UNIVERSITY OF LEEDS

This is a repository copy of Coastal vegetation and estuaries are collectively a greenhouse gas sink.

White Rose Research Online URL for this paper: <u>https://eprints.whiterose.ac.uk/199501/</u>

Version: Accepted Version

Article:

Rosentreter, JA, Laruelle, GG, Bange, HW et al. (12 more authors) (2023) Coastal vegetation and estuaries are collectively a greenhouse gas sink. Nature Climate Change, 13 (6). pp. 579-587. ISSN 1758-678X

https://doi.org/10.1038/s41558-023-01682-9

© 2023, The Author(s), under exclusive licence to Springer Nature Limited. This is an author produced version of an article published in Nature Climate Change. Uploaded in accordance with the publisher's self-archiving policy.

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk https://eprints.whiterose.ac.uk/ 1 Title: Coastal vegetation and estuaries collectively are a greenhouse gas sink

2 Author list: Judith A. Rosentreter^{1,2,3*}, Goulven G. Laruelle⁴, Hermann W. Bange⁵, Thomas

3 S. Bianchi⁶, Julius J. M. Busecke⁷, Wei-Jun Cai⁸, Bradley D. Eyre¹, Inke Forbrich^{9,10}, Eun

4 Young Kwon¹¹, Taylor Maavara^{2,3,12}, Nils Moosdorf^{13,14,15}, Raymond G. Najjar¹⁶, V.V.S.S.

- 5 Sarma¹⁷, Bryce Van Dam¹⁸, Pierre Regnier⁴
- 6

7 Affiliations:

- 8 ¹Center for Coastal Biogeochemistry, Faculty of Science and Engineering, Southern Cross
- 9 University, Lismore, Australia
- 10 ²Yale Institute for Biospheric Studies, Yale University, New Haven, USA
- ³Yale School of the Environment, Yale University, New Haven, USA
- ⁴Biogeochemistry and Modelling of the Earth System-BGEOSYS, Department of Geoscience,
- 13 Environment and Society, Université Libre de Bruxelles, Brussels, Belgium
- ⁵Marine Biogeochemistry, Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
- 15 ⁶Department of Geological Sciences, University of Florida, Gainesville, USA
- 16 ⁷Lamont-Doherty Earth Observatory of Columbia University, Palisades, New York, USA
- ¹⁷ ⁸School of Marine Science and Policy, University of Delaware, Newark, DE, USA
- 18 ⁹Ecosystems Center, Marine Biological Laboratory, Woods Hole, USA
- 19 ¹⁰Department of Environmental Sciences, University of Toledo, Toledo, USA
- 20 ¹¹Center for Climate Physics, Institute for Basic Science, Busan, South Korea
- 21 ¹²School of Geography, University of Leeds, United Kingdom
- 22 ¹³Leibniz Centre for Tropical Marine Research (ZMT), Bremen, Germany
- 23 ¹⁴Kiel University, Kiel, Germany
- 24 ¹⁵Southern Cross Geoscience, Southern Cross University, Lismore, Australia
- ¹⁶Department of Meteorology and Atmospheric Science, The Pennsylvania State University,
- 26 University Park, PA, USA
- 27 ¹⁷CSIR-National Institute of Oceanography, 176 Lawsons Bay Colony, Visakhapatnam, India
- 28 ¹⁸Department of Fluxes across interfaces, Institute of carbon cycles, Helmholtz-Zentrum
- 29 Hereon, Geesthacht, Germany
- 30

31 *email: judith.rosentreter@scu.edu.au

33 Abstract:

34 Coastal ecosystems release or absorb carbon dioxide (CO₂), methane (CH₄), and nitrous oxide 35 (N_2O) , but the net effects of these ecosystems on the radiative balance remain unknown. We 36 compiled a dataset of observations from 738 sites from studies published between 1975 and 37 2020 to quantify CO₂, CH₄, and N₂O fluxes in estuaries and coastal vegetation in ten global 38 regions. We show that the CO₂-equivalent (CO₂e) uptake by coastal vegetation is reduced by 39 23-27% due to estuarine CO₂e outgassing, resulting in a global median net sink of 391 or 444 40 Tg CO₂e yr⁻¹ using the 20 or 100-year global warming potential, respectively. Globally, total 41 coastal CH₄ and N₂O emissions reduce the coastal CO₂ sink by 9-20%. Southeast Asia, North 42 America, and Africa are critical regional hotspots of greenhouse gas sinks. Understanding these 43 hotspots can guide our efforts to strengthen coastal CO₂ uptake while effectively reducing CH₄ 44 and N₂O emissions. 45 46

47 Keywords: Coastal vegetation, estuaries, climate change, greenhouse gas budget, radiative48 balance

50 Main text:

51 Since the beginning of the industrial era, atmospheric concentrations of the greenhouse gases 52 (GHG) CO₂, CH₄, and N₂O have increased by 47%, 156% and 23%, respectively, and continue 53 to increase at alarming rates due to anthropogenic activities, driving global warming¹. The 54 global terrestrial CO₂ sink is diminished by biogenic CH₄ and N₂O emissions due to 55 anthropogenic activities such as agriculture or biomass burning, which resulted in a shift of the 56 terrestrial biosphere from a net CO_2 sink to a net GHG source². Globally, it is now clear that 57 inland waters are an atmospheric GHG source^{3,4} while the GHG budget of coastal ecosystems 58 is less certain. Located in the downstream portion of the Land-Ocean-Aquatic-Continuum 59 $(LOAC)^5$, estuaries receive large amounts of terrestrial carbon (C) and nitrogen (N) through riverine and groundwater flows, but their C and N cycles are also tightly inter-connected with 60 coastal vegetated ecosystems⁶ and the coastal oceans^{7,8}. The GHG radiative balance of 61 62 estuaries and coastal vegetation are thus a complex spatial and temporal combination of GHG 63 sources and sinks⁷, which complicates the estimate of the net global warming effect and makes 64 the implementation of efficient mitigation strategies difficult.

65

66 Estuaries (tidal systems and deltas, lagoons, fjords) and surrounding coastal vegetation 67 (mangroves, salt marshes, seagrasses) are strongly interconnected but show remarkable 68 variations in the magnitude and direction (sink or source) of GHG fluxes. Estuaries have been estimated to emit 0.4 to 2.2 Pg CO₂ yr⁻¹ globally⁷⁻¹⁰, whereas mangroves and salt marshes 69 collectively take up 0.3 to 1.7 Pg CO₂ yr^{-1 5,8} (Supplementary Table S1). Together with 70 71 submergent seagrasses, coastal vegetation potentially store 304 (131-466) Tg CO₂ yr⁻¹ of so-72 called 'blue carbon' in their sediments^{11,12}. On the other hand, emissions of CH₄ and N₂O from 73 coastal sediments and surrounding waters can reduce some of the coastal vegetation carbon 74 sinks^{13,14}, thereby complicating 'blue carbon' assessments^{15,16}. A recent global synthesis 75 showed that median CH₄ emissions from combined mangrove, salt marshes, and seagrasses (0.52 Tg CH₄ yr⁻¹) exceed those from estuaries (0.23 Tg CH₄ yr⁻¹)¹⁷. However, CH₄ fluxes are 76 77 highly variable across time and space, causing a large range in global estimates of both coastal vegetation (0.02 to 6.2 Tg CH₄ yr⁻¹)^{17,18} and estuaries (0.02 to 6.6 Tg CH₄ yr⁻¹)^{4,19} 78 79 (Supplementary Table S2). Coastal N₂O fluxes are less understood and it remains unclear if 80 coastal vegetated ecosystems are a net source or sink of N_2O to the atmosphere^{20,21}. Global 81 estimates of estuarine N₂O emissions are highly uncertain, with large discrepancies for both observation-based (110 to 2,844 Gg N₂O yr⁻¹)^{4,22,23} and modeling (94 to 1,084 Gg N₂O yr⁻¹)^{24,25} 82 83 approaches (Supplementary Table S3).

