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Physically meaningful uncertainty
quantification in probabilistic wind
turbine power curve models as a
damage-sensitive feature

Jacques H Mclean1 , Matthew R Jones1, Brandon J O’Connell1,

Eoghan Maguire2 and Tim J Rogers1

Abstract

A wind turbines’ power curve is an easily accessible form of damage-sensitive data, and as such is a key part of structural
health monitoring (SHM) in wind turbines. Power curve models can be constructed in a number of ways, but the

authors argue that probabilistic methods carry inherent benefits in this use case, such as uncertainty quantification and

allowing uncertainty propagation analysis. Many probabilistic power curve models have a key limitation in that they are
not physically meaningful – they return mean and uncertainty predictions outside of what is physically possible (the max-

imum and minimum power outputs of the wind turbine). This paper investigates the use of two bounded Gaussian pro-

cesses (GPs) in order to produce physically meaningful probabilistic power curve models. The first model investigated
was a warped heteroscedastic Gaussian process, and was found to be ineffective due to specific shortcomings of the GP

in relation to the warping function. The second model – an approximated GP with a Beta likelihood was highly successful

and demonstrated that a working bounded probabilistic model results in better predictive uncertainty than a corre-
sponding unbounded one without meaningful loss in predictive accuracy. Such a bounded model thus offers increased

accuracy for performance monitoring and increased operator confidence in the model due to guaranteed physical

plausibility.
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Introduction

As global demand for wind turbines continues to grow,

so too does the need for cost-effective methods of mon-

itoring and maintaining these turbines. Both on-shore

and off-shore wind turbines are typically installed in

remote and difficult-to-reach locations. The nature of

these environments means that cost and hazard of on-

site monitoring and maintenance is high, and as such

should be minimised where possible. Using autono-

mously collected data such as by the Supervisory

Control and Data Acquisition (SCADA) system (which

come installed on most modern wind turbines) to detect

faults and optimise maintenance is therefore desirable.

The power curve is commonly used in Structural

Health Monitoring (SHM) as a damage-sensitive fea-

ture, as seen in Papatheou et al.1 and Gonzalez et al.2

The power curve describes the fundamental relation-

ship of a wind turbine between wind speed and power

output. The power curve can be modelled from

SCADA data (which collects wind speed and power

output data as a matter of course). New SCADA data

that deviates from this power curve is a useful indica-

tion that something is wrong with the turbine and can

be carried forward into further analysis and mainte-

nance optimisation methods. Power curve modelling

has benefits outside of SHM as well, such as use in
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financial return predictions, power output predictions

or grid management.

An example of a typical power curve is shown in

Figure 1. The power curve is bounded on two sides in

the power dimension. The lower bound of the power

curve occurs at zero power, where the wind does not

contain enough energy to move the turbine. The upper

bound is the maximum power that the turbine is

designed to safely extract from the wind, also known

as the rated power. If wind speed increases while the

turbine is operating at rated power, it will regulate

itself to maintain rated power before shutting down

should speeds get too high.

As seen in Figure 1, the data that compose a power

curve are inherently stochastic. The authors argue that

the full richness of information in this noisy data can-

not be truly represented by a deterministic approach,

and should be modelled probabilistically for maximum

utility. A probabilistic approach (specifically a

Bayesian approach) provides value because it allows

for the uncertainty of the predicted power outputs to

be found. This additional information is useful because

it can be used to understand and model uncertainty

propagation on financial returns and structural health

of the turbine, allowing for robust long term risk plan-

ning, as shown in Nielson et al.3 and Hughes et al.4

The quantification of uncertainty also means that pre-

dictions are made with a quantified level of confidence,

bolstering the decision-making processes in relation to

the turbine.

It is clear then that robust probabilistic models are

beneficial to the industry, and provide tangible benefits

to operators. Whilst probabilistic models are highly

useful, it is important that the predictive distributions

returned are physically meaningful if they are to be

relied on for operational decision making. It is com-

mon for probabilistic models to assume (implicitly or

explicitly) that the noise is Gaussian, and can be mod-

elled as such even at the bounded limits of the power

curve. This leads to predicted probability mass outside

the realm of what is physically possible for the turbine

to achieve, that is, the models may suggest that there is

some probability of producing more than a turbine’s

rated power. While the predictive density could simply

be truncated this may not be statistically robust or rep-

resentative of the true behaviour; it is clear that the dis-

tribution below rated power is also not Gaussian. A

robust method of modelling the uncertainty such that

it remains physically meaningful is therefore desirable.

