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Figure 10. IDTs for ‘ethanolic gasoline’ at stoichiometric 
conditions. Symbols represent experimental RCM data, lines 

show model predictions for Pc=20 bar (red) and 40 bar (blue).
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Introduction
➢ The EU Renewable Energy Directive II requires a minimum of 

3.5% advanced biofuels for all road and rail transport by 2030 [1].

➢ Biomass alcoholysis has the potential to produce economically 

viable, tailorable, advanced biofuels.

➢ This utilises lignocellulosic biomass to produce three primary 

products: an alklyl levulinate, a dialkyl ether, and an alcohol.

➢ Ethanolysis and butanolysis are currently the most feasible.

➢ There are gaps in knowledge due to the rapid development of such 

biofuels and the complex nature of low temperature combustion.

➢ Computer modelling provides opportunities to predict combustion 

behaviour cheaply and quickly.

➢ Automatic mechanism generation (AMG) tools can automate the 

tedious production of detailed mechanisms, utilising expert 

knowledge of complex reaction pathways, reducing human error.

➢ This study applies AMG to produce detailed kinetic mechanisms for 

ethyl and butyl blends and evaluates their predictive capabilities 

against literature data.

➢ The autoignition behaviour for selected blends are also predicted.

Figure 1. Molecular structures 

for ethanolysis products. 

From top to bottom: ethanol, 

ethyl levulinate (EL), diethyl 

ether.(DEE)

Figure 2. Molecular structures 

for butanolysis products. From 

top to bottom: n-butanol, n-

butyl levulinate (nBL), dibutyl 

ether (DBE).

Mechanism Generation
➢ Mechanisms are produced for each component using 

Reaction Mechanism Generator (RMG) [2].

➢ Individual mechanisms are combined to produce ethyl and 

butyl blend mechanisms.

➢ Mechanisms are seeded with literature sourced sub-

mechanisms for ethanol [3], diethyl ether [4], dibutyl ether 

[5], and n-butanol [6].

➢ Sub-mechanisms for ethyl and butyl levulinate are produced 

based on literature sourced rates for appropriate esters, 

ketones, ethers, and alkanes.

➢ A C0-C4 core is provided using AramcoMech 2.0 [7].

➢ For the functional groups of interest, the training data 

available in the RMG database is not comprehensive.
➢ Therefore, extensive modifications to RMGs open-source database are necessary.

➢ After generation, each mechanism is subject to: local [OH] and brute force ΔHf,298K sensitivity 

analysis, rate of production analysis, and the identification of collision rate violators.

➢ An ethyl blend mechanism has been produced containing 533 species and 10742 reactions, and a 

butyl blend mechanism generated containing 906 species and 21388 reactions.

Mechanism Performance

Ethyl Levulinate
➢ No low temperature IDT 

measurements for EL due to 

experimental difficulties.

➢ Low vapour pressure (0.17 

mbar at 298 K).

➢ For the available high 

temperature (1100 K) data, 

model predictions are accurate.

➢ From JSR data and modelling: 

EL displays no notable NTC.

➢ The accuracy of the JSR 

predictions gives confidence in 

the reproduction of low 

temperature behaviour.

Figure 6. Left: EL IDTs at Pc=10 bar, φ=1.0 (red) and 0.5 (blue). Right: EL conversion and 
C2H4 production as a function of temperature. Stoichiometric, 1 bar, 2s residence time. 

Both: 0.5% mol EL. Symbols represent experimental data; lines show model predictions.  

Figure 7. DBE IDTs for pressures of 20 and 40 bar, 

at φ=1.0 and 0.5. Symbols represent experimental 
data [14], lines show model predictions.

Dibutyl Ether

➢ Measured IDTs in the 

intermediate temperature 

region (700-900 K) do not 

appear in the literature.

➢ Therefore, it is not possible to 

determine the accuracy of 

NTC predictions.

➢ Predictions of shock tube 

IDTs provide a good 

representation for both 

pressures and equivalence 

ratios.

n-Butyl Levulinate

Figure 9. Homogeneous gas phase IDT 

predictions for EL and nBL. Pc=20 bar and 

stoichiometric conditions.

➢ Not possible to evaluate predictions 

for nBL, as no fundamental data 

exists.