85 Here we present a data-driven meta-analysis synthesizing CO₂, CH₄, and N₂O fluxes in three 86 major estuary types (tidal systems and deltas, lagoons, and fjords) and three coastal vegetation 87 types (mangroves, salt marshes, seagrasses), globally and in ten world regions. These regions 88 were delineated by the REgional Carbon Cycle Assessment and Processes-2 (RECCAP2) 89 project²⁶, an activity of the Global Carbon Project. We compiled water-air CO₂, CH₄, and N₂O 90 fluxes for estuaries and combined CO₂ fluxes from eddy-covariance with CH₄ and N₂O fluxes 91 at the interfaces of water, sediments, and plants with the atmosphere for coastal vegetation. 92 Our dataset compiles observations from a total of 738 sites from studies published between 93 1975 and end of 2020 and we provide a GHG flux climatology assumed representative for this 94 period. The GHG fluxes are regionalized by combining GHG flux densities with recently 95 published surface areas of coastal vegetation²⁷⁻²⁹ and estuaries³⁰. As such, our global-scale 96 regional assessment applies a consistent framework for all three GHGs and ecosystems. 97 Regional GHG fluxes are then summed to provide global net GHG fluxes for estuaries, coastal 98 vegetation, and both systems combined. We quantify the net contemporary GHG radiative 99 balance in units of CO₂-equivalents (CO₂e) based on the global warming potential (GWP) of 100 each gas for the 20-year and 100-year time horizons¹. Note that our study does not include an 101 analysis of temporal changes in GHG fluxes required to assess a contribution to radiative 102 forcing. Following the RECCAP2 regional segmentation, our coastal GHG budget can be 103 integrated into broader budgets of continents.

104

105 Estuarine and coastal vegetation CO₂ fluxes

106 We estimate global median [first (Q1)-third (Q3) quartile] CO₂ emissions from estuaries at 111 107 [73-170] Tg CO₂ yr⁻¹ (Table 1), which is three to five times lower (as is our mean of 121 Tg CO₂ yr⁻¹) than recent mean estimates (370-550 Tg CO₂ yr⁻¹)^{9,10}. Our lower global emissions 108 109 are due to the inclusion of estuarine surface area³⁰ (Extended Data Figure 1) that is $\sim 30\%$ lower 110 than previously estimated^{31,32}, and includes more sites than previous studies^{9,10}. In particular, 111 CO₂ flux data in fiords have more than doubled since earlier reviews^{8,10} that considered fjords 112 as minimal CO₂ sources. Here we show that fjords take up 66 [96-24] Tg CO₂ yr⁻¹ from the 113 atmosphere, reducing 37% of the CO₂ emissions from global tidal systems and deltas (127 [90-114 176] Tg CO₂ yr⁻¹) and lagoons (50 [28-81] Tg CO₂ yr⁻¹) (Figure 1). Tidal systems and deltas 115 which account for 40% of the global estuarine surface area (Supplementary Table S4) show 116 higher CO₂ flux densities than lagoon and fjords (Supplementary Table S5), likely due to their 117 strong hydrological connectivity with rivers and groundwater that import CO₂ supersaturated

118 waters³³. In addition, the considerably strong influence by tides³¹ can increase water turbulence 119 and therefore gas transfer velocities³⁴ which in turn enhance CO₂ evasion from tidal systems. 120 At the regional scale, we find distinct trends of CO₂ fluxes between different geomorphic 121 estuary types (Figure 1). For example, North America is a hotspot for atmospheric CO₂ uptake 122 by fjords (57 [76-30] Tg CO₂ yr⁻¹, 86% of the CO₂ uptake by global fjords). Long stretches of 123 lagoons can be found along Africa's coastline that contribute 24% to global lagoon CO₂ 124 emissions. Europe accounts for 20% of global CO₂ emissions by tidal systems and deltas 125 although only comprising 5% of the total surface area of this estuary type. This 126 disproportionate contribution stems from the highest median CO₂ flux densities (4.7 g CO₂ m⁻ 127 2 d⁻¹) of any estuary type or region (Supplementary Table S5), likely fuelled by organic carbon 128 loads from European rivers under strong anthropogenic pressure³⁵. European estuaries were over-represented in previous global analyses^{9,10,36}, which likely led to overestimates in global 129 130 CO₂ emissions from estuaries.

131

132 Using data exclusively from eddy-covariance long-term studies, we estimate that salt marshes, 133 mangroves, and seagrasses worldwide take up 601 [774-426] Tg CO₂ yr⁻¹ from the atmosphere, 134 a flux which, in absolute terms, is more than five times greater than the estuarine CO_2 135 outgassing (Table 1). Our global estimate is lower but within the uncertainty range of a recent estimate of 843±440 Tg CO₂ yr⁻¹ by mangroves, salt marshes, and seagrasses⁵. Note that our 136 137 estimate of CO₂ uptake by coastal vegetation should be distinguished from carbon sequestration by coastal vegetation, which has been estimated to be 110-257 Tg CO₂ yr^{-1 37}, 138 139 roughly $\frac{1}{3}$ of the CO₂ uptake, the remainder resulting in a lateral export of carbon, a substantial 140 fraction of which can be transported over long distances to the open ocean⁵.

141 Seagrass meadows can be found in tropical, subtropical, and temperate-cold climate zones. 142 Mangroves are only abundant in subtropical and tropical climates, whereas salt marshes 143 dominate in temperate regions (Extended Data Figure 1, Extended Data Figure 2). Highly productive mangrove forests³⁸ contribute the majority (60%) of the global CO₂ uptake by 144 145 coastal vegetation (359 [434-333] Tg CO₂ yr⁻¹). Globally, seagrasses (192 [354-53] Tg CO₂ yr⁻¹ 146 ¹) have a ~4 times higher CO₂ uptake than salt marshes (50 [59-41] Tg CO₂ yr⁻¹) (Figure 2), 147 which is similar to previous findings based on net primary production³⁹. Since mangrove 148 forests are abundant in tropical southeast Asia, we find that this region contributes 37% to 149 global mangrove CO₂ uptake, followed by Africa (20%), and tropical North and South America 150 (both $\sim 15\%$). Salt marshes are abundant along the west and east coasts of Canada and the US. 151 Therefore, North America contributes 34% of the global salt marsh CO₂ uptake. Other regions

- that provide a substantial salt marsh CO₂ sink include East Asia (23%) and Australasia (21%).
- 153 Africa's coastline has the greatest contribution (24%) to global seagrass CO₂ uptake.
- 154

155 Estuarine and coastal vegetation CH₄ fluxes

156 Global estuaries emit 0.25 [0.07-0.46] Tg CH₄ yr⁻¹ (Table 1), a median value that falls at the 157 lower end of the range of previous assessments^{4,19,40} (Supplementary Table S2), yet is close to 158 the recent median estimate (0.23 [0.02-0.91] Tg CH₄ yr⁻¹) by Rosentreter et al.¹⁷. Global 159 estuarine CH₄ emissions are dominated by tidal systems and deltas (0.14 [0.11-0.23] Tg CH₄ 160 yr⁻¹, 56%), and lagoons (0.11 [0.05-0.13] Tg CH₄ yr⁻¹, 44%), while fjords contribute <1%. Our 161 regional analysis shows that North America's tidal systems and deltas contribute the majority 162 (50%) of global CH₄ emissions from this estuary type (Figure 1). North America also shows 163 the highest median CH4 flux densities (2.9 mg CH4 m⁻² d⁻¹) of tidal systems and deltas, 164 particularly in the USA, where many eutrophic systems undergo seasonal hypoxia or anoxia 165 that fuel CH₄ production⁴¹. South America, Russia, and Australasia contribute around 10% 166 each to global CH4 emissions from tidal systems and deltas, whereas all other regions are minor 167 contributors (<5%). North America comprises the largest area of lagoons (Extended Data 168 Figure 1), thereby dominating global lagoonal CH₄ emissions (30%). Other regions with 169 substantial lagoon CH₄ emissions are Africa (25%) and South America (14%), whereas the 170 remaining regions contribute <10%. Interestingly, we find that of all estuary types and regions, 171 lagoons in Africa show the highest flux density (5.3 mg CH₄ m⁻² d⁻¹), driven by high CH₄ 172 production in anoxic bottom waters in permanently stratified lagoons along the Ivory Coast⁴². 173

