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Abstract

In order to investigate the limits of solid solubility between Ce-brannerite  (CeTi2O6) and Ce-aeschynite  (CeTiNbO6), materi-
als in the system  CeTi2–xNbxO6 have been produced by a solid state route and characterised by XRD and XANES at the Ce 
 L3-, Ti K- and Nb K-edges, including Rietveld method refinements and linear combination fitting. Significant solid solubility 
was observed at the brannerite end, with near-single-phase brannerite observed for x = 0.2, 0.4, and only minor aeschynite 
observed where x = 0.6 which was identified as exceeding the limit of solubility of Nb. All Nb was present as  Nb5+, with the 
substitution of  Nb5+ into the brannerite structure permitted by the reduction of the same fraction of  Ce4+ to  Ce3+. This work 
expands the crystal chemistry of the titanate brannerites, with Ce-site oxidation states of less than 4+ being possible where 
sufficient charge-balancing species are available on the Ti-site.

Introduction

Research examining materials for long-term immobilisation 
of radionuclides from highly active nuclear wastes is on-
going, particularly with respect to matrices for immobilisa-
tion of the actinide species including both Pu and the minor 
actinides, e.g. those that will contribute significantly to the 
long-term radiotoxicity of spent fuel. A significant body of 
work exists examining candidate host materials for  Pu3+/4+ 
with current favored ceramic materials including zirconolite 
[1–3], pyrochlore [4–6], and brannerite [7–9] ceramics, as 
either single-phase ceramics or part of a multiphase waste-
form. Materials for immobilisation of the minor actinides 
(chiefly  Am3+,  Cm3+, and  Np4+/5+) have received relatively 
less attention, though are likely compatible with many of 
the same materials, particularly pyrochlores [5, 10, 11] and 
zirconolites [11, 12]. Due to the highly radioactive nature of 
Pu and the minor actinides, chemical surrogates (e.g.  Ce3+/4+ 
for  Pu3+/4+,  REE3+ for trivalent actinides) for these elements 

are utilised in preliminary works, with Ce most commonly 
used as a surrogate for Pu on account of their similar chem-
istry and available oxidation states in oxide systems.

A range of synthetic Ce-, U- and Th-brannerites  (ATi2O6) 
have been previously examined, including  A4+, mixed  A3+/5+ 
and  A5+ with Ti-site charge balancing. However, little work 
has examined the possibility of  A3+ only brannerites, with 
charge neutrality ensured by higher valence substitutions on 
the Ti-site. If the brannerite structure is flexible with respect 
to an average A-site oxidation state of less than 4+ , it would 
be of particular interest for the immobilisation of mixed 
valence Pu and/or mixed minor actinide waste streams. Pre-
vious work examining the limits of ion size in Th-brannerite 
reported solubility of 0.25 f.u. (formula units)  Nb5+ and  Al3+ 
when substituting for 0.5 f.u. of  Ti4+, corresponding to a 
slight decrease in average Ti-site ionic radius, and solubility 
of approximately 0.2 f.u. of  Sn+4 for  Ti4+, a slight increase 
of the average Ti-site ionic radius [13].

Aeschynite structures (ATi(Nb,Ta)O6, where A = triva-
lent rare earth elements,  REE3+) form for the larger REE, 
with the euxenite structure (also  REE3+Ti(Nb,Ta)O6) being 
favored for the smaller REE [14], with the transition between 
the two structures occurring between Dy and Ho. Given the 
similarities in ionic radius and dominance of the trivalent 
state in both the lanthanides and minor actinides, it is likely 
significant actinide solubility will occur in appropriate 
ATi(Nb,Ta)O6 materials, making them candidate materials 
for immobilisation of high actinide content wastes [15].
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The complexity of Ce redox chemistry in these and simi-
lar systems is well established. Even when starting from a 
 Ce4+ precursor (e.g.  CeO2), a significant fraction of  Ce3+ 
can form at the synthesis temperature, with some frac-
tion able to be quenched into the brannerite structure [16], 
even at relatively slow cooling rates of 5 or 10 °C  min−1 
[17, 18], with charge neutrality ensured by O vacancies. 
As brannerites containing  U5+ can be stabilised by inclu-
sion of lower valence charge compensating dopants (e.g. 
the  U0.5REE0.5Ti2O6 and  UTi2–xAlxO6 systems [9, 19, 20]), 
the aim of the current study was to determine whether Ce-
brannerites with mean Ce oxidation states significantly 
below 4+ could be stabilised by doping with a higher valent 
cation. Moreover, this study examined the possibility of 
Ce-aeschynites with mean Ce oxidation states significantly 
above 3+ , stabilised by an excess of  Ti4+ on the Ti/Nb site.

