message “error in item: pencil” in Lex indicates an error.
Calling this log message merr , let us suppose that a developer is tasked with
addressing the error by reviewing the log messages leading up to merr . Though
we have only four messages in Lex , it is infeasible in practice to review a huge
amount of log messages generated by complex software systems. Furthermore,
it is not necessary to review all log messages generated before merr since only a
subset of them is related to merr ; for example, if we look at Lex and Pex together,
we can see that the first log message “check memory status: okay” does not
contain information that is relevant to the error message, merr . In particular,
we can see this by realising that the variable mem logged in the first log message
does not affect the computation of the variable item logged in the error message.

Ultimately, if we can automatically filter out such unrelated messages, with
the goal of providing a log to the developer that only contains useful log messages,
then the developer will better investigate and address issues in less time. We thus
arrive at the central problem of this short paper: How does one determine which
log messages are related to a certain message of interest?

An initial, naive solution would be to use keywords to identify related mes-
sages. In our example log Lex , one could use the keyword “pencil” appearing
in the error message to identify the messages related to the error, resulting in
only the third log message. However, if we look at the source code in Pex , we
can notice that the second log message “DB connected with mode: default”
could be relevant to the error because this message was constructed using the
db variable, which is used to compute the value of variable item. This example
highlights that keyword-based search cannot identify all relevant log messages,
meaning that a more sophisticated approach to identifying relevant log messages
is needed.

3 Log Slicing

A key assumption in this work is that it is possible to associate each log message
with a unique logging statement in source code. We highlight that, while we do
not describe a solution here, this is a reasonable assumption because there is
already work on identifying the mapping between logging statements and log
messages [4,11]. Therefore, we simply assume that the mapping is known.

Under this assumption, we observe that the relationship among messages in
the log can be identified based on the relationship among their corresponding
logging statements in the source code. Hence, we consider two distinct layers: the
program layer, where program statements and variables exist, and the log layer,
where log messages generated by the logging statements of the program exist.

To present our log slicing approach, as done in Section 2, let us denote a
program P as a sequence of program statements and a log L as a sequence of log
messages. Also, we say a program (slice) P ′ is a subsequence of P , denoted by
P ′

⊏ P , if all statements of P ′ are in P in the same order. Further, we extend
containment to sequences and write s ∈ P when, with P = 〈s1, . . . , su〉, there is
some k such that sk = s. The situation is similar for a log message m contained

251



J. H. Dawes et al.

in a log L, where we write m ∈ L. Now, for a program P = 〈s1, . . . , su〉 and its
execution log L = 〈m1, . . . ,mv〉, let us consider a log message of interest mj ∈
L that indicates a problem. An example could be the log message “error in

item: pencil” from the example log Lex in Figure 2. Based on the assumption
made at the beginning of this section, that we can identify the logging statement
si ∈ P (in the program layer) that generated mj ∈ L (in the log layer), our log
slicing approach is composed of three abstract steps as follows:

Step 1: Compute a program slice Sr ⊏ P using the combination of the statement
si and the program variables in si as a slicing criterion. Notice that, apart
from the logging statement si that is a part of the slicing criterion, Sr is
composed solely of non-logging statements because logging statements
do not affect the computation of any program variable5.

Step 2: Identify another program slice Sl ⊏ P composed of logging statements
that are “relevant” to Sr. Here, a logging statement sl ∈ Sl is relevant
to a non-logging statement sr ∈ Sr if the message that sl writes to the
log contains information that is relevant to the computation being per-
formed by sr. Formally, we write 〈sl, sr〉 ∈ relevanceP , that is, relevanceP
is a binary relation over statements in the program P .

Step 3: Remove any log message m ∈ L that was not generated by some sl ∈ Sl.

The result of this procedure would be a log slice that contains log messages that
are relevant to mj .

We highlight that defining the relation relevanceP for a program P (intu-
itively, deciding whether the information written to a log by a logging statement
is relevant to the computation being performed by some non-logging statement)
is a central problem in this work, and will be discussed in more depth in the
next section.