174 Globally, mangroves, salt marshes, and seagrasses combined release 0.76 [0.47-1.41] Tg CH₄ 175 yr⁻¹ which is more than three times the CH₄ released by global estuaries. Our coastal vegetation 176 estimate is comparable with a recent review¹⁷ but incorporates more data, which results in an 177 increased estimate for salt marshes and mangroves but not seagrasses. We find that mangroves 178 (0.34 [0.21-0.50] Tg CH₄ yr⁻¹) dominate coastal vegetation CH₄ emissions, followed by salt 179 marshes (0.26 [0.14-0.36] Tg CH₄ yr⁻¹), and seagrasses (0.17 [0.09-0.21] Tg CH₄ yr⁻¹) (Table 180 1, Figure 2). The high CH₄ emissions from mangroves (exceeding global estuaries) are 181 promoted by carbon-rich deep anoxic sediments⁴³ and by tidally induced mixing between groundwater rich in CH₄ and surface waters⁴⁴. We find highest mangrove CH₄ flux densities 182 183 $(21 \text{ mg CH}_4 \text{ m}^{-2} \text{ d}^{-1})$ in East Asia. However, North America's mangrove forests dominate (41%) 184 global mangrove CH₄ emissions because its forest area is 86 times greater than in East Asia 185 and the CH4 flux density is similarly high (Supplementary Table S6). Globally, Southeast Asia

186 comprises most mangrove forest area, but the region's much lower CH_4 flux density (1.4 mg 187 CH4 m⁻² d⁻¹) means that it adds only 6% to global mangrove CH4 emissions. Such a low 188 regional evasion rate may be explained by high monsoonal rainfall events and short water 189 residence times, resulting in low rates of anaerobic organic matter decomposition⁴⁵. The 190 highest median CH₄ flux densities of any coastal vegetation type are found in East Asian salt marshes (44 mg CH4 m⁻² d⁻¹), with this region contributing 34% of global salt marsh CH4 191 192 emissions despite its relatively small marsh coverage. North America's vast salt marsh areas 193 are the second highest contributor (35%) to global salt marsh emissions. Australasia's seagrass 194 meadows dominate (29%) global seagrass CH₄ emissions, a combination of moderately high 195 seagrass area and a regional flux density that is more than twice the global median 196 (Supplementary Table S6).

197

198 Estuarine and coastal vegetation N₂O fluxes

199 We estimate that estuaries globally emit 61 [41-94] Gg N₂O yr⁻¹ (Table 1), which is 200 substantially lower than previous observational and modeling estimates (94 to 5,710 Gg N₂O 201 yr⁻¹)^{4,24,25,46} (Supplementary Table S3). Similar to CO₂ and CH₄, our lower estuary N₂O 202 emissions are partially due to lower estuarine surface area used in this study³⁰, but also reflects 203 the $\sim 80\%$ more sites in our analysis than earlier reviews^{23,46}. We find the highest N₂O emissions 204 in tidal systems and deltas (35 [24-48 Gg N₂O yr⁻¹), but in contrast to CO₂ and CH₄, fjords are 205 the second highest N₂O emitters (16 [12-21] Gg N₂O yr⁻¹), almost double of those of lagoons 206 (10 [6-14] Gg N₂O yr⁻¹). Regionally, North America contributes 27%, 37%, and 77% to global 207 emissions from tidal systems and deltas, lagoons, and fjords, respectively, contributing 25 [17-208 33] Gg N₂O yr⁻¹ (41%) to global estuary N₂O emissions (Figure 1). Other regions of moderate 209 emissions are South America (14%), Russia (12%), and Southeast Asia (9%), with the 210 remaining regions being only minor contributors (< 5 Gg N₂O yr⁻¹). We further compare our 211 data-driven approach with the recently published mechanistic model of global estuary N₂O 212 emissions²⁵ that was regionalised for comparison purposes. The modelled global emission 213 estimates from all three estuary types (94 Gg N_2O yr⁻¹) fall close to the upper uncertainty bound 214 reported in our study. As such, we find an overall good agreement between the two approaches. 215 Fjord emissions represent the largest relative difference between modelled and data-driven 216 estimates (Table 1).

217

218 Coastal vegetation can be sources or sinks of N₂O to the atmosphere. We find that emissions 219 slightly exceed uptake at the global scale, resulting in 6.3 [0.7-18.3] Gg N₂O yr⁻¹ which is only 220 about 10% of the estuarine emission (Table 1). Globally, mangroves emit 8.8 [4.4-19.3] Gg 221 N₂O yr⁻¹, more than four times than salt marshes (2.1 [-0.8-6.1] Gg N₂O yr⁻¹). Seagrasses take 222 up 4.6 [6.0-3.4] Gg N₂O yr⁻¹, thereby offsetting almost half of the N₂O emitted by salt marshes 223 and mangroves (Figure 2). Nevertheless, large variability can be found in local N₂O fluxes in 224 coastal vegetation. For example, current studies report N₂O uptake from salt marshes in North 225 America⁴⁷ and Europe⁴⁸, while studies from East Asia, mainly China, reveal that this region 226 accounts for a substantial 1.3 [0.2-2.8] Gg N₂O yr⁻¹ (62%) of global salt marsh emissions. 227 Mangroves ecosystems are generally a source of N₂O although some mangrove creeks in 228 Australia have been shown to consume N_2O due to low nitrogen concentrations^{20,21}. Our 229 seagrass N₂O flux database is strongly biased towards data from Australia, where studies 230 mostly suggest N₂O uptake from near-pristine seagrasses⁴⁹ (Supplementary Table S7).

231

232 Implication for regional and global budgets

233 Our data-driven meta-analysis reveals that estuarine CO₂-equivalent GHG emissions reduce 234 the coastal vegetation CO_2 -equivalent GHG uptake, by 27% using the GWP₂₀ and 23% using 235 the GWP_{100} . Estuaries and coastal vegetation therefore are collectively a GHG sink for the atmosphere of 391 [647-76] Tg CO₂e yr⁻¹ or 444 [675-175] Tg CO₂e yr⁻¹ based on the GWP₂₀ 236 237 or GWP₁₀₀, respectively (Table 2, Figure 3). Our quantification of the net GHG sink is broadly 238 consistent with previous assessments based solely on CO₂^{5,7,8}. However, we find that this sink 239 results both from a downward revision of coastal vegetation CO₂ fixation and substantially 240 lower estuarine GHG outgassing, mostly due to the CO₂ uptake by fjords and a reduced 241 estuarine surface area³⁰. The net CO₂ sink of estuaries and coastal vegetation is also 242 significantly compensated by CH4 and N2O emissions, which offset 20% and 9% for the 243 GWP₂₀ and GWP₁₀₀, respectively. Our global-scale assessment considerably reduces the 244 uncertainty in the contemporary GHG budget⁵ and emphasises that the combined contribution 245 of coastal vegetation and estuaries on the global radiative balance is a cooling effect (Figure 246 4), in contrast to terrestrial sources² and inland waters^{3,4}. However, our analysis does not 247 address whether human activity has changed the radiative balance of these systems since the 248 pre-industrial period. Importantly, we reveal where estuarine fluxes enhance, partially reduce, 249 or exceed coastal vegetation CO₂ uptake, allowing us to identify regional hotspots of GHG 250 uptake and release (Figure 3). We find that 8 out of 10 coastal regions are a net GHG sink for 251 the atmosphere, regardless of the time horizon considered (Table 2). Using the GWP₁₀₀, 252 Southeast Asia shows the greatest net GHG sink (156 [224-106] Tg CO₂e yr⁻¹) because of its 253 extensive and highly productive tropical mangrove forests and seagrass meadows (Extended

254 Data Figure 1), as well as accommodating relatively few estuaries compared to other regions³⁰. 255 A second regional hotspot for GHG sinks is North America (128 [165-77] Tg CO₂e yr⁻¹) due 256 to its expansive mangrove, salt marsh, and seagrass areas, while also hosting the largest area 257 of CO₂-absorbing fjords globally (40% of which are located in Greenland). In Africa, the large 258 CO₂ uptake by coastal vegetation is partially offset by estuarine GHG outgassing, leaving 259 Africa as the third greatest net GHG sink (93 [134-36] Tg CO₂e₂ yr⁻¹), globally. Australasia 260 and West Asia are moderate GHG sinks (both ~ 25 Tg CO₂e yr⁻¹), while in East and South Asia, 261 coastal vegetation CO2 sinks are largely offset by estuarine GHG release, resulting in a 262 combined small net GHG sink of <20 Tg CO₂e yr⁻¹. In Europe and Russia, estuarine GHG 263 outgassing across a large estuarine surface area exceeds uptake from the relatively small area 264 of coastal vegetation, making these regions net GHG sources. As such, our regionalized 265 assessment suggests that in addition to being a net global sink of GHGs for the atmosphere, the 266 sink attributed to estuaries and coastal vegetation is also a common feature in many regions 267 across the world.