This paper seeks to address this issue in probabilistic

power curve modelling by investigating two bounded

Gaussian Process (GP) models. The GP was chosen as

a framework because it offers excellent performance

and innately quantifies uncertainty for its estimates. On

top of this, it is an intuitive framework, with a wealth

of literature and associated work to draw from. As will

be seen in the literature review, choice of probabilistic

models is quite limited, leaving the GP as an obvious

choice.

The bounded models will be assessed against each

other and a standard GP, which was generated as a

performance baseline for comparison. The first bound-

ing method uses a warping function to transform the

data and output of the GP in order to satisfy the

boundary conditions. This is coupled with a heterosce-

dastic1 GP, allowing the input dependent variance in

the data to be captured as shown in Rogers et al.5

The second bounding method will replace the stan-

dard Gaussian likelihood in a GP with a Beta likeli-

hood, again to satisfy boundary conditions. The Beta

likelihood GP is approximated through quadrature

and variational inference of a latent heteroscedastic

GP. This method will be referred to as the

Heteroscedastic Beta Process (HBP). The HBP method

is beneficial because it models heteroscedasticity and

the non-Gaussian noise whilst allowing for the use of

fast inference techniques, rather than relying on signifi-

cantly slower approaches to approximate a non-

Gaussian posterior, such as Markov Chain Monte

Carlo (MCMC).6

In this paper two novel probabilistic methodologies

are introduced for modelling wind turbine power

curves. When compared to existing approaches in the

literature (to be discussed presently) these probabilistic

methods differ in that they provide uncertainty quanti-

fication which obeys known physical a priori knowl-

edge of the turbine within a consistent Bayesian

Figure 1. Example of a power curve.
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framework. The methodologies presented here are

applicable to any given wind turbine, wind farm, or

collection of similar turbines should there be sufficient

data. It is important to note that power curves will dif-

fer between turbine models and locations, and as such

care should be taken when using the methods pre-

sented to compare radically different turbines.

This paper is structured in the following manner.

The section ‘Related work’ will provide a brief over-

view of the existing literature in wind turbine SHM

and power curve modelling. The section ‘GP regres-

sion’ and its various subsections will cover the funda-

mental theory used to construct the bounded GP

models. The section ‘Case study’ illustrates how the

data was collected and used, outlines the metrics used

to assess the success of the models and presents the

performance results of the models. The subsections of

section ‘Case study’ provide a discussion on the results

of their respective models. Finally, concluding remarks

and a discussion on possible avenues are made in their

respective sections.

Related work

The application of SHM in wind turbines is a well-

established field, and comprehensive reviews have been

published previously.7–9 A wide variety of techniques

exist and have been proposed for monitoring turbines,

ranging from traditional Non-Destructive Evaluation

(NDE) approaches to entirely data-based methods.

NDE approaches are often limited to accessible parts

of the turbine and require specialised sensors and

equipment but can be highly effective at identifying

faults in the turbine. Examples of NDE approaches for

wind turbines include (but are not limited to) acoustic

emissions10 and ultrasonic methods11 and thermal ima-

ging.12 In the remote environments wind turbines often

find themselves in, the periodic nature of NDE meth-

ods might be considered less attractive than the online

and continuous monitoring offered by SHM

methodologies.

As mentioned in the introduction, most modern tur-

bines come installed with a SCADA system. Using

SCADA data for monitoring is a popular approach

within the field, as it does not require additional equip-

ment or expertise and allows for an online approach.

This can be seen in Canizo et al.,13 where a big data

approach was used. Zaher et al.14 apply a neural net to

SCADA data to detect faults in the gearbox and gen-

erator. Yang et al.15 use SCADA data to detect blade

and drive train faults. Finally, power curves using

SCADA data are also commonly used data to identify

faults in turbines.1,2,16

Power curve modelling (whether related to SHM or

not) is also an established area of research. A

comprehensive literature review of power curve models

was published by Lydia et al.17 Power curve models

can be conceptually divided in numerous ways, but the

most relevant division for this paper is that between

deterministic and probabilistic models.