4 An Illustration of Log Slicing

We now illustrate the application of our log slicing procedure to our example
program and log (Figures 1 and 2). Since, as we highlighted in Section 3, the
definition of the relevanceP relation is a central problem of this work, we will
begin by fixing a provisional definition. A demonstration of our log slicing ap-
proach being applied using this definition of relevanceP will then show why this
definition is only provisional.

4.1 A Provisional Definition of Relevance

Our provisional definition makes use of some attributes of statements that can be
computed via simple static analyses. In particular, for a statement s, we denote
by vars(s) the set of variables that appear in s (where a variable x appears in
a statement s if it is found in the abstract syntax tree of s). If s is a logging

5 Assuming a logging statement does not call an impure function.

252



Towards Log Slicing

(2) db = DB.init(mode="default")

(4) item = getItem(db)

(6) if check(item) is "error":

(7) logger.error("error in item: %s" % item)

Fig. 3. Program slice Sr of the program Pex when s7 and its variable item are used as
the slicing criterion

statement that writes a message m to the log, then, assuming that the only
way in which a logging statement can use a variable is to add information to
the message that it writes to the log, the set vars(s) corresponds to the set of
variables used to construct the message m. If s is a non-logging statement, then
vars(s) represents the set of variables used by s.

Now, let us consider a logging statement sl, that writes a message ml to the
log, and a non-logging statement sr. We define relevanceP

6 over the statements
in a program P by 〈sl, sr〉 ∈ relevanceP if and only if vars(sl) ∩ vars(sr) 6= ∅. In
other words, a logging statement is relevant to a non-logging statement whenever
the two statements share at least one variable.

4.2 Applying Log Slicing

Taking the program Pex from Figure 1 and the log Lex from Figure 2, we now
apply the steps described in Section 3, while considering the log message m4 ∈
Lex (i.e., “error in item: pencil”) to be the message of interest mi.

Step 1. Under our assumption that log messages can be mapped to their gen-
erating logging statements, we can immediately map m4 to s7 ∈ Pex . Once we
have identified the logging statement s7 that generated m4, we slice Pex back-
wards, using s7 and its variable item as the slicing criterion. This would yield
the program slice Sr = 〈s2, s4, s6, s7〉 as shown in Figure 3.

Step 2. The program slice Sr = 〈s2, s4, s6, s7〉 yielded by Step 1 contains only
non-logging statements (apart from the logging statement s7 used as the slicing
criterion). Hence, we must now determine which logging statements (found in
Pex ) write messages that are relevant to the statements in Sr. More formally,
we must find a sequence of logging statements Sl ⊏ Pex such that 〈sl, sr〉 ∈
relevanceP for any logging statement sl ∈ Sl and a non-logging statement sr ∈
Sr \ {s7}. For this, we use the provisional definition of relevance that we intro-
duced in Section 4.1, that is, we identify the logging statements that share vari-
ables with the statements in our program slice Sr. For example, let us consider
the non-logging statement sr = s2 ∈ Sr (i.e., “db = DB.init(mode="default")”).
Our definition tells us that the logging statement sl = s3 (i.e., “logger.info("DB

6 We remark that this simple provisional definition of relevance misses relating state-
ments that only share syntactically different aliased variables

253



J. H. Dawes et al.

(3) logger.info("DB connected with mode: %s" % db.mode)

(5) logger.info("current item: %s" % item)

(7) logger.error("error in item: %s" % item)

Fig. 4. Logging statements Sl relevant to Sr

(2) DB connected with mode: default

(3) current item: pencil

(4) error in item: pencil

Fig. 5. Log slicing result from Lex when m4 is the message of interest

connected with mode: %s" % db.mode)”) should be included in Sl, since
vars(s3)∩vars(s2) = {db}. Similarly, the logging statement s5 should be included
in Sl since vars(s3)∩ vars(s2) = {item}, and the logging statement s7 should be
included in Sl since vars(s7)∩vars(s6) = {item}. Note that the logging statement
s2 (i.e., “logger.info("check memory status: %s" % mem.status)”) would
be omitted by our definition because no statements in Sr use the variable mem.
As a result, with respect to our definition of relevance, Sl = 〈s3, s5, s7〉 as shown
in Figure 4.