268

269 The limitations of our GHG synthesis fall largely into four categories: mapping of ecosystems, 270 GHG flux measurements, spatio-temporal variability, and coupling between coastal vegetation and estuaries. Tidal marsh area used in this study²⁹ is likely underestimated due to the recent 271 272 surge in restoration efforts resulting in a gain in tidal marsh area⁵⁰ and the lack of global 273 mapping of freshwater tidal marshes. We exclude low salinity (< 0.5) tidal river fluxes because 274 of the difficulty to separate these from non-tidal rivers, and because the biogeochemistry and 275 residence times are distinctly different from brackish estuaries¹⁹. Our coastal GHG budget is 276 focused on the interface of the atmosphere with coastal vegetation and estuaries. We do not 277 account for other radiative effects that may arise from lateral transport, such as offsite 278 emissions, or 'blue carbon' burial in marine sediments. The ebullitive and plant-mediated CH4 279 flux is underrepresented in our analysis due to the scarcity of such data. GHG flux 280 measurements, despite recent progress, are still lacking, particularly from Africa, Russia, and 281 West Asia. To better capture temporal variability, eddy covariance towers and conventional 282 time-series measurements are needed, even in regions with good spatial coverage. High spatio-283 temporal variability means that techniques such as remote sensing⁵⁰, empirical modeling, and 284 process-based modeling are needed for extrapolating flux densities and projecting future 285 hotspots, particularly in the face of climate change and population growth along the coast. 286 Coastal vegetation and estuaries are intimately coupled. However, the quantity and quality of 287 material transported laterally and the fraction and mechanisms controlling outgassing through

the coastal vegetation-estuary interface or further offshore are currently poorly known⁵¹, particularly for CH₄ and N₂O. Despite its limitations, our coastal GHG synthesis addresses the current research gap between local and global scales and identifies regional hotspots. The future role of coastal ecosystems as a sink or source of GHGs in each world region will depend on the adoption of best practices to reduce CH₄ and N₂O emissions while strengthening the CO₂ uptake.

294

295 Methods:

296 Definitions of estuaries (tidal systems and deltas, lagoons, fjords) and coastal vegetation297 (mangroves, salt marshes, seagrasses) can be found in the Supplementary Information.

298

299 Estuarine surface areas

300 The estuarine surface areas used in this study were calculated using a novel regionalized 301 approach that combines available national databases and an extrapolation method that derives 302 the total estuarine surface area of a region from the surface areas of its largest systems³⁰. Using 303 a well-established global coastal segmentation comprising 45 regions (MARgins and 304 CATchment Segmentation, (MARCATS)¹⁰), a surface area was determined for each estuary 305 type (tidal systems and deltas, lagoons, or fjords) in each region. Wherever exhaustive regional 306 or national databases were available and covered an entire MARCATS segment (i.e., Australia, 307 New Zealand, and all lagoons surrounding the Mediterranean Sea), the type-specific surface 308 areas were extracted from these databases by assigning each identified system to a given type. 309 In other regions, the surface areas were extrapolated from the 5 to 10 largest systems. The 310 extrapolation method relies on the observation that the cumulative estuarine surface area 311 expressed as a function of the number of estuaries ranked by decreasing size within a 312 sufficiently large stretch of coastline can be fitted by an equation of the form S = (a * N) / (b + N)313 N) with S being the total estuarine surface area (in km²), N, the number of estuaries and a and 314 b dimensionless calibration coefficients. Using several extensive national estuarine databases 315 (Australia, New Zealand, United States), it was shown that fitting the parameters of this generic 316 formula using only the 10 largest estuaries of a given region generally allows predicting the 317 total cumulative surface area of the region with a 9 % accuracy. This uncertainty due to 318 extrapolation is complemented by an uncertainty associated with the accuracy in estimating the 319 surface areas of the individual systems used to perform the calculations and which range from 320 4 to 15% depending on the estuarine type. Within each MARCATS, the surface areas of the 10 321 largest systems of each estuarine type were gathered from national databases (United Kingdom, Mexico, United States, Australia, South Africa, South Korea), regional surveys (FAO, UNESCO), global databases (Sea Around Us) or calculated individually using GIS. Those data were then sorted and fitted using the equation described above to derive the estuarine surface area for each MARCATS and each estuarine type, and finally summed to obtain the area for each of the ten RECCAP2 regions. For further details, see Laruelle et al.³⁰.

327

328 Coastal vegetation surface areas

329 For all three coastal vegetation types, we segmented the vegetation area given as a global 330 collection of polygons^{27–29} into the larger MARCATS regions¹⁰ using the following approach: 331 The MARCTAS regions were first converted from the raster format to polygons using the 332 python package *rasterio*⁵². To find the area of each coastal vegetation type within a given 333 MARCATS region we first dissolved overlapping individual polygons to avoid overestimation 334 of the vegetation area. We found the union of each polygon and the larger MARCATS region 335 and recalculated the area using the EPSG:6933 projection, using the python package 336 geopandas⁵³, and finally summed these values. The same process was repeated for each large-337 scale MARCATS region and coastal vegetation type individually. The available shapefiles for 338 MARCATS regions were converted from gridded outputs to polygons using *rasterio*⁵². Using 339 geopandas for each region, we dissolved overlapping polygons and calculated the area of each 340 polygon within the region using the EPSG:6933 projection, and finally summed the area for 341 each of the ten RECCAP2 regions.

342

343 Estuarine greenhouse gas fluxes

344 We calculated estuary water-air fluxes of CO₂, CH₄ and N₂O based on data from peer-reviewed 345 publications until the end of 2020. We conducted a literature search in Google Scholar and data 346 publishers (Fluxnet, PANGAEA, MEMENTO, British Oceanographic Data Centre) using the 347 search string '(CO2 OR CH4 OR N2O) AND (tidal system OR delta OR lagoon OR fjord)'. 348 Additionally, we scanned the reference lists of publications. For each site/study location (> 10 349 km apart), we averaged spatial and seasonal variation to a single water-air flux density, 350 resulting in 204 sites for CO₂, 157 sites for CH₄ and 123 sites for N₂O, globally, which are 351 20%, 21% and 85% more sites compared to previous global syntheses for CO₂⁹, CH₄¹⁷, and N₂O²³, respectively. For estuary CH₄ estimates, we included primarily diffusive water-air 352 353 fluxes (computed from the gas transfer velocity and the concentrations of CH₄ in water and air) 354 and four studies using floating chamber incubations that estimate the total CH₄ flux (diffusive 355 and ebullitive). The low number of total CH4 flux estimates means that the ebullitive flux is 356 underestimated in our analysis, particularly in the upper estuarine region. Each site/flux density 357 was then distributed following the ten RECCAP2 regions using lat/long coordinates provided 358 in the original studies or from Google Earth based on the study site description. Sites were 359 categorised as either 'tidal systems and deltas', 'lagoons', or 'fjords' based on the authors' 360 characterisation of their study site. In systems for which the site description was ambiguous or 361 not detailed enough, the type was assigned following the hierarchical steps for estuarine type 362 determination provided by Dürr et al.³¹ which are based on hydrological, lithological, and 363 morphological criteria. Estuary CO₂ and CH₄ emissions have not been modelled at global 364 scales because of the lack of an existing spatially explicit global estuarine model designed to 365 perform such a task. However, we supplemented the literature-derived empirical estuarine 366 estimates of N₂O emissions with results from the spatially explicit global model from Maavara 367 et al.²⁵. These authors used a stochastic-mechanistic model representing generalized nitrogen 368 dynamics for water body types directly connected to river networks worldwide to extract 369 relationships predicting N₂O emissions from water residence times and total nitrogen (TN) 370 yields (i.e., area-normalized loads) delivered to each estuary. The global TN loads were 371 calculated using an approach inspired by Global-NEWS models⁵⁴, and spatially routed nitrogen 372 through an inland water network joined to the estuaries accounted for in Dürr et al.³¹. Emissions 373 factors were calculated using scenarios that reflect existing literature assumptions and datasets. 374 The model was aggregated at a spatial resolution of 0.5 degrees, which is the same used by 375 Dürr et al.³¹ for their estuarine typology. Each watershed thus was assigned an estuarine type 376 based on the type of the coastal cell in which the mouth of the watershed was located. Complete 377 model details are available in Maavara et al.²⁵.