Historically, power curve models have been simple

polynomial models. Such models are, by default, deter-

ministic but can be highly accurate. A wide variety of

polynomial power curve models exist in the literature;

ranging from a basic piece-wise linear model18 to more

complicated and commonly used models such as a

cubic polynomial.19 High order polynomials have also

been tested, such as the ninth order polynomial used in

Raj et al.20 However, higher order polynomial models

can be prone to overfitting to the training data as dis-

cussed in Bishop and Nasrabadi.21

Modern approaches have steered away from classic

polynomial models, and a variety of non-polynomial

deterministic models have been utilised in the litera-

ture. Many of these power curve models are applica-

tions of classic machine learning algorithms; such as K

Nearest Neighbour (K-NN) and random forest mod-

els,22,23 support vector machines,24 clustering centre

fuzzy logic modelling25 and Copula modelling.26 A

nonlinear regression model was used in Marčiukaitis

et al.27 This is one of the few works in the deterministic

power curve literature space which explicitly obeys

physical limitations, however it is still a deterministic

model and only returns confidence intervals. Neural

nets are another popular approach to power curve

models. Models can be fairly simple power curve mod-

els28,29 or can be more complicated multi-input models

such as in Pelletier et al.30

Probabilistic power curve models are comparatively

rare, and often these models simply make no mention

if the models or their returned distributions obey phys-

ical limitations. Probabilistic models vary widely in

their approaches and chosen algorithms; from a prob-

abilistic analytical solution31 to algorithms such as

Monte Carlo and Fuzzy Clustering methods32 to a

neural net used to estimate quantiles.33 Many probabil-

istic models assume Gaussianity in the power curve

data, leading to physically impossible uncertainty den-

sities. This can be seen in heteroscedastic models such

as Rogers et al.,5 where Gaussianity was assumed and,

although the heteroscedastic noise models reduced the

issue, predictions still led to physically impossible dis-

tributions. The assumption of Gaussian noise is also

made in Jin and Tian,31 where it is only used to model

the region between the bounds, lending credence to the

idea that the Gaussian distribution cannot effectively

model power output noise at the bounds of the power

curve. Several physically meaningful probabilistic mod-

els exist in literature. The use of the Weibull distribu-

tion is common here, as seen in Ge et al.34 and Yun,

Mclean et al. 3



Hur35 The Weibull distribution is useful in this case

because it is bound on its lower end, and as such can

be used to reflect the bounded nature of the power

curve in one direction. Finally, the GP has also been

used for probabilistic power curve modelling in litera-

ture. Papatheou et al.1 use a GP for outlier detection in

power curves for SHM purposes. Rogers et al.5 use a

heteroscedastic GP to model the power curve, and

Pandit et al.36,37 also use a GP for anomaly detection

in power curves.

Power curve modelling and SHM are active fields of

research. As such, this brief review has not been able

to cover all work completed in these fields. Instead it

has sought to highlight the relevant state-of-the-art

and illustrate that the research topic of this work is an

important area that has seen some work but is com-

paratively underdeveloped.

GP regression

The GP38 is a probability distribution over the possible

functions that fit a given set of points. The GP is

designed to model regression problems of the form

y= f (x) + e, where e;N (0,s2

n) is used to capture noise

that may be present on the true function evaluations. x

is some vector of inputs and y the target data with

additive Gaussian noise e which has a variance s2

n. The

GP is mathematically defined in Equation (1), where

m(x) is the mean function and k(x, x0) is the covariance

function (otherwise known as the kernel).

f;GP(m(x), k(x, x0)) ð1Þ

GPs are a type of Bayesian inference, meaning that a

defined prior is updated with observed data to produce

a posterior distribution. The prior for the GP is the

form of m(x) and k(x, x0). The posterior can be com-

puted through the use of Bayes theorem, by condition-

ing the test data x� on the training data x through the

joint Gaussian distribution (as given in Equation (2)).

In Equation (2) the notation Kx�x is used to write the

covariance matrix between the test variables f (x�) and

training variables f (x). Similar subscript notation is

used for denoting covariance matrices between sets of

training variable and test variables, for example, Kxx

for the covariance of the training data with itself.

y

y�

� �

;N
m(x)

m(x�)

� �

,
Kxx +s

2

nI Kxx�

Kx�x Kx�x� +s
2

nI

� �� �

ð2Þ

Assessing this distribution will yield the posterior pre-

dictive distribution of the GP, which shows that it is

possible to predict new outputs y� subject to new inputs

x� given the training inputs x and their respective out-

puts y. The posterior predictive is given in Equation

(3), where E½y�� and V½y�� are the mean and variance of

the predicted distribution respectively.

p( y�jx�, y, x);N (E½y��,V½x��)

E( y�) =m(x�) +Kx�x(Kxx +s
2

nI)
�1
( y� m(x))

V( y�) =Kx�x� � Kx�x(Kxx +s
2

nI)
�1Kxx� +s

2

nI

ð3Þ

Equation (1) shows that the GP is fully defined by its

mean and covariance functions. The mean is commonly

fixed to zero in literature39 and in practice (as is the

case in this paper). The covariance function specifies

the family of distributions that may have generated the

observed data. Each kernel enforces different types of

behaviour on the corresponding function draws, with

the ability to combine kernels allowing for a number of

different types of structure to be embedded into the GP

prior. A popular kernel for GPs is the squared expo-

nential kernel, given in Equation (4), where s2 is the

signal variance and l is the lengthscale of the kernel;

these two values are the hyperparameters of the kernel.

k(x, x0) =s2 exp �
(x� x0)

2

2l2

 !