Step 3. Using Sl = 〈s3, s5, s7〉, we now remove log messages from Lex that were
generated by logging statements not included in Sl. The result is the sliced log
in Figure 5.

4.3 Limitations and Open Issues

We now discuss the limitations of the definition of relevance presented so far,
along with a possible alternative approach. We also highlight a key open issue.

Limitations. Using a combination of program slicing and our provisional defini-
tion of relevance seems, at least initially, to be an improvement on the keyword-
based approach described in Section 2. However, the major limitation of this
definition, that looks at program variables shared by logging and non-logging
statements, is that a logging statement must use variables in the first place.
Hence, this definition can no longer be used if we are dealing with log messages
that are statically defined (i.e., do not use variables to construct part of the
message written to the log). In this case, we must look to the semantic content
of the log messages.

An Alternative. Our initial suggestion in this case is to introduce a heuristic
based on the intuition that particular phrases in log messages will often accom-
pany particular computation being performed in program source code. Such a
heuristic would operate as follows:

254



Towards Log Slicing

1. For each non-logging statement s, inspect each variable v appearing in s.
2. For each such variable v, further inspect the tokens found in the string

literals of logging statements that are reachable from s. The word tokens
here is deliberately left vague; it could mean individual words found in string
literals, or vectors of words.

3. For each variable/token pair that we find, we compute a score that takes
into account 1) the frequency of that pair in the program source code; and
2) how close they are (in terms of the distance between the source code lines
in which the variable/token appear), on average.

4. We say that, for a logging statement sl and a non-logging statement sr,
〈sl, sr〉 ∈ relevanceP if and only if sl contains tokens that score highly with
respect to the variables found in sr. Hence, we use the token-based heuristic
to define the relation relevanceP with respect to a single program P .

We highlight that this token-based approach is to be used in combination with
the backwards program slicing described in Section 3.

Further Limitations. While this heuristic takes a step towards inspecting the
semantic content of log messages, rather than relying on shared variables, initial
implementation efforts have demonstrated the following limitations:

– It is difficult to choose an appropriate definition of a token. For example,
should we use individual words found in string literals used by logging state-
ments, or should we use sequences of words?

– Depending on the code base, there can be varying numbers of coincidental
associations between tokens and variables. For example, a developer may
always use the phrase “end transaction” near a use of the variable commit,
but also near a use of the variable query. The developer may understand
“end transaction” as being a phrase related to the variable commit and
not to the variable query, despite the accidental co-occurrence of the two
variables.

– Suppose that a phrase like “end transaction” appears only once, and is
close to the variable commit. The developer may intend for the two to be
related. However, if we use a heuristic that combines the frequency of a
pair with the distance between the variable and token in the pair, a single
occurrence will not score highly. Hence, there are some instances of relevance
that this heuristic cannot identify.

More Issues. In Section 3, we assumed that the mapping between log messages
and the corresponding logging statements that generated the log messages is
known. However, determining the log message that a given logging statement
might generate can be challenging, especially when the logging statement has a
non-trivial structure. For example, while some logging statements might consist
of a simple concatenation of a string and a variable value, others might involve
nested calls of functions from a logging framework. This calls for more studies
on finding the correspondence between logging statements and log messages.

255



J. H. Dawes et al.

Another key problem is the inconsistency of program slicing tools across
programming languages (especially weakly-typed ones such as Python). If the
underlying program slicing machinery made too many overapproximations, this
would affect the applicability of our proposed approach. Furthermore, the ca-
pability of the tools for handling complex cases, such as nested function calls
across different components, can hinder the success of log slicing.

5 Related Work

Log Analysis. The relationship between log messages has also been studied in
various log analysis approaches (e.g., performance monitoring, anomaly detec-
tion, and failure diagnosis), especially for building a “reference model” [12] that
represents the normal behavior (in terms of logged event flows) of the system
under analysis. However, these approaches focus on the problem of identifying
whether log messages co-occur (that is, one is always seen in the neighbourhood
of the other) without accessing the source code [6,10,13,17,18]. On the other
hand, we consider the computational relationship between log messages to filter
out the log messages that do not affect the computation of the variable values
recorded in a given log message of interest.