378

379 Coastal vegetation greenhouse gas fluxes

380 We conducted a literature search in Google Scholar and data publishers (Fluxnet, PANGAEA, 381 MEMENTO, British Oceanographic Data Centre) until the end of 2020 using the search string 382 (CO₂ OR CH₄ OR N₂O) AND (mangroves OR salt marshes OR seagrasses)'. Additionally, 383 we scanned the reference lists of publications. For each site/study location (> 10 km apart), we 384 averaged spatial and seasonal variation to a single flux density, resulting in 37 sites for CO₂, 385 162 sites for CH₄ and 55 sites for N_2O in coastal vegetation (Extended Data Figure 3), which 386 are 15% and 42% more sites compared to previous global syntheses of coastal wetlands for CH4 ¹⁷ and N₂O ²³, respectively. In our global synthesis, we use only long-term eddy-387 388 covariance (EC) CO₂ fluxes for coastal vegetation. We exclude chamber measurements as they 389 do not provide information on CO₂ ecosystem exchange with a temporal coverage that is comparable to EC measurements. Although EC towers are still relatively rare in coastal vegetation, this method provides robust high-resolution long-term monthly, seasonal, and often annual data of net ecosystem exchange. EC measurements of CH4 and N₂O are extremely rare in coastal vegetation. Therefore, we combined the few existing EC data with water-air, sediment-air, sediment-water, plant (leaf, root, stem)-air, and ebullition CH4 or N₂O fluxes where available.

396

397 CO₂-equivalent greenhouse gas fluxes

398 For the purpose of directly comparing the relative radiative forcing effects of CO₂, CH₄, and 399 N₂O to one another, we express GHG fluxes as CO₂-equivalents for the 20-year and 100-year 400 time horizons using the global warming potential (GWP_{20} and GWP_{100}) including chemical 401 adjustments reported in the Sixth Assessment Report of the Intergovernmental Panel on 402 Climate Change⁵⁵. For CH₄, we use the non-fossil GWP₂₀ and GWP₁₀₀. Accordingly, over a 403 20-year time period, which is important for climate policies based on shorter timescales, 1 kg 404 of CH₄ and N₂O have the same global warming potential as 79.9 kg or 273 kg of CO₂, 405 respectively. Over a 100-year time period, 1 kg of CH₄ or N₂O have the same global warming 406 potential as 27.0 kg or 273 kg of CO₂, respectively. The net contemporary GHG radiative 407 balance for a given region, ecosystem, and time horizon is the sum of the CO₂-equivalents over 408 the three gases.

409

410 Data analyses and upscaling

411 Data processing and statistical analyses were performed in R software⁵⁶. A non-parametric 412 bootstrapping method using the package *boot* in R was applied to resample flux densities for 413 each of the 3 gases in each of the 6 ecosystems (3 estuary types and 3 coastal vegetation types) 414 and in each of the 10 RECCAP2 regions (Extended Data Figure 4). The bootstrapping method 415 used 1,000 iterations of the median of samples to produce a smoothed distribution of flux 416 densities, and to generate a full set of statistics. Results from non-parametric bootstrapping 417 were then multiplied by the corresponding surface area of each of the 6 ecosystem types in 418 each of the 10 RECCAP2 regions. If an ecosystem type had less than three sites in a region, 419 we applied the global statistics of this type in this region.

420

421 Uncertainty analysis

422 Uncertainties associated with flux densities were derived from the bootstrapping method that423 generated a full set of statistics including the first (Q1) and third (Q3) quartiles of the datasets.

424 For estuarine surface areas, the normality of the distribution was successfully tested and 425 allowed deriving upper and lower 95% confidence intervals (c.i.) as well as the first (Q1) and 426 third (Q3) quartiles from the standard deviation³⁰. Global mangrove forest has been 427 successfully mapped with an overall accuracy of 99% likelihood that the true value is between 428 93.6-94.5%²⁷. The global extent of salt marshes is relatively uncertain with recent global 429 estimates ranging from 55,000²⁸ to 90,800 km² ⁵⁰. Submerged seagrasses are challenging to map and current global estimates are highly uncertain. The most recent and continuously 430 431 updated global seagrass mapping effort by UNEP-WCMC and Short²⁹ does not estimate 432 uncertainty. Here, we assume an area per region uncertainty of 5%, 10%, and 20% for 433 mangroves, salt marshes, and seagrasses, respectively, noting that these uncertainties could be 434 substantially larger for the latter two types of coastal vegetation. We then combined the 435 respective uncertainties of GHG flux densities with uncertainties of surface area of either 436 estuaries or coastal vegetation using the 'Root Sum of the Squares' method, which calculates 437 the square-root of the linear sum of the squared standard uncertainty components, treating the 438 uncertainty contributors as statistically independent. We present the combined uncertainties of 439 Q1 and Q3 in accordance with the median (Q2) in the main article, because this statistical set 440 represents the most appropriate measure of the non-normally distributed GHG fluxes.

441

442 Data Availability:

All data included in this study are freely available
(https://doi.org/10.6084/m9.figshare.22351267 and ref 57). Data may be used if cited
appropriately.

446

447 Acknowledgments:

448 We would like to thank the RECCAP2 Scientific Committee and the Global Carbon Project 449 that initiated this group effort: https://www.globalcarbonproject.org/reccap/index.htm. We 450 thank Ameriflux site teams, who contributed annual NEE sums for their sites: E. Stuart-451 Haëntjens, B. Bergamaschi, L. Windham-Myers, A. Vázquez-Lule, R. Vargas, J. Shahan, P. 452 Oikawa, P. Hawman, D. Mishra, R. Sanders-DeMott and P. Polsenaere. J.A.R. and T.M. 453 acknowledge funding by the Hutchinson Postdoctoral Fellowship from the Yale Institute for 454 Biospheric Studies at Yale University. I.F. acknowledges the NSF LTER program (OCE 455 1637630). R.G.N. acknowledges support from NASA's Carbon Cycle Science Program. 456 G.G.L. is research associate of the F.R.S-FNRS at the Université Libre de Bruxelles. P.R. 457 received financial support from BELSPO through the project ReCAP, which is part of the 458 Belgian research program FedTwin, from the European Union's Horizon 2020 research and 459 innovation program ESM 2025 – Earth System Models for the Future (grant no. 101003536) 460 project and from the FRS-FRNS PDR project T.0191.23. B.D.E. acknowledges support from 461 ARC grants DP220100918, LP200200910 and LP190100271. W.-J.C. acknowledges supports 462 from NOAA and NSF. J.J.M.B. acknowledges the computational resources provided by 463 Princeton Institute for Computational Science and Engineering (PICSciE) which were used for 464 the land segmentation. B.V.D. was supported by the Bundesministerium für Bildung und 465 Forschung (BMBF) project "CARBOSTORE" (no. 03F0875A), and from the German 466 Academic Exchange Service (DAAD) project "The Ocean's Alkalinity: Connecting geological 467 and metabolic processes and time-scales" (no. 57429828).

468

469 Author Contribution Statement:

470 J.A.R. and P.R. conceived and designed the study. J.A.R. did the synthesis for CH_4 and N_2O 471 in estuaries, and for CH₄ and N₂O in coastal vegetation. B.D.E. and H.W.B. helped with the 472 synthesis for N₂O in estuaries and coastal vegetation. T.M. provided the mechanistic model for 473 N₂O in estuaries. G.G.L. did the synthesis for CO₂ in estuaries. I.F. did the synthesis for CO₂ 474 in salt marshes. B.V.D. did the synthesis for CO_2 in seagrasses. J.A.R. did the synthesis for 475 CO₂ in mangroves. J.J.M.B. segmented the coastal vegetation surface area. G.G.L. segmented 476 the estuarine surface area. J.A.R. produced the results and figures and wrote the original draft 477 of the paper. All authors helped with the interpretation of the data and contributed to the review 478 and editing of the paper.