ð4Þ

Signal variance and length scales are examples of

hyperparameters; these control the shape of the family

of functions defined by the kernel (and by extension

the GP). They are not known a priori, and are learnt

by minimising the negative log of the marginal likeli-

hood of the model (Equation (5)), which solves a

Type-II maximum likelihood problem such that

û= argmin
u

� log p(yjx, u)f g.

log p(yjx, u) = �
1

2
yT K +s2

nI
� ��1

y
y

�
1

2
log½K +s2

nI � �
n

2
log 2p

ð5Þ

Heteroscedastic noise

Heteroscedastic noise is noise that varies as a function

of a function’s input. The power curve data in Figure 1

is an excellent example of this; it is clear that the data is

much more noisy in the centre of the power curve than

towards its limits – the input (the wind speed) is corre-

lated to the amount of noise, that is, level of uncer-

tainty. The standard (homoscedastic) GP assumes that

noise and hence uncertainty is constant across the full

input range, and as such cannot model the way the

noise changes with wind speed. In order to model the

heteroscedastic noise and return a more useful prob-

abilistic power curve, a heteroscedastic GP model can

be used, as was done in Rogers et al.5

4 Structural Health Monitoring 00(0)



The particular heteroscedastic model adopted in this

work (distinct from Rogers et al.5) uses two latent GPs

to learn the location (Equation (6)) and scale (Equaion

(7)) of the distributions required, first shown in

Lázaro-Gredilla et al.40 This is done by connecting a

Multi-output kernel to a heteroscedastic likelihood.

This maps the latent GPs onto a single function. The

heteroscedastic GP model can be described as:

f1(x);GP(m(x), k1(x, x
0
)) ð6Þ

f2(x);GP(m(x), k2(x, x
0
)) ð7Þ

m(x) = f1(x) ð8Þ

s(x) = g(f2(x)) ð9Þ

y(x);N (m(x), s(x)) ð10Þ

The transform g( � ) in Equation (9) in this case is an

exponential transform, in order to keep the function

positive, since it models the variance of the noise which

must be greater than zero.

Warping functions

The first bounded model investigated in this paper is

the warping function. A visual illustration of how the

warping function works is shown in Figure 2. Figure

2(a) is an illustrative example of how a simple normal

distribution modelling uncertainty at rated power has

a large portion of probability mass outside of what is

physically possible.

The warped bounding method starts with trans-

forming the power data using the logit function,41

shown in Equation (11). Conceptually, the warped GP

moves the data from the bounded space to an

unbounded one by means of a nonlinear transforma-

tion. The warped power curve is shown in Figure 2(b).

The logit function moves the power curve from a

bounded space (p 2 (0, 1)) in the power dimension to

an unbounded space (p 2 (� ‘,‘)) in the power

dimension. The GP is then applied to the warped

power curve, as in this unbounded space the bounds

on the power curve no longer apply, so the assumption

of Gaussianity holds.

logit(p) = ln
p

1� p

� �

for p 2 (0, 1) ð11Þ

After fitting, the data and the returned uncertainty

distribution are unwarped using the inverse of the logit

function, resulting in the bounded data and distribu-

tion shown in Figure 2(c). An important note on this

method is that it is difficult to evaluate the unwarped

uncertainty, as no closed form solution exists for it; the

density shown in Figure 2(c) is presented for visualisa-

tion but is not exact. Therefore, it is simpler to work

with and evaluate the model directly in the warped

space. To illustrate how the uncertainty looks in the

Figure 2. Illustration of the warping process – the normal distributions are for illustrative purposes only. (a) Gaussian uncertainty

in bounded space, (b) Gaussian uncertainty in unbounded space, and (c) unwarped distribution in bounded space.
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unwarped space for the entire power curve, a confi-

dence bound can be created in the warped space at

62s and unwarped with the predictive mean.

Non-Gaussian likelihoods

A typical GP model is formulated using a Gaussian

likelihood. This assumes that the data is drawn from a

normal distribution, that is, f(x) has noise e added and

e;N (0,s2

n). This results in a normally distributed pos-

terior function, as shown in Figure 2(a). Without any

modifications, this is not a suitable model for probabil-

istic power curve modelling. Instead of warping the

output space, the likelihood can be changed to a non-

Gaussian likelihood – one that better represents the

distribution of the observed data for the problem at

hand.