Materials and methods

Materials were produced following a cold-press and sinter 
solid state route. Stoichiometric amounts of oxides  (CeO2, 
 Nb2O5 and  TiO2) were weighed according to the target com-
positions  (CeTi2–xNbxO6, x = 0–1, Δx = 0.2) and homoge-
nised by planetary milling (Fritsch Pulverisette 7), utilising 
 ZrO2 mill pots and media, and isopropanol as a carrier fluid, 
for 10 min at 500 rpm. Approximately 0.5 g of the dried 

milled material of each composition was then pressed into 
10 mm diameter pellets under 2 tonnes of weight. Pellets 
were heat treated in air at 1350 °C for two heat treatments 
of 24 h (heating and cooling at 5 °C  min−1), with the pellets 
being broken up, reground and again pressed into pellets 
after the first heat treatment.

Powder XRD patterns were collected with a Bruker D2 
Phaser diffractometer, utilising Ni-filtered Cu  Kα radia-
tion. Rietveld method refinements were utilised to exam-
ine crystal chemical changes induced on inclusion of Nb 
into the brannerite structure. Ce  L3-edge, Ti K-edge and Nb 
K-edge spectra were collected at NSLS-II beamline 6-BM 
(Brookhaven National Laboratory, USA). Transmission 
mode measurements were performed at room temperature 
on pellets comprising sufficient material to form one absorp-
tion length and polyethylene glycol (PEG), as an inert, low-
absorbing binder. Data were normalised and analysed in 
Athena, part of the Demeter software suite [21], and XAS 
Viewer, part of the Larch software suite [22].

Results

X-ray diffraction

Based on analysis of their diffraction patterns (see Fig. 1), in 
materials targeting 0 ≤ x ≤ 0.4, i.e.  CeTi2O6,  CeTi1.8Nb0.2O6 

Fig. 1  XRD patterns of materials batched following the solid solu-
tion  CeTi2-xNbxO6. The positions of the reflections of  CeTi2O6 (1) 
are marked above, those of  CeTiNbO6 (2) below. The positions of the 

diagnostic reflection of  CeO2 are marked with black squares, those of 
 CeNbO4 with arrows
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and  CeTi1.6Nb0.4O6, near-single-phase brannerite was 
formed, with a small fraction of  CeO2 also observed (0.6(1), 
0.3(1) and 0.4(1) wt%  CeO2, respectively). An increase in 
the brannerite unit cell parameters was apparent, with shifts 
to lower 2θ observed for many reflections. This observation 
gave an initial indication of the solubility of Nb in Ce-bran-
nerite. When the targeted Nb content was increased to x = 0.6 
 (CeTi1.4Nb0.6O6), brannerite remained the majority phase, 
alongside small fractions of aeschynite and  CeO2 (7.2(2) 
and 1.8(2) wt%, respectively). Further attempted substitu-
tion of Nb led to increased fractions of aeschynite, with the 
material targeting x = 0.8 comprising 65.6(6) wt% aeschynite 
and 34.4(6) wt% brannerite only, suggesting that this com-
position exceeds the limit of solubility of Nb in Ce-bran-
nerite. The material targeting the end-member aeschynite 
 CeTiNbO6 contained aeschynite as the major phase, with 
 CeNbO4 observed as a minor phase (1.5(2) wt%).