479

480 Competing Interest Statement:

- 481 The authors declare no competing interests.
- 482

483 Table 1. Global estuary and coastal vegetation greenhouse gas fluxes. Global median [Q1-Q3] estuary (tidal systems and deltas, lagoons, 484 fjords) and coastal vegetation (mangroves, salt marshes, seagrasses) CO₂, CH₄, N₂O, and CO₂-equivalent (CO₂e) greenhouse gas fluxes using the 485 global warming potential for the 20-year (GWP₂₀) and 100-year (GWP₁₀₀) time periods. Estuary N₂O fluxes are also shown based on the 486 mechanistic model (output) by Maavara et al.²⁵.

	CO ₂	CH ₄	CH ₄	CH ₄	N ₂ O	N ₂ O
Ecosystem	Tg CO ₂ yr ⁻¹	Tg CH ₄ yr ⁻¹	Tg CO ₂ e yr ⁻¹	Tg CO ₂ e yr ⁻¹	Gg N ₂ O yr ⁻¹	Tg CO ₂ e yr ⁻¹
			GWP ₂₀	GWP ₁₀₀		GWP ₂₀ and GWP ₁₀₀
Tidal systems and	126.6 [80.0 175.5]	0 14 [0 11 0 23]	10.8 [8.66, 18.1]	3 66 [2 04 6 13]	35.1 [23.6-48.4],	0 58 [6 45 13 2]
deltas	120.0 [09.9-175.5]	0.14 [0.11-0.25]	10.8 [8.00-18.1]	5.00 [2.94-0.15]	(49.7)	9.58 [0.45-15.2]
Lagoons	50.0 [27.8 80.5]	0 11 [0 05 0 13]	8 53 [4 15 10 1]	2 80 [1 /1 3 /3]	9.93 [6.24-13.8],	2 71 [1 70 3 76]
Lagoons	50.0 [27.6-60.5]	0.11 [0.05-0.15]	0.55 [4.15-10.1]	2.09 [1.41-3.43]	(14.1)	2.71 [1.70-3.70]
Fiords	-65 6 [-96 423 5]	0.003 [0.002-0.008]	0 25 [0 15-0 62]	0.08 [0.05-0.21]	16.3 [11.8-20.6],	4 46 [3 21-5 61]
ijoius	-05.0 [-70.425.5]	0.005 [0.002-0.000]	0.23 [0.13-0.02]	0.00 [0.05-0.21]	(30.5)	
Global estuaries	111 1 [72 7-170 3]	0 25 [0 07-0 46]	19.6 [5.45-36.9]	6 63 [1 85-12 5]	61.3 [41.4-93.8],	16.8 [11.3-25.6]
Giobal estuaries	111.1 [/2./ 1/0.3]	0.23 [0.07 0.40]	19.0 [3.43 50.9]	0.03 [1.03 12.3]	(94.4)	10.0 [11.3 23.0]
Mangroves	-359.3 [-433.5333.4]	0.34 [0.21-0.50]	26.8 [16.4-39.8]	9.07 [5.57-13.5]	8.85 [4.36-19.3]	2.42 [1.19-5.27]
Salt marshes	-49.6 [-59.041.2]	0.26 [0.14-0.36]	20.3 [11.2-28.3]	6.89 [3.80-9.60]	2.06 [-0.83-6.08]	0.56 [-0.23-1.66]
Seagrasses	-191.6 [-353.553.2]	0.17 [0.09-0.21]	13.7 [7.04-16.9]	4.64 [2.38-5.73]	-4.56 [-5.983.39]	-1.25 [-1.630.93]
Global coastal	-600 6 [-773 5426 2]	0 77 [0 47-1 41]	60 8 [37 4-112 5]	20.6 [12.7-38.1]	6 35 [0 70-18 3]	1 73 [0 19-5 00]
vegetation						
Global estuaries +	-489.5 [-700.8255.9]	1.01 [0.54-1.87]	80.4 [42.9-149.4]	27.2 [14.5-50.6]	67.7 [42.1-112.1]	18.5 [11.5-30.6]
coastal vegetation		[0.0 - 1.07]		[1 co.o]		

488 Table 2. Regional coastal CO₂-equivalent greenhouse gas fluxes. Median [Q1-Q3] estuary and coastal vegetation CO₂-equivalents (CO₂e)
 489 greenhouse gas fluxes using the global warming potential for the 20-year (GWP₂₀) and 100-year (GWP₁₀₀) time periods. Negative values indicate
 490 net uptake of greenhouse gases from the atmosphere and positive values indicate net release of greenhouse gases to the atmosphere.

Region	Estuaries		Coastal vegetation		Estuaries + coastal vegetation	
	$Tg CO_2 e yr^{-1}$ (GWP_{20})	Tg CO ₂ e yr ⁻¹ (GWP ₁₀₀)	$Tg CO_2 e yr^{-1}$ (GWP ₂₀)	$Tg CO_2 e yr^{-1}$ (GWP_{100})	Tg CO ₂ e yr ⁻¹ (GWP ₂₀)	$Tg CO_2 e yr^{-1}$ (GWP_{100})
North America	-20.1 [-33.65.97]	-25.7 [-33.912.1]	-89.4 [-123.943.0]	-102.0 [-131.264.6]	-109.6 [-157.549.0]	-127.7 [-165.176.7]
South America	13.3 [7.68-26.1]	11.6 [6.54-22.7]	-48.5 [-66.126.9]	-51.1 [-66.132.8]	-35.3 [-58.40.79]	-39.5 [-59.510.1]
Europe	31.3 [28.5-36.2]	30.5 [27.9-34.9]	-14.5 [-19.55.72]	-15.1 [-19.96.46]	16.8 [8.98-30.5]	15.4 [8.07-28.5]
Africa	25.1 [13.4-44.9]	23.3 [13.4-37.3]	-110.5 [-143.456.6]	-116.0 [-147.173.4]	-85.4 [-130.011.7]	-92.6 [-133.836.1]
Russia	30.4 [25.7-41.8]	29.3 [25.4-38.2]	-3.77 [-6.081.17]	-5.23 [-7.053.04]	26.6 [19.6-40.6]	24.1 [18.3-35.2]
West Asia	1.02 [0.91-1.28]	0.97 [0.86-1.23]	-22.8 [-29.412.7]	-23.5 [-29.815.1]	-21.8 [-28.511.4]	-22.5 [-28.913.9]
East Asia	7.59 [6.24-10.4]	7.21 [6.03-9.80]	-10.1 [-18.03.09]	-15.1 [-21.89.81]	-2.51 [-11.8-7.27]	-7.88 [-15.80.01]
South Asia	12.6 [10.6-13.9]	12.5 [10.5-13.8]	-21.5 [-30.78.48]	-24.2 [-31.913.5]	-8.93 [-20.1-5.47]	-11.7 [-21.4-0.34]
Southeast Asia	12.5 [7.97-21.4]	12.3 [7.78-21.2]	-164.9 [-229.2122.8]	-168.0 [-231.5127.0]	-152.4 [-221.2101.4]	-155.8 [-223.7105.8]
Australasia	33.7 [22.1-42.8]	32.5 [21.4-41.4]	-51.9 [-69.728.2]	-58.0 [-74.337.4]	-18.2 [-47.6-14.6]	-25.5 [-53.0-3.95]
Global	147.4 [89.5-232.8]	134.5 [85.9-208.4]	-538.0 [-735.9308.7]	-578.2 [-760.7383.1]	-390.6 [-646.575.8]	-443.8 [-674.8174.6]

493 Figure Captions (main text):

494

Figure 1: Regional and global estuary GHG fluxes. The box-whisker plots show the median and interquartile (Q1-Q3) range of CO₂, CH₄, and N₂O fluxes in tidal systems and deltas (TD), lagoons (LA), fjords (FJ) in ten RECCAP2 regions and globally. A positive value indicates a flux from the ecosystem to the atmosphere and a negative value a flux from the atmosphere to the ecosystem. Outliers (open circles) are shown only for global plots. The asterisk (*) indicates that the flux was upscaled based on global statistics (n < 3) (see Methods).