The likelihood chosen here is the Beta likelihood,

imposing the assumption that the data is drawn from a

Beta distribution. The Beta distribution is a continuous

probability distribution in the interval [0,1]. It is

defined in Equation (12) where a and b are the shape

parameters of the distribution. The probability density

function is given in Equation (13), where

B(a,b) =G(a)G(b)=G(a+b) and G is the Gamma func-

tion. The use of the Beta likelihood is a bounding

method because the GP with a Beta likelihood would

imply that data were generated from Beta distribu-

tions, which are inherently bound between [0,1].

y;Beta(a,b) ð12Þ

p(y) = ya�1
(1� y)b�1

B(a,b)
ð13Þ

Using a non-Gaussian likelihood in the GP (like the

Beta likelihood) results in an analytically intractable

posterior.42 The posterior must instead be approxi-

mated, numerous approximations exist for this prob-

lem. A common method (used in the popular GP

packages GPflow43 and GPML44) to approximate the

posterior is MCMC6 sampling. However, this can

require a large amount of samples to approximate the

posterior well, and can be very slow.

Instead of using MCMC, this paper approximates

the Beta likelihood using variational inference and

quadrature of a heteroscedastic GP. The model pro-

ceeds by introducing two latent GPs to calculate a and

b as functions of the input, instead of the mean and

variance as used in the normal heteroscedastic GP as

described previously. This is expressed mathematically

below, where t(�) represents an exponential transform

to keep the functions over a and b positive.

½ f1, f2�=GP(m(x), k(x, x0)) ð14Þ

g1 = t( f1) ð15Þ

g2 = t( f2) ð16Þ

y;Beta(g1, g2) ð17Þ

A flow diagram of this process is shown in Figure 3.

Figure 3 illustrates how f1 and f2 are calculated from

the power curve data using the heteroscedastic GP,

both f1 and f2 are distributed normally for each input.

These are then transformed exponentially to create g1
and g2 which are approximations of a and b. Using

total variance and mean, the distributions of g1 and g2
are used to find a final a and b value for each wind

speed input. These are subsequently used to create the

final Beta distributions at each input shown in the final

panel.

This approach is useful because it allows for fast

posterior approximation with established methods, in

this case the Stochastic Variational Inference approxi-

mation.45 This is further explained in the following

section.

A further benefit to this approach is that the hetero-

scedasticity of the model is not lost, as a and b vary

with inputs and as such capture the varying uncertainty

with inputs as one would expect, alongside capturing

the progression of the mean function.

Approximations and quadrature solutions

When considering the large heteroscedastic models

used here, two problems arise. The first is that solutions

for heteroscedastic and non-Gaussian models do not,

in general, exist in closed form, and must be approxi-

mated to reach a solution. The second is that GPs are

computationally inefficient when used on large data-

sets. This is due to their reliance on a matrix inversion

when calculating the posterior and the marginal likeli-

hood, which has time complexity O(N3) and therefore

scales poorly with increasing numbers of training data

points. The SCADA dataset being used in this paper is

quite large so calculating the entire posterior is imprac-

tical and would require an excessive amount of compu-

tational resource and time.

This paper uses a stochastic variational inference

approach45 in order to address these problems.

Similarly to other sparse variational inference methods,

the method applied in this work uses a set of inducing

points ~u to summarise the model. The approximated

posterior is given in Equation (18).

q( f , u) = p( f , u)f(u) ð18Þ

The approximate posterior is found by maximising the

bound on the marginal likelihood. This bound is

known as the Evidence Lower Bound (ELBO) and is

used instead of the marginal likelihood to reduce

6 Structural Health Monitoring 00(0)



computational cost. The global stochastic variational

approach45 differs from other variational inference

bounds in that it allows for the inducing points to be

global points representing the entire GP despite being

calculated locally – thus allowing faster computation.

A formulation of the ELBO of a heteroscedastic

GP46 is shown in Equation (19), where
R

q(fi)q(gi) log

p(yijfi, gi)dfidgi is the likelihood term. The terms q(fi)

and q(fi) are the marginal variational distributions of

the mean and variance latent GPs respectively, and

log p(yijfi, gi) is the conditional probability term. The

model can then be optimised from this bound using

stochastic gradient descent.

log p(y)ø
X

n

i= 1

ð

q(fi)q(gi) log p(yijfi, gi)dfidgi

�KL(q(uf )jjp(uf ))�KL(q(ug)jjp(ug))

ð19Þ

The likelihood term is clearly an n term integration

over the marginal variational distributions and the

conditional probability. As long as these terms are all

Gaussian (such as in the heteroscedastic GP model),

this integration has an analytical solution. However,

the conditional term log p(yijfi, gi) is not Gaussian in

the HBP model, and as such the likelihood term does

Figure 3. Flow chart of the Heteroscedastic Beta Process.