Log partitioning. Log partitioning, similarly to log slicing, involves separating a
log into multiple parts, based on some criteria. In the context of process mining
[1], log partitioning is used to allow parallelisation of model construction. In the
context of checking an event log for satisfaction of formal specifications [3], slices
of event logs are sent to separate instances of a checking procedure, allowing
more efficient checking for whether some event log satisfies a formal specification
written in a temporal logic. Hence, again, log partitioning, or slicing, is used to
parallelise a task. Finally, we highlight that our log slicing approach could be used
to generate multiple log slices to be investigated in parallel by some procedure.

Program Analysis including Logging Statements. Traditionally, program analy-
sis [14,2] ignores logging statements since they usually do not affect the com-
putation of program variables. Nevertheless, program analysis including logging
statements has been studied as part of log enhancement to measure which pro-
gram variables should be added to the existing logging statements [7,15] and
where new logging statements should be added [16] to facilitate distinguishing
program execution paths. Log slicing differs in that it actively tries to reduce
the contents of a log. Finally, Messaoudi et al. [8] have proposed a log-based test
case slicing technique, which aims to decompose complex test cases into simpler
ones using, in addition to program analysis, data available in logs.

6 Conclusion

In this short paper, we have taken the first steps in developing log slicing, an
approach to helping software engineers in their log-based debugging activities.

256



Towards Log Slicing

Log slicing starts from a log message that has been selected as indicative of a
failure, and uses static analysis of source code (whose execution generated the
log in question) to throw away log entries that are not relevant to the failure.

In giving an initial definition of the log slicing problem, we highlighted the
central problem of this work: defining a good relevance relation. The provisional
definition of relevance that we gave in Section 4.1 proved to be limited in that it
required logging statements to use variables when constructing their log message.
To remedy the situation, we introduced a frequency and proximity-based heuris-
tic in Section 4.3. While this approach could improve on the initial definition of
relevance, it possessed various limitations that we summarised.

Ultimately, as part of future work, we intend to investigate better definitions
of relevance between logging statements and non-logging statements. If we were
to carry on with the same idea for the heuristic (using frequency and proximity),
future work would involve 1) finding a suitable way to define tokens ; 2) reducing
identification of coincidental associations between tokens and variables (i.e., re-
ducing false positives); and 3) attempting to identify associations between tokens
and variables with a lower frequency.

Acknowledgments. The research described has been carried out as part of
the COSMOS Project, which has received funding from the European Union’s
Horizon 2020 Research and Innovation Programme under grant agreement No.
957254.

References

1. van der Aalst, W.M.P.: Distributed process discovery and conformance checking.
In: de Lara, J., Zisman, A. (eds.) Fundamental Approaches to Software Engineer-
ing. pp. 1–25. Springer Berlin Heidelberg, Berlin, Heidelberg (2012)

2. Agrawal, H., Horgan, J.R.: Dynamic program slicing. SIGPLAN Not. 25(6),
246–256 (jun 1990). https://doi.org/10.1145/93548.93576, https://doi.org/
10.1145/93548.93576

3. Basin, D., Caronni, G., Ereth, S., Harvan, M., Klaedtke, F., Mantel, H.: Scalable
offline monitoring. In: Bonakdarpour, B., Smolka, S.A. (eds.) Runtime Verification.
pp. 31–47. Springer International Publishing, Cham (2014)

4. Bushong, V., Sanders, R., Curtis, J., Du, M., Cerny, T., Frajtak, K., Bures, M.,
Tisnovsky, P., Shin, D.: On matching log analysis to source code: A systematic
mapping study. In: Proceedings of the International Conference on Research in
Adaptive and Convergent Systems. p. 181–187. RACS ’20, Association for Comput-
ing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3400286.
3418262, https://doi.org/10.1145/3400286.3418262

5. He, S., He, P., Chen, Z., Yang, T., Su, Y., Lyu, M.R.: A survey on automated log
analysis for reliability engineering. ACM Comput. Surv. 54(6) (Jul 2021). https:
//doi.org/10.1145/3460345