501

Figure 2: Regional and global coastal vegetation GHG fluxes. The box-whisker plots show the median and interquartile (Q1-Q3) range of CO₂, CH₄, and N₂O fluxes in mangroves (MA), salt marshes (SM), and seagrasses (SE) in ten RECCAP2 regions and globally. A positive value indicates a flux from the ecosystem to the atmosphere (emission) and a negative value a flux from the atmosphere to the ecosystem (uptake). Outliers (open circles) are shown only for global plots. The asterisk (*) indicates that the flux was upscaled based on global statistics (n \leq 3) (see Methods)

509

510 Figure 3: Global and regional coastal CO₂-equivalent GHG fluxes. a) Global median GHG 511 sources and sinks of estuaries and coastal vegetation using the global warming potential for the 512 20-year (GWP₂₀, top) and 100-year (GWP₁₀₀, bottom) time horizons. The radiative balance is 513 expressed as CO₂-equivalents in Tg CO₂e yr⁻¹ for CO₂, CH₄, N₂O, and their sum (net GHGs). 514 b) Conceptual diagram showing the magnitude of the CO₂-equivalent GHG fluxes for estuaries, 515 coastal vegetation, and their sum in the ten RECCAP2 regions and relative to each other. The 516 size of the arrows is proportional to the fluxes in Tg CO₂e yr⁻¹ (Table 2). The arrow size is the 517 same for GWP₂₀ and GWP₁₀₀, therefore arrows are not shown for the two GWP time horizons 518 individually.

519

520 Figure 4: Estuary and coastal vegetation GHG fluxes in the land-to-ocean aquatic 521 **continuum (LOAC).** a) the LOAC carbon loop model is adapted from Regnier et al.⁵. The 522 green loop connects the terra-firme ecosystems to the open ocean. The two shorter loops 523 connect the terra firme ecosystems to inland waters (grey) and the coastal vegetation, estuaries, 524 and continental shelves to the open ocean (blue). F_{AW} refers to GHG fluxes by tidal wetlands 525 (salt marshes and mangroves) and submerged vegetation and FEA refers to estuarine GHG 526 fluxes. b) Global median [Q1/Q3] CO₂-equivalent GHG fluxes using the global warming 527 potential for the 20-year (GWP₂₀) and 100-year (GWP₁₀₀) time horizons in coastal vegetation 528 and in estuaries. Here we include seagrasses in coastal vegetation fluxes (FAW), whereas in 529 Regnier et al.⁵ seagrasses as submerged vegetation are separated from inter-tidal emergent 530 mangroves and salt marshes. Units are in Tg CO₂e yr⁻¹.

532 References (main text):

- IPCC, I. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. (2021).
- 535 2. Tian, H. *et al.* The terrestrial biosphere as a net source of greenhouse gases to the atmosphere.
 536 *Nature* 531, 225–228 (2016).
- 537 3. Raymond, P. A. *et al.* Global carbon dioxide emissions from inland waters. *Nature* 503, 355–359 (2013).
- 539 4. Zheng, Y. *et al.* Global methane and nitrous oxide emissions from inland waters and estuaries.
 540 *Glob. Chang. Biol.* 4713–4725 (2022).
- 5. Regnier, P., Resplandy, L., Najjar, R. G. & Ciais, P. The land-to-ocean loops of the global carbon cycle. *Nature* 603, 401–410 (2022).
- Abril, G. & Borges, A. V. Ideas and perspectives: Carbon leaks from flooded land: Do we need to replumb the inland water active pipe? *Biogeosciences* 16, 769–784 (2019).
- 545 7. Cai, W.-J. Estuarine and Coastal Ocean Carbon Paradox: CO₂ Sinks or Sites of Terrestrial
 546 Carbon Incineration? *Ann. Rev. Mar. Sci.* 3, 123–145 (2011).
- 547 8. Bauer, J. E. *et al.* The changing carbon cycle of the coastal ocean. *Nature* 504, 61–70 (2013).
- 548 9. Chen, C. T. A. *et al.* Air-sea exchanges of CO₂ in the world's coastal seas. *Biogeosciences* 10, 6509–6544 (2013).
- 55010.Laruelle, G. G. *et al.* Global multi-scale segmentation of continental and coastal waters from the
watersheds to the continental margins. *Hydrol. Earth Syst. Sci.* 17, 2029–2051 (2013).
- 552 11. Macreadie, P. I. *et al.* Blue carbon as a natural climate solution. *Nat. Rev. Earth Environ.* 2, 826–839 (2021).
- 554 12. Gattuso, J.-P., Williamson, P., Duarte, C. M. & Magnan, A. K. The Potential for Ocean-Based
 555 Climate Action: Negative Emissions Technologies and Beyond. *Front. Clim.* 2, 1–8 (2021).
- Rosentreter, J. A., Maher, D. T., Erler, D. V, Murray, R. H. & Eyre, B. D. Methane emissions partially offset "blue carbon" burial in mangroves. *Sci. Adv.* 4, eaao4985 (2018).
- 558 14. Oreska, M. P. J. *et al.* The greenhouse gas offset potential from seagrass restoration. *Sci. Rep.*559 10, 7325 (2020).
- 15. Rosentreter, J. A., Al-Haj, A. N., Fulweiler, R. W. & Williamson, P. Methane and Nitrous Oxide
 Emissions Complicate Coastal Blue Carbon Assessments. *Global Biogeochem. Cycles* 35, 1–8 (2021).
- 563 16. Williamson, P. & Gattuso, J. Carbon Removal Using Coastal Blue Carbon Ecosystems Is
 564 Uncertain and Unreliable, With Questionable Climatic Cost-Effectiveness. *Front. Clim.* 4, 1–14
 565 (2022).
- For the second se
- 18. Al-Haj, A. N. & Fulweiler, R. W. A synthesis of methane emissions from shallow vegetated coastal ecosystems. *Glob. Chang. Biol.* 26, 2988–3005 (2020).
- 570 19. Borges, A. V. & Abril, G. Carbon Dioxide and Methane Dynamics in Estuaries. in *Treatise on Estuarine and Coastal Science* vol. 5 119–161 (Elsevier, 2011).
- 572 20. Maher, D. T., Sippo, J. Z., Tait, D. R., Holloway, C. & Santos, I. R. Pristine mangrove creek waters are a sink of nitrous oxide. *Sci. Rep.* 6, 25701 (2016).
- 574 21. Murray, R., Erler, D., Rosentreter, J., Maher, D. & Eyre, B. A seasonal source and sink of nitrous oxide in mangroves: Insights from concentration, isotope, and isotopomer measurements. *Geochim. Cosmochim. Acta* 238, 169–192 (2018).
- 577 22. De Wilde, H. P. J. & De Bie, M. J. M. Nitrous oxide in the Schelde estuary: Production by nitrification and emission to the atmosphere. *Mar. Chem.* **69**, 203–216 (2000).
- 579 23. Murray, R. H., Erler, D. V. & Eyre, B. D. Nitrous oxide fluxes in estuarine environments: response to global change. *Glob. Chang. Biol.* 21, 3219–3245 (2015).
- 581 24. Kroeze, C., Dumont, E. & Seitzinger, S. Future trends in emissions of N₂O from rivers and estuaries. J. Integr. Environ. Sci. 7, 71–78 (2010).
- 583 25. Maavara, T. *et al.* Nitrous oxide emissions from inland waters: Are IPCC estimates too high?
 584 *Glob. Chang. Biol.* 25, 473–488 (2019).
- 585 26. Ciais, P. *et al.* Definitions and methods to estimate regional land carbon fluxes for the second