Mclean et al. 7



not have an analytical solution. It is therefore approxi-

mated with quadrature, as shown in Saul et al.46

As previously mentioned, the standard GP approach

scales O(N3), that is, doubling the number of data

points in the training set causes an eight-fold increase

in computational load. The use of sparse variational

inference allows the GP to be computed with time com-

plexity O(NM2) instead of O(N3), where M is the num-

ber of inducing points. Clearly, when M � N the

reduction in burden is significant; since M is a user

choice it can be used to control the level of computa-

tional load balanced against the expressive power of

the GP. Since the underlying function of the power

curve is relatively smooth, it can be well represented

with a small M. This approach solves the computa-

tional complexity problem, as it now requires signifi-

cantly less time to train the models. As mentioned

earlier, the approximated posterior is found by maxi-

mising the ELBO. This means that the heteroscedastic

methods can be used, as they can be approximated

efficiently.

Case study

The data used in this paper comes from the SCADA

system of an operating wind turbine. The SCADA data

is the 10 min average of power output and wind speed

(as taken on the nacelle) comprised of 50,000 readings.

The measured values of wind and power have been

obscured by scaling for confidentiality reasons.2

The dataset was split into three equal parts: a train-

ing dataset, a testing dataset and a validation set. The

training data is used to optimise the hyperparameters

of the GP. The predictive performance of the trained

models are evaluated on the test data, which they have

not seen before. The validation set is put aside should

further validation of predictive performance be

required.

After the initial scaling to anonymity, the power

output data was again normalised between 0 and 1 in

order to allow for the Beta likelihood and logit warp-

ing approaches to work. Neither the original scaling or

the subsequent normalisation impacted the relationship

between power output and wind speed as both were

linear transforms. The training data was then cleaned

of severe outliers, for example known curtailments.

Two performance metrics will be used in order to

compare the success of the various models in modelling

the power curve. The first is Normalised Mean Squared

Error (NMSE), shown in Equation (20), which is used

to assess mean predictive performance (or more concre-

tely, it measures how close to the mean of the predictive

distribution the test value was). The NMSE can be

thought of (and functions similarly to) percentage

error. It is an intuitive method of assessing point pre-

dictions, and is important to consider when only the

point predictions matter, or if the model needs to be

compared to a deterministic model.

NMSE=
100

Ns2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(y� ŷ)T (y� ŷ)

q

ð20Þ

The second metric being used is the joint log predic-

tive likelihood which is computed as the sum of the

predictive log likelihood at every test value under the

posterior. This is an especially important metric for

this paper as it is a measurement of how good the

uncertainty prediction of a specific model was at cap-

turing the test data and not solely the performance of

the mean estimate. The larger the joint log likelihood,

the better the model has captured the true distribution

of the test data and the more successful the model.

Interpretation of the absolute values of the log likeli-

hood is difficult; however, comparatively models which

better capture the distribution of the data will have

higher log likelihoods.

To facilitate the discussion of results, the NMSE

and joint log likelihood of each model is shown in

Table 1, where WH GP is the Warped Heteroscedastic

GP. The results of each model will be further discussed

in their respective following subsections. A small figure

illustrating how the mean predictions differ from each

other can be seen in Figure 4.

All models use the same kernel configuration; a

Matérn 3/2 kernel combined with a Linear kernel to

capture the gross trend of the data. The choice of a

Matérn kernel over other kernels is supported in the

literature by Stein.47 However, the power curve is a

strong and simple signal, and any generic suitably flex-

ible kernel (e.g. squared exponential, Matern or

rational quadratic) will model the problem well and

comparably.

It will be argued by the authors in the remainder of

this section that the HBP best captures the physical

behaviour and uncertainty associated with the power

curve of an operating wind turbine. All the models pre-

sented in this paper were written in Python and run

using GPflow.43

Table 1. Case study results.

Model NMSE Joint log likelihood

Standard GP 0.24 32,312
WH GP 5.4 212,469
HBP 0.53 68,866

GP: Gaussian Process; WH GP: Warped Heteroscedastic GP; HBP:

Heteroscedastic Beta Process.
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Simple GP regression

A standard (homoscedastic sparse) GP model was

trained over the power curve to act as a benchmark to

the two bounded models being tested. The standard

GP used an additive composite kernel comprised of a

Matérn 3/2 kernel and a Linear kernel. This combi-

nation was used to capture the upward trend of the

data.