6. Jia, T., Yang, L., Chen, P., Li, Y., Meng, F., Xu, J.: Logsed: Anomaly diagnosis
through mining time-weighted control flow graph in logs. In: 2017 IEEE 10th In-
ternational Conference on Cloud Computing (CLOUD). pp. 447–455. IEEE, IEEE,
Honolulu, CA, USA (2017). https://doi.org/10.1109/CLOUD.2017.64

257

https://doi.org/10.1145/93548.93576
https://doi.org/10.1145/93548.93576
https://doi.org/10.1145/93548.93576
https://doi.org/10.1145/93548.93576
https://doi.org/10.1145/3400286.3418262
https://doi.org/10.1145/3400286.3418262
https://doi.org/10.1145/3400286.3418262
https://doi.org/10.1145/3400286.3418262
https://doi.org/10.1145/3400286.3418262
https://doi.org/10.1145/3460345
https://doi.org/10.1145/3460345
https://doi.org/10.1145/3460345
https://doi.org/10.1145/3460345
https://doi.org/10.1109/CLOUD.2017.64
https://doi.org/10.1109/CLOUD.2017.64


J. H. Dawes et al.

7. Liu, Z., Xia, X., Lo, D., Xing, Z., Hassan, A.E., Li, S.: Which variables should I
log? IEEE Transactions on Software Engineering 47(9), 2012–2031 (2021). https:
//doi.org/10.1109/TSE.2019.2941943

8. Messaoudi, S., Shin, D., Panichella, A., Bianculli, D., Briand, L.C.: Log-based
slicing for system-level test cases. In: Proceedings of the 30th ACM SIGSOFT In-
ternational Symposium on Software Testing and Analysis. p. 517–528. ISSTA 2021,
Association for Computing Machinery, New York, NY, USA (2021). https://doi.
org/10.1145/3460319.3464824, https://doi.org/10.1145/3460319.3464824

9. Mi, H., Wang, H., Zhou, Y., Lyu, M.R.T., Cai, H.: Toward fine-grained, unsu-
pervised, scalable performance diagnosis for production cloud computing systems.
IEEE Transactions on Parallel and Distributed Systems 24(6), 1245–1255 (2013).
https://doi.org/10.1109/TPDS.2013.21

10. Nandi, A., Mandal, A., Atreja, S., Dasgupta, G.B., Bhattacharya, S.: Anomaly
detection using program control flow graph mining from execution logs. In: 2016
26nd ACM International Conference on Knowledge Discovery and Data Mining
(SIGKDD). pp. 215–224. KDD ’16, Association for Computing Machinery, New
York, NY, USA (2016). https://doi.org/10.1145/2939672.2939712

11. Schipper, D., Aniche, M., van Deursen, A.: Tracing back log data to its log
statement: From research to practice. In: 2019 IEEE/ACM 16th International
Conference on Mining Software Repositories (MSR). pp. 545–549 (2019). https:
//doi.org/10.1109/MSR.2019.00081

12. Shin, D., Bianculli, D., Briand, L.: PRINS: scalable model inference for
component-based system logs. Empirical Software Engineering 27(4), 87
(2022). https://doi.org/10.1007/s10664-021-10111-4, https://doi.org/10.

1007/s10664-021-10111-4
13. Tak, B.C., Tao, S., Yang, L., Zhu, C., Ruan, Y.: Logan: Problem diagnosis in the

cloud using log-based reference models. In: 2016 IEEE International Conference
on Cloud Engineering (IC2E). pp. 62–67 (2016). https://doi.org/10.1109/IC2E.
2016.12

14. Weiser, M.: Program slicing. IEEE Trans. Softw. Eng. 10(4), 352–357 (Jul 1984).
https://doi.org/10.1109/TSE.1984.5010248, https://doi.org/10.1109/TSE.