586		phase of the REgional Carbon Cycle Assessment and Processes Project (RECCAP-2). Geosci.
587		<i>Model Dev. Discuss.</i> 2020 , 1–46 (2020).
588 589	27.	Bunting, P. <i>et al.</i> The Global Mangrove Watch-A New 2010 Global Baseline of Mangrove Extent <i>Remote Sans.</i> 10 , 1669 (2018)
500	28	Magwan C. Waathardon I.V. Bochova I. Sullivan F. Blyth S. Zocklar C. Stanwell Smith D.
501	20.	Kingston N. Martin CS. Spalding M. Elatohar S. (2017). A global man of saltmarshes (v6.1)
502		Ringston N, Martin CS, Spatning M, Fielcher S (2017). A global map of saturatises (vo.1).
502		DOL https://doi.org/10.24002/07-th.pref1
595	20	$UNED WGMG_{10.54692/07VK-ws51}$
505	29.	to the data laws used in Group and Short (2002). Combridge (UK): UN Environment World
595		Conservation Monitoring Control UDL http://doi.org
507	20	Larvalla, G. G. Desentrator, I. A. Degnier, D. Extrapolation based regionalized re-avaluation of
508	50.	the global estuaring surface area (proprint: https://doi.org/10.21222/X5X664)
500	21	Dirr H H $at \ al$ Worldwide typology of nearshore coastel systems: defining the estuarine filter
600	51.	of river inputs to the oceans. Estuaries and Coasts 34, 441, 458 (2011)
601	22	Woodwall C M Dich D H & Holl C A S Corbon in actuaries in Cathon and the Picenhene
602	52.	(da Waadwall G M & Basan E V) 221 240 (Tashnical Information Contar U.S. Atomia
602		(eus. woodwell, G. M. & Fecal, E. V) 221–240 (Technical Information Center, U.S. Atomic Energy Commission, National Technical Information Service, 1073)
604	22	Stawart B T Santos I D Tait D P Macklin D A & Mahar D T Submarine groundwater
605	55.	discharge and associated fluxes of alkalinity and discolved carbon into Moraton Bay (Australia)
606		estimated via radium isotopes. Mar. Cham. 174, 1, 12 (2015)
607	34	Borges A V et al Variability of the gas transfer velocity of CO ₂ in a macrotidal estuary (the
608	54.	Scheldt) Estuarias 27 503 603 (2004)
609	35	Erankignoulle M Carbon Diovide Emission from European Estuaries Science 282 434-436
610	55.	(1008)
611	36	Regnier P et al Modelling Estuarine Biogeochemical Dynamics: From the Local to the Global
612	50.	Scale Aquat Geochemistry 19 591–626 (2013)
613	37.	Lovelock, C. E. & Reef, R. Variable Impacts of Climate Change on Blue Carbon. <i>One Earth</i> 3 .
614	0,1	195–211 (2020).
615	38.	Alongi, D. M. Carbon Cycling and Storage in Mangrove Forests, Ann. Rev. Mar. Sci. 6, 195–
616		219 (2014).
617	39.	Alongi, D. M. Carbon Balance in Salt Marsh and Mangrove Ecosystems: A Global Synthesis.
618		J. Mar. Sci. Eng. 8, 767 (2020).
619	40.	Bange, H. W., Bartell, U. H., Rapsomanikis, S. & Andreae, M. O. Methane in the Baltic and
620		North Seas and a reassessment of the marine emissions of methane. Global Biogeochem. Cycles
621		8 , 465–480 (1994).
622	41.	Gelesh, L., Marshall, K., Boicourt, W. & Lapham, L. Methane concentrations increase in bottom
623		waters during summertime anoxia in the highly eutrophic estuary, Chesapeake Bay, U.S.A.
624		Limnol. Oceanogr. 61, S253–S266 (2016).
625	42.	Koné, Y. J. M., Abril, G., Delille, B. & Borges, A. V. Seasonal variability of methane in the
626		rivers and lagoons of Ivory Coast (West Africa). Biogeochemistry 100, 21-37 (2010).
627	43.	Donato, D. C. et al. Mangroves among the most carbon-rich forests in the tropics. Nat. Geosci.
628		4, 293–297 (2011).
629	44.	Maher, D. T., Santos, I. R., Golsby-Smith, L., Gleeson, J. & Eyre, B. D. Groundwater-derived
630		dissolved inorganic and organic carbon exports from a mangrove tidal creek: The missing
631		mangrove carbon sink? Limnol. Oceanogr. 58, 475–488 (2013).
632	45.	Rao, G. D. & Sarma, V. V. S. S. Variability in Concentrations and Fluxes of Methane in the
633		Indian Estuaries. Estuaries and Coasts 39, 1639–1650 (2016).
634	46.	Bange, H. W., Rapsomanikis, S. & Andreae, M. O. The Aegean Sea as a source of atmospheric
635		nitrous oxide and methane. Mar. Chem. 53, 41–49 (1996).
636	47.	Chmura, G. L., Kellman, L., van Ardenne, L. & Guntenspergen, G. R. Greenhouse Gas Fluxes
637		from Salt Marshes Exposed to Chronic Nutrient Enrichment. PLoS One 11, e0149937 (2016).
638	48.	Dausse, A. et al. Biogeochemical functioning of grazed estuarine tidal marshes along a salinity
639		gradient. <i>Estuar. Coast. Shelf Sci.</i> 100 , 83–92 (2012).
640	49.	Chen, J., Wells, N. S., Erler, D. V. & Eyre, B. D. Land Use Intensity Increases Benthic N ₂ O

641 642 Emissions Across Three Sub Tropical Estuaries. J. Geophys. Res. Biogeosciences 127, 1–15 (2022).

- 643 50. Murray, N. J. *et al.* High-resolution mapping of losses and gains of Earth's tidal wetlands.
 644 Science 376, 744–749 (2022).
- 51. Shields, M. R. *et al.* Carbon storage in the Mississippi River delta enhanced by environmental engineering. *Nat. Geosci.* 10, 846–851 (2017).

648 **References (methods):** 649

- 650 52. Gillies, S., Ward, B., & Petersen, A. S. (2013). Rasterio: Geospatial raster I/O for Python programmers. URL https://github. com/mapbox/rasterio
- 652
 53.
 Jordahl, K. et al. (2020). geopandas/geopandas: v0.8.1 (v0.8.1). Zenodo. URL

 653
 https://doi.org/10.5281/zenodo.3946761

654 54. Mayorga, E. *et al.* Global Nutrient Export from WaterSheds 2 (NEWS 2): Model development and implementation. *Environ. Model. Softw.* 25, 837–853 (2010).

- 656 55. Forster, P., T. Storelvmo, K. Armour, W. Collins, J.-L. Dufresne, D. Frame, D.J. Lunt, T. 657 Mauritsen, M.D. Palmer, M. Watanabe, M. Wild, and H. Zhang. The Earth's Energy Budget, 658 Climate Feedbacks, and Climate Sensitivity. In Climate Change 2021: The Physical Science 659 Basis. Contribution of Working Group I to the Sixth Assessment Report of the 660 Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. 661 Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, 662 E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou 663 (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 664 pp. 923-1054 (2021).
- 665 56. R Core Team (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/. (2020).
- 667 57. Rosentreter, J. et al. (2023): Coastal GHG data base. figshare. Dataset.
 668 https://doi.org/10.6084/m9.figshare.22351267

b)

Mangrove forest	(km²)
 North America South America Europe Africa Russia West Asia South Asia South Asia Southeast Asia Australasia 	= 20,910 = 18,990 = 0 = 27,086 = 0 = 267 = 243 = 8,402 = 49,967 = 9,948
Salt marshes	(km²)
 North America South America Europe Africa Russia West Asia East Asia South Asia Southeast Asia Australasia 	= 22,672 = 1,564 = 3,975 = 119 = 7,044 = 318 = 5,475 = 0 = 0.1 = 13,383

Seagrass meadows (km²)

1 North America	= 61,110
2 South America	= 2,136
3 Europe	= 19,365
4 Africa	= 79,201
5 Russia	= 961
6 West Asia	= 38,352
7 East Asia	= 9,984
8 South Asia	= 6,873
9 Southeast Asia	= 63,631
10 Australasia	= 41,009

Coastal Vegetation CH₄ Sites

Coastal Vegetation N₂O Sites

Level 1 - Greenhouse gas (CO₂, CH₄, N₂O) x3

Level 2 - Estuary type (tidal systems and deltas, lagoons, fjords) x3 OR Coastal vegetation type (mangroves, salt marshes, seagrasses) x3 Level 3 - RECCAP2 region x10