On consideration of the phases produced, it was apparent 
that Nb had significant solubility in Ce-brannerite, with the 
limit of solubility likely around 0.6 f.u., given the observa-
tion of a small fraction of aeschynite in the material target-
ing  CeTi1.4Nb0.6O6. This is in good agreement with the as-
refined unit cell parameters (see S.I. Table 1 and S.I. Fig. 2), 
where linear increases in the unit cell volume and b and c 
parameters and a linear decrease in the cell angle β (relating 
to an increase in overall unit cell volume) were observed 
as the targeted Nb loading was increased from 0 f.u. to 0.6 

f.u., corresponding to increases in average Ce-site and Ti-
site ionic radii (6 coordinate ionic radii:  Ce4+, 0.87 Å;  Ce3+, 
1.01 Å;  Ti+4, 0.605 Å;  Nb+5, 0.64 Å [23]). The a parameter 
also increased on increasing substitution of Nb, but the over-
all change was of a much smaller magnitude. The trends 
observed in the unit cell parameters also suggest the limit 
of solubility is just below 0.6 f.u. Nb, with the b, c and β 
parameters and overall unit cell volume of the brannerite 
phase remaining approximately the same between 0.6 and 
0.8 f.u. targeted Nb loading. The as-refined phase fractions 
in each material are detailed in S.I. Table 1 and S.I. Fig. 1.

Elemental speciation

Nb K‑edge XANES

Though  Nb5+ predominates in oxide systems when heated in 
air, it was thought that some reduction of  Nb5+ by the re-oxi-
dation of  Ce3+ to  Ce4+ on cooling may have been possible. 
Nb K-edge XANES was utilised to examine the Nb oxida-
tion states in the produced materials. Examination of the 
collected spectra and comparison to reference compounds of 
known Nb oxidation state (Nb metal,  Nb2+O,  Nb4+O2, and 
 Nb5+

2O5) suggested that  Nb5+ was the dominant oxidation 
state in the materials produced here, given the position of 
the absorption edges and presence of the pre-edge shoulder 
indicative of  Nb5+ (see Fig. 2).

Fig. 2  Left: Nb K-edge XANES spectra of materials in the 
 CeTi2-xNbxO6 system, alongside the spectra of  Nb5+

2O5 and  Nb4+O2 
reference compounds. Right: detailed view of the absorption edge, 

with linear regression of edge position against oxidation state inset 
(utilising Nb metal,  Nb2+O,  Nb4+O2, and  Nb5+

2O5 as reference com-
pounds)
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As the position of the Nb K-edge is strongly correlated 
with the Nb oxidation state, a linear regression was per-
formed comparing the position of the absorption edges  (E0, 
defined as the position of the maximum of the first deriva-
tive of the spectra) to those of the reference compounds of 
known Nb oxidation state (see Fig. 2, inset). The mean Nb 
oxidation state of all materials produced here was deter-
mined to be, within error, 5+ .

Ti K‑edge XANES

Given the expansion of the brannerite unit cell on inclusion 
of Nb compared to the undoped Ce-brannerite, it was antici-
pated that some relaxation of the distortion of (Ti,Nb)O6 
octahedra may have occurred. The Ti K absorption edge is 
characterised by the appearance of one or more pre-edge fea-
tures approximately 15 ± 3 eV before the main edge. These 
pre-edge features are often attributed to transitions from the 
Ti 1 s orbitals to either Ti 3d or O 2p orbitals, though are 
better understood in the context of a more complex band 
structure [24, 25]. In both interpretations, the symmetry (or 
lack thereof) around Ti centres is key to the intensity and 
shape of the pre-edge, with non-centrosymmetric coordina-
tion of Ti (e.g. tetrahedral environments) leading to higher 
intensity features than highly centrosymmetric environments 
(e.g. regular octahedra).

The pre-edge features identified in the Ti K-edge spec-
tra of these materials were of relatively low intensity and 
comprised multiple distinct peaks, indicative of octahedral 
coordination of Ti in all materials (see Fig. 3), as expected 
from their crystal structures. The pre-edge features observed 
in compositions where brannerite predominated, with 
0 ≤ x ≤ 0.6, had obvious differences to those of aeschynite-
rich compositions, where x = 0.8, 1.0. The origins of pre-
edge features characteristic of Ti in distorted octahedral 
environments are complex and dependent on the type and 
degree of polyhedral distortions [24], however, qualitative 
interpretations can still be made.