In Figure 5(a) the results of the standard GP model

can be seen. The model seemingly performs well in its

mean predictions with an NMSE of 0.24. It also shows

a log likelihood of 32,312, less than half of that seen

for the HBP, indicating worse performance in the

uncertainty quantification. Figure 5(b) shows a magni-

fied portion of the same model at rated power in order

to examine how successful the model was at quantify-

ing uncertainty at rated power. The standard GP

model captured the shape of the power curve very well

on average across the range of wind speeds, and the

NMSE reflects this. The uncertainty prediction is com-

paratively poor; the uncertainty distribution is underes-

timated away from the bounds and overestimated close

to them. This can be seen in that some data is not cov-

ered by the distribution in the middle of the power

curve, and that the distributions at rated and zero

power overestimate the variance.

While the GP has an excellent NMSE and good

joint log likelihood, it is clear from visual examination

of Figure 5(b) that the predicted mean and uncertainty

do not obey physical limits and overestimate possible

values of the rated power. Perhaps the point of most

concern here, is that despite the excellent NMSE score,

there are still predictions above the rated power out-

put. This output is then not a particularly useful model

if carried forward into further analysis, as the errors in

the uncertainty and mean estimation could mask dam-

age in the turbine or suggest that the financial perfor-

mance of the wind could exceed what is physically

possible.

Figure 4. Mean comparison of models.

Figure 5. Standard GP result. (a) Power curve model of standard GP and (b) rated power model performance of standard GP.
GP: Gaussian process.
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Finally, it is clear that the GP struggles to correctly

predict the transition to rated power. This could be

because continuous function models such as the GP

can struggle with abrupt transitions such as this one.

There are ways of addressing this shortcoming of GPS,

such as using Bayesian committees to model the transi-

tion to rated power.5

Heteroscedastic warped GP

The prediction of the power curve with the warped GP

is shown in Figure 6(a), and a magnified image of the

model at rated power is shown in Figure 6(b). The per-

formance metrics for this model were comparatively

very poor, with an NMSE of 5.4 and a log likelihood

of 212,469. The warping approach has failed to cor-

rectly capture either the mean behaviour or the uncer-

tainty in the power curve.

The performance metrics clearly show that the

warped GP has performed poorly. In order to under-

stand why, the fitted GP must be examined in the

warped space (shown in Figure 6(c)), as this is where

the GP interacts with the data being modelled. It is

clear from Figure 6(c) that the GP has failed to map

the warped function correctly. This is likely because

warping the power curve has resulted in a data shape

that is too noisy and discontinuous for the GP with a

Gaussian likelihood to model well.

The inherent noise of the power curve in the power

axis was exacerbated during the warping process,

resulting in large vertical noise distributions that the

GP cannot capture except by increasing the variance.

This would confuse the training of the GP and is why

such large uncertainty distributions are returned in

Figure 6(a) and (c). The discontinuity of the warped

shape is also a problem because the GP is a continuous

function and struggles to model abrupt changes as dis-

cussed in the previous section and in Cornford et al.48

This results in the GP smoothing over the abrupt

changes in the model as seen in Figure 6(c) space. It

appears that this challenge in modelling the discontinu-

ous transition is amplified when projecting the data

through the warping function.

Despite being an intuitive approach, the heterosce-

dastic warped GP is clearly not that useful in assessing

either the predictive mean or the uncertainty. The

issues with this model lie in the warped space, where

the data shape becomes too noisy and discontinuous.

These problems could be addressed in several ways

such as with further cleaning in the warped space, with

Figure 6. Heteroscedastic GP results. (a) Power curve model of warped Heteroscedastic GP in the original data space,

(b) magnification of rater power, and (c) Heteroscedastic GP in the warped space.
GP: Gaussian process.
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a Bayesian committee5 or an alternative warping func-

tion (although it is not clear what that warping func-

tion may be).

Beta likelihood

The results from the HBP model can be seen in Figure

7(a). A magnification of the model at rated power is

shown in Figure 7(b). Figure 7(c) is a heat map of the

predictive uncertainty over the test data in order to

illustrate that the uncertainty is recoverable as a closed

form solution. The heat map is capped at 30 due to the

likelihood being so high towards the bounds.