1984.5010248
15. Yuan, D., Zheng, J., Park, S., Zhou, Y., Savage, S.: Improving software diag-

nosability via log enhancement. ACM Trans. Comput. Syst. 30(1) (Feb 2012).
https://doi.org/10.1145/2110356.2110360

16. Zhao, X., Rodrigues, K., Luo, Y., Stumm, M., Yuan, D., Zhou, Y.: Log20: Fully
automated optimal placement of log printing statements under specified overhead
threshold. In: 2017 26th Symposium on Operating Systems Principles (SOSP). p.
565–581. SOSP ’17, Association for Computing Machinery, New York, NY, USA
(2017). https://doi.org/10.1145/3132747.3132778

17. Zhao, X., Rodrigues, K., Luo, Y., Yuan, D., Stumm, M.: Non-Intrusive
performance profiling for entire software stacks based on the flow recon-
struction principle. In: 12th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 16). pp. 603–618. USENIX Associa-
tion, Savannah, GA (Nov 2016), https://www.usenix.org/conference/osdi16/
technical-sessions/presentation/zhao

18. Zhou, P., Wang, Y., Li, Z., Tyson, G., Guan, H., Xie, G.: Logchain: Cloud
workflow reconstruction & troubleshooting with unstructured logs. Computer
Networks 175, 107279 (2020). https://doi.org/https://doi.org/10.1016/j.

comnet.2020.107279, https://www.sciencedirect.com/science/article/pii/

S1389128619316731

258

https://doi.org/10.1109/TSE.2019.2941943
https://doi.org/10.1109/TSE.2019.2941943
https://doi.org/10.1109/TSE.2019.2941943
https://doi.org/10.1109/TSE.2019.2941943
https://doi.org/10.1145/3460319.3464824
https://doi.org/10.1145/3460319.3464824
https://doi.org/10.1145/3460319.3464824
https://doi.org/10.1145/3460319.3464824
https://doi.org/10.1145/3460319.3464824
https://doi.org/10.1109/TPDS.2013.21
https://doi.org/10.1109/TPDS.2013.21
https://doi.org/10.1145/2939672.2939712
https://doi.org/10.1145/2939672.2939712
https://doi.org/10.1109/MSR.2019.00081
https://doi.org/10.1109/MSR.2019.00081
https://doi.org/10.1109/MSR.2019.00081
https://doi.org/10.1109/MSR.2019.00081
https://doi.org/10.1007/s10664-021-10111-4
https://doi.org/10.1007/s10664-021-10111-4
https://doi.org/10.1007/s10664-021-10111-4
https://doi.org/10.1007/s10664-021-10111-4
https://doi.org/10.1109/IC2E.2016.12
https://doi.org/10.1109/IC2E.2016.12
https://doi.org/10.1109/IC2E.2016.12
https://doi.org/10.1109/IC2E.2016.12
https://doi.org/10.1109/TSE.1984.5010248
https://doi.org/10.1109/TSE.1984.5010248
https://doi.org/10.1109/TSE.1984.5010248
https://doi.org/10.1109/TSE.1984.5010248
https://doi.org/10.1145/2110356.2110360
https://doi.org/10.1145/2110356.2110360
https://doi.org/10.1145/3132747.3132778
https://doi.org/10.1145/3132747.3132778
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/zhao
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/zhao
https://doi.org/https://doi.org/10.1016/j.comnet.2020.107279
https://doi.org/https://doi.org/10.1016/j.comnet.2020.107279
https://doi.org/https://doi.org/10.1016/j.comnet.2020.107279
https://doi.org/https://doi.org/10.1016/j.comnet.2020.107279
https://www.sciencedirect.com/science/article/pii/S1389128619316731
https://www.sciencedirect.com/science/article/pii/S1389128619316731


Towards Log Slicing

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the

chapter’s Creative Commons license, unless indicated otherwise in a credit line to the

material. If material is not included in the chapter’s Creative Commons license and

your intended use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright holder.

259

http://creativecommons.org/licenses/by/4.0/

	Towards Log Slicing
	1 Introduction
	2 Motivating Example
	3 Log Slicing
	4 An Illustration of Log Slicing
	4.1 A Provisional Definition of Relevance
	4.2 Applying Log Slicing
	4.3 Limitations and Open Issues

	5 Related Work
	6 Conclusion
	Acknowledgments.
	References