When comparing the pre-edge features for the brannerite-
rich materials (up to  CeTi1.4Nb0.6O6), decreases in intensity 
of the pre-edge features are observed, along with a change in 
shape for the most intense feature at approximately 4970 eV. 
This likely relates to a partial relaxation of the (Ti,Nb)O6 
octahedra, facilitated by the lattice expansion observed on 
increased incorporation of  Nb5+ and reduction to  Ce3+. As 
expected from the phase assemblage, the spectrum of the 
material targeting  CeTi1.2Nb0.8O6 (65.6(6) wt% aeschynite, 
34.4(6) wt% brannerite) displayed features approximately 
intermediate between the brannerite-structured materials and 
the  CeTiNbO6 end-member.

The lower relative pre-edge feature intensities observed 
for the aeschynite-dominant materials is a result of the less 
distorted nature of the (Ti,Nb)O6 features in the  CeTiNbO6 

Fig. 3  Left: Ti K-edge XANES spectra of materials in the system 
 CeTi2-xNbxO6, alongside the spectra of  SrTiO3 and  Nd2Ti2O7 refer-
ence compounds, containing  Ti4+ in octahedral coordination environ-

ments only. Right: detailed view of the pre-edge features observed in 
the spectra of the materials produced here
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structure, relative to those in Ce-brannerite. For example, in 
 CeTiNbO6 the quadratic elongation of the (Ti,Nb)O6 octa-
hedra is 1.0246, the bond angle variance 75.887° [2]; com-
pared to 1.0362 and 115.156° [2] for Ce-brannerite (ICSD 
entries #20600 and #1702279, respectively).

Ce  L3‑edge XANES

The oxidation state of Ce in the phases produced is of impor-
tance when discussing their relevance to immobilisation of 
minor actinides and/or mixed valence Pu. Given the solubil-
ity of  Nb5+ in the brannerite structure, it was anticipated that 
a significant fraction of  Ce3+ would be present.

On initial examination of the Ce  L3-edge spectra (see 
Fig. 4), it was apparent that increasing substitution of  Nb5+ 
into the brannerite structure had led to significant reduc-
tion of  Ce4+, with increased intensity observed in feature 
C (intense in  Ce3+ compounds, weak or very weak in  Ce4+ 
compounds), and decreases in the relative intensities of fea-
tures A and B (strong in  Ce4+ compounds, weak or not pre-
sent in  Ce3+ compounds). Linear combination fitting (LCF) 
utilising a range of reference compounds of known Ce oxi-
dation state  (Ce4+O2,  SrCe4+O3,  Ce3+PO4,  Ce3+

2Ti2O7 and 
 Ce3+

2Si2O7, see S.I. Table 2) was performed to quantify the 
observed changes in overall Ce oxidation state on incorpora-
tion of Nb.

It should be noted that some materials examined 
here did contain a small fraction of  CeO2 (Fig. 1, S.I. 
Table 1), though the relative concentrations of this phase 
were low enough (less than 2 wt% in all compositions) 
as to make the contributions to the spectra insignificant 
when considered in the context of the detection limit of 
Ce  L3-edge XANES. As determined by previous reports 
of the Ce oxidation state in Ce-brannerite, a small frac-
tion of  Ce3+ was present in the material batched targeting 
 CeTi2O6 [16–18, 26], which had an average Ce oxidation 
state of 3.9(1)+ , within the expected range for this mate-
rial (from 3.85+ to 4.0+ depending on thermal history). 
The two other compositions forming near-single-phase 
brannerite,  CeTi1.8Nb0.2O6 and  CeTi1.6Nb0.4O6, con-
tained Ce in lower overall oxidation states of 3.7(1)+ and 
3.5(1)+, respectively, in keeping with their higher Nb 
contents. The materials targeting  CeTi1.4Nb0.6O6 and 
 CeTi1.2Nb0.8O6, containing both brannerite (91.0(3) wt% 
and 34.4(6) wt%, respectively) and aeschynite (7.2(2) wt% 
and 65.6(6) wt%, respectively), had overall Ce oxidation 
states of 3.3(1)+ and 3.1(1)+, respectively. As expected 
from previous literature, the mean Ce oxidation state in 
the aeschynite end-member  CeTiNbO6 was 3.0(1)+  [27].