The NMSE for this model is 0.53, while the log like-

lihood is 68,866. These are excellent results. The log

likelihood is the highest of all the models tested, and

shows that the bounded distribution best captures the

power curve data. The NMSE is higher than for the

standard GP, however the difference (0.53 vs 0.24) is

small enough that these results can be considered com-

parable. It is worth noting again the previous discus-

sion regarding the failure of the standard GP model to

obey the physical bounds of the system in both the

mean and the variance despite its lower NMSE.

Choosing between the standard GP and HBP will

depend on the desired use case. When uncertainty mat-

ters, the HBP is clearly a superior model. If only the

mean prediction matters then the standard GP could

be considered the better choice; however it is worth

considering that the lower NMSE of the standard GP

is misleading; the NMSE is simply an average of per-

formance over the curve, and will not penalise physi-

cally implausible predictions. As seen in Figure 5(b) the

predictive mean of the standard GP does exceed rated

power, and as such is physically implausible. Blindly

using the unbounded model could have serious conse-

quences should its predictions be taken forward with-

out further handling – such as over-predicting financial

returns or masking turbine damage.

As seen in Figure 7(a) the model has captured the

shape of the power curve well. Similarly to the other

models, this model also struggles to accurately fit the

transition to rated power. This is marginally less pro-

nounced as the use of Beta distributions allow the mean

to be ‘squashed’ into the transition better than a nor-

mal distribution would allow.

It is clear from the performance metrics that the

HBP model is successful. It presents significant utility

in that a full bounded predictive uncertainty distribu-

tion is returned. This uncertainty distribution also cap-

tures the data better than the standard GP and warped

model. This has significant benefits as an improved

power curve model for applications outside of SHM

and as an improved starting point for turbine anomaly

detection within SHM. The NMSE is comparable to

the standard GP but offers the extra security that the

mean prediction is bounded, removing the potential

for error that an unbounded model carries and

Figure 7. HBP results. (a) HBP power curve, (b) magnification of rater power, and (c) capped heat map of the predictive

uncertainty of the HBP.
HBP: Heteroscedastic Beta Process.
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providing the basis for increased operator confidence

in the model.

Conclusions

The novelty of this work was to propose and investi-

gate two power curve models with physically meaning-

ful predictions of mean and uncertainty. As discussed

in ‘Related work’, this is a comparatively underdeve-

loped area of power curve modelling. Predictions of

the mean and uncertainty that obey the physical laws

imposed on the system being modelled are vital to

understand in order to be able to extract meaningful

information from these models.

Of the two methods investigated, the authors have

argued that HBP model is the most successful. When

compared to the traditional GP, the HBP model per-

forms favourably. The joint likelihood is significantly

higher than the standard GP, showing that the

bounded uncertainty region better captures the test

points than its unbounded counterpart. This is an espe-

cially important result when the use of predictive

uncertainty in further calculations is considered. The

difference in NMSE between the standard GP and

HBP is small enough to be functionally comparable,

and ignores the fact that some of the predictions

returned by the standard GP are not physically

plausible.

Predictions from the standard GP will not necessa-

rily exceed the bounds with its mean predictions; how-

ever the model cannot provide confidence that its mean

predictions are guaranteed to be physically plausible.

The HBP is therefore superior in establishing operator

trust and reliance on the power curve model, even when

compared to a theoretically perfect standard GP.

In conclusion, the HBP model is an important step

in better quantifying the uncertainty of power curve

models. It was shown that bounding the GP to respect

physical limitations significantly improves uncertainty

quantification, a result with interesting ramifications

for SHM and other industrial use moving forward.

Further work

While the proposed methods for bounding the GP met

with varying levels of success, both models open up

avenues for further work. It was clear that the hetero-

scedastic GP did not perform adequately in the warped

space. Several methods to remedy this exists, and

although outside the scope of this current work, may

be considered in the future, including using Bayesian

committees to tackle the truncated nature of the

warped data shape or experimenting with alternative

warping functions.

The GP with Beta likelihood was successful, and

while the fast approximation of the likelihood with the

heteroscedastic method worked well, the random

nature of the sampling and unification of the various

distributions into an average distribution at each test

point is not the most statistically robust method.

Uniting the Beta distributions of each sample mathe-

matically rather than using the mean and total variance

would be more robust. Finally, it may be worth consid-

ering again the use of committee machines to better

handle the transition to rated power seen in the power

curve.
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Notes

1. A heteroscedastic GP is a GP designed to model hetero-

scedastic noise, otherwise known as input-dependent

noise. This will be expanded upon in in the subsection

‘Heteroscedastic noise’.

2. Due to the confidentiality of the data, it is not possible to

release the data used in this case study, however the code

used to generate the results is made available at https://

github.com/JacquesMclean/Physically-meaningful-

Gaussian-Processes
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