➢ Like EL, this is due to the difficulty 

of performing gas-phase 

experiments.

➢ However, when compared to EL, 

predicted nBL IDTs behave as 

expected.

➢ nBL IDTs are much shorter at low 

temperatures and higher at high 

temperatures.

➢ Cross-over is due to the presence 

of NTC-like region for nBL.

Ethyl and Butyl Blends

Figure 11. Predicted homogeneous gas-phase IDTs 

for RON 95 ethyl and butyl blends, and FACE-F 

gasoline IDTs. Pc=20 bar, stoichiometric.

➢ RON 95 ethyl and butyl blends are formulated using a linear by 

mole blending rule and predicted by the respective models.

➢ These are compared against RCM measurements for a common 

RON 95 gasoline (FACE-F) [16].

➢ IDT cross-over for the two biofuel blends is present due to the 

larger NTC intensity of butyl components.

➢ Difference in low temperature IDTs compared to FACE-F is likely 

due to the use of an inappropriate linear blending law.

➢ More accurate blending rules are required for advanced biofuels.

➢ Fundamental measurements are available for a single 

RON 95 ethyl blend termed ‘ethanolic gasoline’: 
35/27/38 mol% EL/DEE/ethanol [9].

➢ Ethanolic gasoline IDTs are well predicted by the ethyl 

blend model.

➢ Importantly, the model also provides a reasonable 

representation for the NTC intensity exhibited by RCM 

data.

➢ This highlights the capabilities of the AMG generated 

mechanism and the generation methodology applied in 

this study.

Conclusions
➢ AMG tools are effective at producing accurate models for complex fuels. However, expanding the underlying database of 

such tools based on low uncertainty, high quality, literature data is necessary for representing advanced oxygenated fuels.

➢ Mechanisms generated in this study replicate experimental data excellently and may also be extrapolated beyond the 

regime of their seed mechanisms, though some relative performance may be lost in exchange for this versatility.

➢ Ethyl and butyl blends are both capable of replicating the ignition behaviour of modern gasolines, including the NTC region.

➢ Butyl blends are marginally more relevant for spark-ignition applications due to the larger degree of NTC intensity, increasing 

knock resistance at high temperatures relative to ethyl blends.

➢ More experimental data is required at engine relevant conditions for a comprehensive evaluation, particularly for EL, nBL, 

and their blends with other fuel components.
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Figure 3. The impact of database 

modifications on the prediction of ignition 

delay times (IDTs) for DEE.

Figure 4. Left: Concentration of DEE in a jet stirred reactor (JSR). Stoichiometric, 106.7 kPa, 

2 s residence time, 1/6/93 mol% DEE/O2/He. Right: Stoichiometric IDTs for Pc=20 bar (red) 

and 40 bar (blue). Both: Symbols represent experimental data; lines show model predictions.  

Diethyl Ether

➢ Excellent representation of DEE 

IDT data throughout the regime.

➢ IDT simulations out-perform the 

seed mechanism [4], 

particularly in the negative 

temperature coefficient (NTC) 

region.

➢ Good prediction of DEE JSR 

data when compared to other 

literature mechanisms.

➢ Small performance loss for the 

prediction of JSR data.

Figure 8. IDTs for n-butanol at Pc=15 bar. 

Symbols represent experimental data, lines 

show model predictions for φ=0.5 (red), 1.0 
(blue), and 2.0 (black).

n-Butanol

➢ Reasonable predictions for 

all the investigated 

equivalence ratios.

➢ Under-prediction of 

reactivity in lean and rich 

mixtures may be indicative 

of inaccurate rate 

parameters for oxygen 

sensitive reactions, such as 

oxygen addition and 

competing pathways.

Figure 5. Stoichiometric IDTs for a 50/50 by 

mole DEE/ethanol blend. Symbols 

represent experimental data; lines show 

model predictions for Pc=20 bar (red) and 

40 bar (blue).

DEE/Ethanol Blend

➢ Upon blending DEE with 

ethanol, NTC intensity is 

suppressed.

➢ This behaviour is captured 

by the RMG generated 

model.

➢ Accurately replicating 

blending behaviour such as 

this is important for fuel 

tailoring.
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