Fig. 4  Left: Ce  L3-edge XANES spectra of materials in the  CeTi2–xNbxO6 system, alongside  Ce4+O2,  SrCe4+O3 and  Ce3+PO4 reference com-
pounds. Right: detailed view of the edge for the materials produced in this work, with various features marked as discussed in the text
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Discussion

Given the previous report of the limited solubility of  Nb5+ 
on the Ti-site of the brannerite structure when  Al3+ was 
available to ensure charge neutrality, significant solid solu-
bility was not expected at the brannerite-rich end of the 
 CeTi2–xNbxO6 compositional series. However, as observed 
in the phase assemblages here, it appears that, when charge 
balanced by reduction of  Ce4+ to  Ce3+, the solid solubility 
of  Nb5+ is slightly below 0.6 f.u., with the material target-
ing  CeTi1.4Nb0.6O6 comprising brannerite and a small but 
significant fraction of aeschynite (91.0(3) wt% and 7.2(2) 
wt%, respectively).

As described above, the mean Ce oxidation state in 
these materials is dependent on the fraction of  Nb5+ sub-
stituted for  Ti4+. In literature reports, the Ce-brannerite 
end-member usually contains a small fraction of  Ce3+ as 
a result of the materials thermal history [16–18, 27], with 
the material produced in the present study having an aver-
age Ce oxidation state of 3.9(1)+ . On addition of 0.2 f.u. 
of  Nb5+, the produced material, comprising 99.7(1) wt% 
brannerite and 0.3(1) wt%  CeO2, had an overall Ce oxida-
tion state of 3.7(1)+ . This trend continued as the target 
Nb incorporation increased, with the average Ce oxidation 
state decreasing in-line with the nominal Nb content of 
the material.

Past the limit of solubility of  Nb5+ in the brannerite 
structure (i.e. in the samples targeting x = 0.6, 0.8), an 
aeschynite structured product was also present. If the 
assumption is made that all Ce in the aeschynite phases in 
the materials targeting  CeTi1.4Nb0.6O6 and  CeTi1.2Nb0.8O6 
was present as  Ce3+ only, approximate calculations give 
the brannerite phase Ce oxidation state in both materials 
as approximately 3.4+ . This is in good agreement with the 
observations made above from the phase assemblages and 
trends in unit cell parameters observed, where it appeared 
the limit of solid solubility falls at slightly less than 0.6 
f.u. of Nb (corresponding to  Ce3.4+). This assumption does 
require validation with compositional information for both 
the brannerite and aeschynite phases produced, as solid 
solubility of excess Ti would result in an aeschynite Ce 
oxidation state of greater than 3+ .

Conclusions

Though a single phase  Ce3+ brannerite was not formed, the 
materials studied here do expand the known crystal chem-
istry of the brannerite structure significantly. It establishes 
that, analogous to previously reported  U5+(Ti,Al)2O6 
brannerites, average A-site oxidation states of less than 

4+ can be stabilised in the brannerite structure when suit-
able charge-balancing species are available for substitution 
on the Ti-site. It also establishes that expansion of the 
A-site past the size of  Th4+ (the largest previously reported 
A-site cation(s) in titanate brannerites) is possible [13], 
with  Ce3.4+, likely at or close to the limit of stability of 
Nb-doped Ce-brannerite, having an average ionic radius 
slightly larger than that of  Th4+ (0.954 Å compared to 
0.94 Å). The Ce-aeschynite structure appears unable to 
support a significant inventory of  Ce4+ when charge bal-
anced by excess  Ti4+ on the Ti/Nb site, within the detec-
tion limit of Ce  L3-edge XANES. In contrast, the branner-
ite structure has been shown here to support a significant 
inventory of  Ce3+ when charge balanced by  Nb5+ on the 
Ti-site, with the limit of solid solubility just below the 
target composition  Ce3.4+Ti1.4Nb0.6O6.

Given these observations, the use of brannerite-structured 
materials for immobilisation of Pu and minor actinide wastes 
comprising mixed 3+ and 4+ cations is possible, though fur-
ther work examining this and similar systems is necessary 
prior to full validation with actual Pu or minor actinides.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1557/ s43580- 023- 00532-2.
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